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tion, Gagné Caroline [et al.] 83

On the Sensitivity of Grid-Based Parameter Adaptation Method, Tatsis Vasileios [et
al.] 86

Application of fuzzy smoothing filter in empirical copula function, Kresta
Ales 95

Machine-learning algorithms for portfolio optimization problems, Kouaissah
Noureddine [et al.] 98

An Innovative Heuristic Mixed-Integer Optimization Approach for Multi-
Criteria Optimization based Production Planning in the context of Produc-
tion Smoothing, Kamhuber Felix [et al.] 101

New Approach for Continuous and Discrete Optimization: Optimization by
Morphological Filters, Khelifa Chahinez [et al.] 110

A Combined Data Mining and Tabu Search approach for Single Customer
Dial-a-Ride Problem, Morais Ana Catarina [et al.] 121

Fitting epidemiological models’ parameters via multi-objective optimization, Ruiz
Ferrández Miriam [et al.] 124

Iterated-Greedy-Based Metaheuristic with Tabu Search and Simulated An-
nealing for Solving Permutation Flow Shop Problem, Mesmar Khadija [et
al.] 127

2



On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid
Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence
Independent Setup Time, Aqil Said [et al.] 133

Dual tree wavelet transform based denoising of images using subband adaptive
thresholding via genetic algorithm, Boukhobza Abdelkader [et al.] 148

A Bi-Objective Maintenance-Routing Problem; an efficient solving approach, Rahimi
Mohammad [et al.] 155

Heat exchanger network synthesis with an enhanced superstructure and hy-
brid metaheuristics, Pavão Leandro [et al.] 158

Transformer’s Health Index using Computational Intelligence, Alves Dos San-
tos Ramon [et al.] 165

Application of the surrogate models for protein structure prediction, Rakhshani
Hojjat [et al.] 175

A Hybrid Genetic Algorithm for the job shop problem with transportation
and blocking no wait constraints, Louaqad Saad [et al.] 178

A randomized search procedure combined with simulated annealing for the
capacitated location routing problem, Ali Lemouari 188

Design and Parallel Implementation of the H264 application on Heteroge-
neous Architectures, Adda Chahrazed [et al.] 191

A Parallel Adaptive Differential Evolution Algorithm for Electric Motor De-
sign, Essaid Mokhtar [et al.] 204

Virtual screening in electrostatic potential using an evolutionary algorithm, Puertas-
Mart́ın S. [et al.] 207

Improved NSGAII Based on a Multiple-Criteria Decision Analysis Method
for Business Process Optimization, Mahammed Nadir [et al.] 210

Efficient Generic Support for Global Routing Constraints in Constraint-Based

3



Local Search Frameworks, Meurisse Quentin [et al.] 221

A New Hidden Markov Model Approach for Pheromone Level Exponent
Adaptation in Ant Colony System, Bouzbita Safae 232

An algorithm based on dimensionality reduction through parameterized curves
to solve a class of non-convex global optimization, Mohamed Rahal 241

Metaheuristics for Agent based Intelligent Evacuation System, Hajjem Manel [et
al.] 244

Vector-Quantization Codebook Generation using LBG and Meta-Heuristic
Algorithms, Boubechal Ikram [et al.] 247

Multi-gene genetic programming for feature selection in DNA Microarrays, Sfaksi
Sara [et al.] 250

A modified cuckoo search algorithm for unsupervised satellite image classifi-
cation, Kaouter Labed 253

Embedded System for Template Matching using Swarm Intelligence, De V.
Cardoso Alexandre [et al.] 256

A parallel BSO metaheuristic for molecular docking problem, Saadi Hocine [et
al.] 266

One-Class Subject Authentication using Feature Extraction by Grammatical
Evolution on Accelerometer Data, Mauceri Stefano [et al.] 273

A heuristic approach for standalone clinical laboratory layout design, Fara-
marzi Oghani Sohrab [et al.] 283

Optimizing injection blow molding by neuroevolution, Silva Hugo [et al.] 291

Reducing environmental impacts in heat exchanger networks using Life Cycle
Assessment and metaheuristic optimization techniques, Pavão Leandro [et
al.] 301

4



Energy efficient scheduling of a multi-states and multi-speeds single machine
system, Aghelinejad Mohsen [et al.] 309

Meta-heuristics for global reliability optimization of solder joints in electronic
devices, Hamdani Hamid [et al.] 312

Dynamic Programming heuristic for k-means Clustering among a 2-dimensional
Pareto Frontier, Dupin Nicolas [et al.] 314

The Evaluation-times Constrained Optimization (ECO) Problem and Its Gen-
eral Solver Model, Tamura Kenichi 322

A pickup and delivery problem with multi-trips, multi- ux, multi-vehicles and
break placement, Noumbissi Tchoupo Möıse Aimé [et al.] 325
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Abstract—The unsupervised classification is to look for 
homogeneous groups in a data set. This problem is very complex 
and the use of approximation algorithms is inevitable. In this 
paper we are interested in fly algorithm to unsupervised image 
classification. This new algorithm has good coding of immune 
systems and a variation operator of evolutionary algorithms has 
been combined with the Parisian approach. The latter ensures 
that the entire population is the solution, whose main interest is 
the representation of individuals of small size and rapid 
convergence. 

Keywords—unsupervised classification, evolutionary algorithm, 
fly algorithm, Parisian approach. 

I.  INTRODUCTION 

      News in the field of clustering images revolves around 
evolutionary approaches. Several algorithms have been 
applied such as genetic algorithms [6] and artificial immune 
systems. [7] These last two were proven performance but each 
of them has a defect where does the idea of combining the 
power of genetic algorithms and coding classes of artificial 
immune systems. This has already been successfully applied 
in several fields such as robotics and stereovision. [5]          
In this paper we will see that it is even possible to use it to 
solve the problem of unsupervised image classification. [1] [2] 

II. FLY ALGORITHM AND PARISIAN APPROACH

The fly algorithm [4] is a special evolutionary algorithm. It 
has the same variation operators that evolutionary algorithms 
(crossover and mutation), and adds the migration. The main 
interests of the fly algorithm with the Parisian approach are the 
reduced representation of individuals and rapid convergence, 
from where their utility and their popularity in real time require 
some robotic applications processing.  

We will see that it is possible to use them to solve the problem 
of unsupervised classification. 

A. Fly algorithm 
      The fly hunts for food and a mate within one to two month 
lifespan. When a fly decides to go for hunting, it will fly 
randomly (with Lévy flight motion) to find the location guided 
by a particular odor. While searching, the fly also sends and 
receives information from its neighbors and makes 
comparison about the best current location and fitness. If a fly 
has found its spot, it will then identify the fitness by taste. If 
the location no longer exists or the taste is ‘bitter’, the fly will 
go off searching again. The fly will stay around at the most 
profitable area, sending, receiving and comparing information 
at the same time. The total number of flies depends upon the 
number of sources. 
However, since most of the flies are near to the food source 
location, then the next generation of flies is considered to be
already close by to the potential food location. 
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B. Parisian approach 
       In most evolutionary approaches, each individual in the 
population represents a potential solution to the problem 
addressed. 
This approach has proven effective for genetic algorithms, but 
presents a problem if the individual encoded solution is large. 
Manipulate a population of large number of individuals who 
are important to themselves can be very difficult in time and 
memory capacity. This problem has hampered the use of 
evolutionary approaches in environments where resource 
constraints and time are great, especially in embedded systems 
and robotics. 
The Parisian approach explores a new possibility of coding the 
solution. The individual is no longer a solution, but a fragment 
of it and it is necessary to combine all individuals to build a 
solution. 
There are two necessary conditions for the implementation of 
this approach: 

• The solution can be decomposed into separate
elements.

• Individuals (fragments of solution) can be judged
separately by a fitness function (or objective
function), and it must be representative of the
"quality" of the overall solution. [5]

 Later we will see how the problem of unsupervised 
classification can satisfy these conditions. 

III. APPLICATION OF FLY ALGORITHM AND PARISIAN
APPROACH TO CLASSIFICATION

     To adapt fly algorithm with Parisian approach to the 
problem of unsupervised image classification, we must first 
meet the two conditions mentioned above:  encode individuals 
so that the entire population is a potential solution of the 
problem and find a function that evaluates these individuals so 
that the quality of the classification is good. 

A. Initialization of the population 
For coding, we exploited the technique of the immune 

systems. We randomly create a population of 'u' antibodies, 
which will be the individuals of the population Pt. Each 
individual (encoded with positive real numbers) represents a 
class. The population size is determined by the maximum 
number of classes. 

B. Crossing 
      It is important to note that the method chosen of crossing 
the cross depends on the representation of individuals (in our 
work the representation is real). Thus, to calculate the new 
individuals (children) Pβ just choose a cutoff point (that is to 
say a position in the chain) from which the data is exchanged 
between the two parents. 

C. Mutation 
      Mutation is the second operator of variation used just after 
the crossing. It consists to change the individuals resulting 
from the crossing. 
In the case of a real representation, the simplest way is to add 
to each individual component   a realization of a standard 
normal distribution. 

D. Migration 
      Migration is to introduce a set number of new individuals 
Pγ created randomly from the current population in order to
ensure the diversity of the population. 

E. Evaluation and selection of individuals for replacement 
      The last step of the evolutionary algorithm is the 
evaluation of individuals and their selections for replacement 
[3]. With regard to the evaluation, the used function is the 
following one: 

  Where 'oi' the objects to be classified, 
 'aj' antibodies, 
 'd' is any normalized distance. 

After obtaining a population P' (parent Pt, children Pβ from 
crossing of `u` parents, Pα mutations of children and Pγ from 
migration we need a strategy to select the `u` individuals 
which will be part of the population of the next generation 
(that is to say the next iteration).  
Several replacements exist, one that was considered effective 
for our application is the elitist replacement and has a policy to 
keep parents which are more efficient than children without 
distinguishing between parents and children and keep μ best 
individuals from P'. 

• Fly algorithm
1. Initialize a population Pt of μ individuals.
2. While (stopping condition = false) do

- Create β individuals by crossing from Pt to form the
population Pβ. 

 - Create a population Pα with these muted individuals. 
 - Generate randomly γ individuals to form the Pγ population. 
 - P' Pt + Pα + Pβ + Pγ 
 - Evaluate all individuals from P' with a fitness function and 

choose μ best (Pt  best individuals from P') 
End while. 
Once the stop condition is satisfied (number of generations 
reached), we will have in output the 'u' best individuals 
representative of class. At this stage, we calculate the distance 
between each pixel of the image and the 'u' best individuals, 
and the assignment will be the nearest individual. 

(1) 
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IV. IMPLEMENTATION

The application of fly algorithm, like any evolutionary 
algorithm is influenced by factors such as the form of encoding 
(binary or real number), the population size, the fitness 
function, genetic operators (crossover, mutation) .... In what 
follows we will discuss the parameters that are fixed by
explaining the reasons, as well as those that will vary. 

A. Discussion of parameters 
To fix the maximum number of classes, we estimate 

(visually) the number of classes constituting the image, and 
then multiply it by two. 

The used crossover model is the generalization of the method 
of crossing of binary chain with a single cutoff point for its 
ease of implementation. 

With regard to the standard deviation of the normal 
distribution (mutation), it is important to note that despite the 
existing differences between individuals, their performance 
has to be roughly equal. This phenomenon induces premature 
convergence. To mitigate this risk it is better to reduce the 
variance using the reduced centered normal distribution 
(expectation = 0, standard deviation = 1). 

Another parameter to fix is the number of individuals 
migrated. This parameter impulse on the convergence of the 
algorithm when to migrate a high number of individuals, in the 
contrary case, the diversity of the population is weakened. For 
this reason, it is best to migrate 'u' individuals. 

The number of generations ‘GN’ is the only parameter that is 
varied to know what happens. 

B. Discussion of results 

       We will apply fly algorithm with the Parisian approach on 
an aerial image of the INCT (National Institute of Cartography 
and Remote Sensing) Houssine Day, Algiers, and was taken in 
2010, it is a grayscale image captured by King-Air C90 
aircraft with a shooting system using analog type cameras 
RMK TOP 30, representing the region of the province of 
FEZZARA TARF (Algeria). 

Fig. 1. Aerial image representing region of FEZZARA 

TABLE I. LIST OF CLASS AND NUMBER OF LABELED SAMPLES IN EACH 
CLASS 

Class Name Number of labled samples 

Vegetation 784 

Building 291 

Road 369 

Shadow 103 

Total number of samples 1547 

1) Test 1
As a first test we will apply our algorithm while fixing the 
number of generation at 10. The results are given in Figure 2. 

Fig. 2. Classification results with  GN = 10

TABLE II. RESULT OF CLASSIFICATION (GN =10) 

Vegetation Building Road Shadow Total 

Vegetation 461 95 32 8 596 

Building 302 112 106 3 523 

Road 21 43 219 4 287 

Shadow 0 41 12 88 141 

Total 784 291 369 103 880 

      The Table 1 shows that the number of classes that make up 
the image is properly recognized for the three images despite 
the existence of small confusion that does not exceed two 
percent, and some misclassified pixels that can be seen in the 
classified images. 

This confusion may be caused by the random initialization of 
the population. For this reason, in the following we will keep 
the same initial population while varying the number of trials 
generations. 

2) Test 2
 In this essay we will fix the number of generations to 50 and
then to 100. 
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Fig. 3. Classification results with GN = 50

TABLE III. RESULT OF CLASSIFICATION (GN =50) 

Vegetation Building Road Shadow Total 

Vegetation 602 95 32 8 737 

Building 164 192 106 3 465 

Road 18 43 287 4 352 

Shadow 0 41 12 94 147 

Total 784 291 369 103 1175 

Fig. 3. Classification results with GN =100 

TABLE IV. RESULT OF CLASSIFICATION (GN =100) 

Vegetation Building Road Shadow Total 

Vegetation 394 95 32 4 525 

Building 226 89 106 12 433 

Road 161 43 123 19 349 

Shadow 3 21 22 52 98 

Total 784 291 369 103 658 

These results show that the variation of the number of 
generations impulses on the results of two different ways: in 
addition increases the number of generations a better 
classification (GN =50) were obtained, but arriving at a 
number generations (GN = 100) the performance of our 
algorithm starts to degrade. This degradation is due to the 
migration operator of integrating individuals uniformly in
every generation. 

V. CONCLUSION 
       The fly algorithm with Parisian approach is a recent 
evolutionary approach which has the advantage of rapid 
convergence and a population of reduced memory size. The 
results have proved generally better than those of evolutionary 
algorithms using conventional coding. However, there are 
some insignificant and small confusion classes. 
This problem can be resolved by varying the number of 
generations, but this variation can lead to a divergence caused 
by the migration operator by introducing individuals 
uniformly to every generation that keeps them from 
themselves into classes, so it would certainly more effective to 
ensure that the operator introduces individuals around groups 
and not uniformly. 
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Abstract. Although it is well-known that a proper balancing between exploration and exploitation
plays a central role on the performances of any evolutionary algorithm, what instead becomes crucial
for both is the life time with which any offspring maturate and learn. Setting an appropriate lifespan
helps the algorithm in a more efficient search as well as in fruitful exploitation of the learning dis-
covered. Thus, in this research work we present an experimental study conducted on eleven different
age assignment types, and performed on a classical genetic algorithm, with the aim to (i) understand
which one provides the best performances in term of overall efficiency, and robustness; (ii) produce an
efficiency ranking; and, (iii) as the most important goal, verify and prove if the tops, or most, or the
whole ranking previously produced on an immune algorithm coincide with that produced for genetic
algorithm. From the analysis of the achievements obtained it is possible to assert how the two efficiency
rankings are roughly the same, primarily for the top 4 ranks. This also implies that the worst option
obtained for the immue algorithm continues to be a bad choice even for the genetic algorithm. The
most important outcomes that emerge from this research work are respectively (1) the age assignment
to be avoided, from which are obtained bad performances; and (2) a reliable age to be assigned to any
offspring for having, with high probability, robust and efficient performances.

1 Introduction

As it is well known in the natural computing field, one of the major successful factors in evolutionary
algorithms is the design and development of the exploration and exploitation mechanisms. A good balancing
between these two phases is crucial since it strictly affects the efficiency and robustness of evolutionary
algorithms performances. While the aim of the exploration mechanism is to search for new solutions in
new regions by using the mutation operator, the second mechanism has the purpose to exploit in the best
possible way all information gathered using the selection process. Both phases, hence, help the algorithm
in discovering, gaining and learning new information, and, subsequently, in exploiting all gained promising
regions so to generate better populations.

However, what allows to take advantage of the acquired information is truly given by how long each
individual lives and in doing so influencing the evolution and maturation of the population. Besides, this
lifetime affects, also, the exploration phase, allowing having a better and deep search process. Thus, the time
an individual remains in the population becomes crucial in the performances of any evolutionary algorithm,
and it is strictly related to the good balancing between the exploration and exploitation processes. Indeed,
letting individuals live for a long time produces a dispersive search, and, then, an unfruitful learning, with
the final outcome of increasing the probability to easily get trapped in local optima due to the low diversity
that is generated. On the other hand, allowing a short lifetime often does not help to have enough overall
learning of the knowledge discovered, and it neither allows a careful search within the solutions space,
producing instead high diversity into the population, which, in turn, negatively affects the convergence
towards a global optimum.

A first research work on this aspect was conducted in [3], where the authors presented an experimental
study whose main aim was to understand the right lifetime of any individual/solution in order to perform
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a proper exploration within the search space, as well as a fair exploitation of the gained information. Such
experimental analysis was conducted on an immune algorithm, whose core components are the cloning,
hypermutation and aging operators.

In the cited research work, eleven different options about the lifetime of each individual were studied
(see table 1), with the main goal to answer the three main questions: (i) “is the lifespan related to the
number of offspring generated?”; (ii) “is the lifespan related to the population size?”; and in case of
negative answer to the two previous ones, (iii) “how long must the lifespan of an offspring be to carry
out a proper exploration?”. Once these questions were answered, an efficiency ranking was produced,
from which clearly emerged that a too short lifetime is always the worst choice; whilst the best one is to
let it evolve for all iterations allowed starting from scratch, i.e. assigning age 0 to each offspring. Thus,
following the above described study, in this research work we want to check if the achievements produced
on the Immune Algorithm (IA) are still valid, and primarily work, on a genetic algorithm (GA). Of course,
what we do not expect to get the same efficiency ranking, but rather we would like to check if the top 4 for
IA still appear as the top 4 for GA, even if in different ranking order, and, moreover, if the worst for IA
continues to still be the worst for GA. In a nutshell, what we would like to assert with this research work is
the existence (if any) of a lifespan, to be assigned to the offspring, that roughly provides robust and efficient
performances, especially when high uncertainty on the problem to be solved exists; as well as which is to be
avoided for sure. It is important to emphasize that such outcomes are correct and valid on all those problems
that show similar landscape topologies, and similar complexities to the problem tackled.

2 The One-Max Problem

To validate and generalize the obtained results, it is crucial to develop an algorithm, which is not tailored
to a specific problem, by keeping it unaware of any knowledge about the domain. As it is well-known in
literature, to tackle and solve generic and complex combinatorial optimization problems, any evolutionary
algorithm must incorporate local search methodologies, used as refinement and improvement of the fitness
function, and this means that they have to add knowledge about the features of the problem and applica-
tion domain. This, consequently, makes the algorithm unsuitable and inapplicable to any other problem,
restricting then the validity of the outcomes only on such kind of problem. To overcome this limitation and
make the outcomes as general as possible, in this study we tackle the classic One–Max (or One–Counting)
problem [9, 2], as done in [3]. One–Max is a well-known toy problem, used to understand the dynamics and
searching ability of a generic stochastic algorithm [8]. Although it is not of immediate scientific interest, it
represents a really useful tool in order to well understand the main features of the algorithm, for example:
what is the best tuning of the parameters for a given algorithm; which search operator is more effective
in the corresponding search space; how is the convergence speed, or the convergence reliability of a given
algorithm; or what variant of the algorithm works better [1]. It is worth emphasizing that a toy problem
gives us a failure bound, because a failure occurs in toy problems at least as often as it does in more difficult
problems. Formally, given a bit string s = {s1, · · · , s`} of length `, the One-Max problem is simply defined
as the task to maximize the number of 1 inside s, i.e.:

maximize f(s) =
∑̀

i=1

si, with si ∈ {0, 1}. (1)

The choice of this simple problem, but enough complex to validate the outcomes, is therefore due mainly
to the faithfully reproduction of the experimental study conducted in [3], but also because of its “blind”
features that guarantee us to can generalize all outcomes produced.

3 The Age Assignments Studied

This research work, as well as the previous one proposed in [3], arise from observing how an algorithm
(specifically an IA) can obtain considerably different performances changing only the age to assign to
each offspring [7], which clearly proves how the age assignment plays a crucial and central role on the
performances of the algorithm in term of success and convergence. In order to reach the goals of this
research work, the same eleven age assignment types proposed in [3] have been investigated, and they are
reported in table 1. In the table are reported, respectively, types and symbols used for showing and describe
the results, and, in the last column, a short description of them.
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Table 1. Age assignments studied.

Type Symbol Description

0 [0 : 0] age zero

1 [0 : τB ] randomly chosen in the range [0 : τB ]

2 [0 : (2/3 τB)] randomly in the range [0 : (2/3 τB)]

3 [0 : inherited] randomly in the range [0 : inherited]

4 [0 : (2/3 inherited)] randomly in the range [0 : (2/3 inherited)]

5 inherited or [0 : 0]
inherited; but if constructive mutations occur
then type 0

6 inherited or [0 : τB ]
inherited; but if constructive mutations occur
then type 1

7
inherited or inherited; but if constructive mutations occur
[0 : (2/3 τB)] then type 2

8
inherited or inherited; but if constructive mutations occur
[0 : inherited] then type 3

9
inherited or inherited; but if constructive mutations occur
[0 : (2/3 inherited)] then type 4

10 inherited− 1 same age of parents less one

It is possible subdivide the age assignment types in three different efficacy groups: (1) the fixed ones
(type0 and type10); (2) the random ones (from type1 to type4); and (3) the constructive change ones
(from type5 to type9). In the first group to each offspring is assigned the same age for everyone; in the
second one, instead, to each offspring is assigned a random age, ensuring however evolve at least for a fixed
number of generations, except for the type1 that in the worst case will assign age τB . Besides, type3
and type4 differ from the previous two as each offspring will have the same age (in worst case) or less
than its parent (labelled as “inherited”). Finally, all age types included into the last group produce higher
diversity in the population than the others, and encourage those offspring that appears to be promising.
Indeed, to each clone is assigned the same age of the parent at first, which generates high turnover degree
in the population, but if after the genetic (crossover and/or mutation) operators, the fitness of the offspring
is improved, then its age is updated in order to have more evolutionary time.

4 The Genetic Algorithm

In this research work we have developed a classical Genetic Algorithm (GA), one of the most well known
evolutionary algorithms, which take inspiration from genetics and natural selection. The genetic algorithms
represent an efficient and robust algorithmic class in search and optimization, thanks to their ability in
fruitfully exploration of search space, and efficiently exploiting of the promising regions. This class of al-
gorithms is based on three main evolutionary operators, such as the (i) recombination, where each generated
offspring inherits some characteristics from the two parents; (ii) mutation, which introduces diversification
in the offspring with respect to the parents; and (iii) selection mechanism, through which the individuals
for mating pool are selected. The first two operators represent the exploration phase of new search points,
whilst the last one helps the algorithm to exploit information learned in order to generate improved proge-
nies (exploitation phase). Note, however, that in the GAs the mutation operator plays a secondary role than
the other two.

For achieving the set out goals in this research work, we have appropriately adapted the developed
genetic algorithm so that a given age is assigned to each generated individual at each time step. In this
way, it is determined the lifespan of each offspring inside the population, whose evolution starts from such
assigned age (see section 3), which is increased by one at each generation, until reaching the maximum age
allowed (τB , an user-defined parameter). Further, the aging operator as designed in [3, 7], was developed
and included into this proposed GA [5, 6].

The algorithm starts with the creation of the initial population (P (t=0)) of size pop size, by generating
random solutions, i.e. bit strings of length `, using uniform distribution, and thus the next step is the eval-
uation of the fitness of each individual, using the function Compute Fitness(P (t)). Whereupon, begins the
evolution of the algorithm whose considered termination criterion is the reaching of the maximum allowed
number of fitness function evaluations (Tmax). The algorithm terminates in advance the execution if the
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global optimal solution is found. Note that age zero is assigned to each newly created individual, regard-
less of the age assignment chosen (see the age types in section 3). A summary of the developed Genetic
Algorithm is presented in the pseudocode shown in Algorithm 1.

Algorithm 1 Pseudo code of GA
Genetic Algorithm (pop size, pc, pm, τB , Elitism)
t← 0
FFE ← 0
P (t) ← Create Initial Population(pop size);
Compute Fitness(P (t))
FFE ← FFE + pop size
while (FFE < Tmax) do

Increase Age(P (t));
P (parents) ← Roulette Wheel Selection(P (t), pop size)
P

(kids)
c ← Crossover(P (parents), pc)
P

(kids)
m ←Mutation(P (kids)

c , pm)
Compute Fitness(P (t))
FFE ← FFE + pop size
(aP (t),a P

(kids)
m )← Aging(P (t), P

(kids)
m , τB , Elitism);

P (t+1) ← (µ+ λ)–Selection(aP (t),a P
(kids)
m );

t← t+ 1
end while

Inside to the iterative loop the first step is to increase the age of each individual by one, becoming older
than a generation (function Increase Age(P t)). Hence, the selection of the individuals for the mating is
applied using the classical Roulette-Wheel-Selection model [4, 10], which basically select the individuals
with a probability proportionally to their fitness: the higher the fitness, the higher the likely is that they will
be selected. At this step a new population P (parents) of size pop size is created that contains all selected
individuals, from whose mating will be produced the offspring. In particular, from a pair of individuals are
generated a pair of offspring.

Afterwards, the parents population is then undergo to the recombination phase, with a probability pc,
which generates the population of the new offspring (P (kids)

c ). In this work we have developed the clas-
sic Uniform Crossover, through which each element (gene) of the offspring is randomly selected by both
parents; i.e. the parents will contribute equally to generating their own descendants. Thanks to this kind
of recombination operator each offspring will have 50% genes from the first parent, and the other 50%

from the second one. Once P (kids)
c is produced, each chromosome is mutated with a pm probability. The

mutation used in our study is the well known bit-flip mutation, which - if applied - randomly select a gene
si (∀ i = 1, ..., `) in the chromosome s, and inverts its value (from 0 to 1, or from 1 to 0). The mutated
chromosomes produce a new population, labelled P (kids)

m (see Algorithm 1), containing the final offspring
generated. When an offspring is created, to it is assigned an age that affects its lifespan inside the popu-
lation. Starting from this age each chromosome will evolve until to reach a maximum age allowed (τB ,
a user-defined parameter), after which it will be removed from the population by the aging operator. Age
assignment, and the aging operator have the main purpose to keep high the diversity into the population
in order to avoid premature convergences and then reduce the probability to get stuck in local optimum.
Therefore, choosing the age to be given plays a crucial role in the performances of the algorithm, since
the evolution and maturation of the solutions depend strictly on this. Note that in general, the crossover
and mutation operators do not affect the age of any new individual, except for the 5 − 9 options of the
age assignment types (see table 1, section 3), where the assigned age is updated only if its fitness value is
improved. This happens and it is computed in the function Compute Fitness(P (t)).

As described above, in our GA was included the aging operator in order to achieve the determined
objectives, and whose main task is to help the algorithm in jumping out from the local optima, producing
high diversity into the population and avoiding, consequently, premature convergences. It simply eliminates
the old chromosomes from the two populations P (t) and P (kids)

m . Every individual is allowed to mature
for a fixed number of generations: as soon as it reaches age (τB + 1), it is removed from the population of
belonging regardless of the fitness value, included the best solution found so far. The parameter τB indicates
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the maximum number of generations allowed to any chromosome to stay into the population. An exception,
however, is allowed only for the best solution found so far, that is the global best solution found is always
kept into the population, even if it is older than τB + 1. Such exception is called Elitism Aging operator.
This variant helps the algorithm keep track of the most promising region - which would otherwise be lost
- and whose exploitation instead might be useful in solving some specific kinds of problems. The boolean
variable Elitism (Algorithm 1) controls the activation of the variant elitism aging operator.

Unlike to classic GA, where usually the offspring replace the parents for the next generation, in this work
the new population P (t+1) is created by using the (µ+λ)-Selection operator, which selects the best popsize
survivors to the aging step from the two populations aP (t) and aP

(kids)
m . This operator, simply, selects the

best pop size chromosomes from the offspring set – created by the crossover and mutation operators – and
the old parent chromosomes guaranteeing monotonicity in the evolution dynamics. Nevertheless, due to the
aging operator, it could happen that the number of survivor chromosomes (pop size1) is less than the input
population size (pop size). If so, the selection operator randomly generates (pop size − pop size1) new
individuals. This step is called Birth phase.

5 Experimental Results

In this section we present all outcomes obtained in our experimental study in order to (i) understand which
between the age assignment types studied is more robust and efficient in the overall; (ii) produce an ef-
ficiency ranking between them; and, most important, (iii) to check if the best 4 of the efficiency ranking
obtained for IA [3] still appear in the top 4 for GA, although in different rank order. Besides, it becomes
also interesting to observe if the worst assignment - or the two worst - for IA continue to be so also for
GA. With the outcomes of this research work, we want to give a rough indication on the needed lifetime
to a solution to have a proper balancing between exploration and exploitation in order to maximize the
evolutionary learning, and which one instead to not consider. Further, having developed an algorithm not
tailored to a specific problem, and performed our study in an unaware way about any domain knowledge,
the outcomes obtained will be even more effective when high uncertainty exists to be managed. However,
the existence of one or more age assignments in common between IA and GA allow us also to provide a
reliable lifespan, which, with high probability, leads to efficient and robust performances on similar features
problem, and on evolutionary algorithms, in general.

In order to reach our goals, we have then used the same experimental protocol proposed in [3], except for
the string length, which was instead fixed to ` = 2000. This setting is due to the difficulty of the algorithm
in solving the problem for higher values. Therefore, all age assignment options in table 1, have been studied
varying pop size = {50, 100}, τB = {5, 10, 15, 20, 50, 100, 200}, and setting Tmax = 105 as termination
criteria (i.e. the maximum number of fitness function evaluations). Each experiment was computed on
100 independent runs. Both variants of GA have been performed: elitism and no elitism. Regarding GA
parameters, after several preliminary experiments (not included in this paper), the probability to apply the
crossover (pc) and mutation (pm) operators have been set respectively to pc = 1 and pm = 0.4, for all
experiments presented.

In figure 1 are showed the efficiency surfaces produced by varying τB and age assignment types, and
evaluate with respect their success rate (SR), that is how many time the optimal solution is found in 100
runs. Both GA variants are showed for pop size = 50 (first row), and pop size = 100 (last row): the elitism
version in the left plots, and the no elitism in the right ones. Inspecting these surfaces, appear clearly in all
plots how the last age assignment option (type10) shows the worst performances at any values of τB and
pop size, unable almost always in finding the optimal solution (except for the elitism variant with high τB
values). Those who instead show better performances in the overall are type0 and type4, which exhibit
more robust and efficient performances, regardless of the parameters used. It is important to highlight how,
for low τB values, the age assignment options from type5 to type9 (constructive change group; see table
1) produce the lower regions of SR, and this is due to their characteristic to produce high diversity into the
population, which means high turnover degree and, therefore, a greater use of the Birth operator. This
appears more prominent in the no elitism variant, and especially for low pop size values, where diversity
becomes more pronounced. In plot, it is also possible to see how any age assignment becomes irrelevant on
the performances for high τB value (τB = {100, 200}), whose values are very close to have an infinite life.

The same results are also, and better, presented in tables 2 and 3. In each row are showed the success
rate (SR) obtained, and AES (line below), i.e. the average number of fitness function evaluations to reach
the optimal solution. Of course, AES is not null when SR 6= 0, i.e. if the optimal solution was found at
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Fig. 1. Efficiency surfaces produced for elitism (left plots) and no elitism (right plots) variants for pop size = 50 in
plots (a), and pop size = 100 in plots (b).

least once. In particular, the results presented in table 2 have been obtained with pop size = 50, whilst
the ones in table 3 with pop size = 100. Analysing both tables, we have clearly the confirmation that
type10 is unable to reach the optimal solution, except for the elitism version with setting high values of
τB (τB = {100, 200}). Further, it is interesting to note that increasing the population size (pop size) helps
GA to increase the SR (as we expect) but it doesn’t affect nor alter in any way, the overall influence of the
age assignments on the performances of GA, producing approximately the same efficiency rankings. This
statement answers, and confirms, as also claimed for IA, that the right lifespan for which each individual
must evolve is not related to the population size considered.

Inspecting table 2, considering the elitism variant, it is possible to see how the algorithm finds the
optimal solution, at least once, with all age assignments considered, except for type10 (∀ τB < 100);
type6 and type8 when the τB value is low; unlike of the no elitism version where GA struggles to
reach the optimal solution, and this is what we expect. However, one of our goal is to understand which
age assignment type provides more robust and efficient performances. Therefore, from this point of view,
it is possible to assert that type0 and type4 seems to be more robust than the others, guaranteeing then
more reliability, whilst type10 and type6 continue to be the worst ones. The same statement can also be
made for the no elitism version. From table 3 is possible to see how the SR increases on all experiments,
allowing the achievement of the optimal solution, where GA failed in the previous table. Also on these
experiments type0 and type4 appear to be more robust and efficient than the others. Comparing these
two age assignments types, it is possible to assert that, in the overall, type0 shows more reliability than
type4, since its use allows GA to obtain, approximately, the same, and high, success rate both in the
elitism, and no elitism variants (type0: 82.14 vs. 83 for pop size = 50, and 92 vs. 92 for pop size = 100
– type4: 83.86 vs. 79.86 for pop size = 50, and 91.57 vs. 91.71 for pop size = 100).
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Table 2. GA on One–Max problem with ` = 2000. The results have been obtained by setting: pop size = 50, pc = 1, pm = 0.4, with and without
Elitism.

type τB = 5 τB = 10 τB = 15 τB = 20 τB = 50 τB = 100 τB = 200
Elitism

0
69% 82% 80% 83% 87% 87% 87%

90741.44 86409.38 87103.44 86652.88) 84676.01 82797.44 83204.83

1
21% 58% 69% 80% 91% 90% 90%

98724.99 94472.81 92170.46 88594.79 85552.17 82780.77 83890.19

2
60% 80% 80% 90% 86% 89% 86%

94039.49 87698.82 86159.5 84839.10 84058.78 84007.95 84330.07

3
36% 77% 81% 84% 82% 88% 90%

97341.97 89434.23 86796.83 86317.53 85648.48 84421.64 83416.20

4
70% 81% 91% 90% 85% 85% 85%

91853.51 87440.62 85747.82 83773.17 84213.71 83853.50 84004.85

5
38% 36% 57% 69% 82% 86% 89%

96661.74 96847.64 93269.04 90052.98 87376.17 84609.75 84330.95

6 0%
7% 16% 34% 70% 81% 82%

99763.66 98820.08 97435.21 89703.56 86601.79 85642.79

7
7% 31% 36% 46% 69% 81% 81%

99723.64 97398.44 96937.86 94309.49 89642.67 86399.53 85410.66

8 0%
27% 51% 56% 74% 86% 85%

98454.84 94153.06 92745.16 87680.47 87118.12 83791.32

9
14% 52% 53% 65% 77% 81% 90%

99273.65 93683.66 94559.11 91631.61 87691.02 85953.13 83402.34

10 0% 0% 0% 0% 0%
15% 36%

98903.89 96232.28
No Elitism

0
66% 76% 83% 90% 86% 93% 87%

90771.76 87042.24 86277.61 85208.42 85111.56 82111.92 83868.15

1
10% 48% 73% 74% 86% 81% 85%

99486.34 95815.82 92056.89 90457.19 85435.83 86840.81 83652.09

2
56% 68% 84% 87% 84% 84% 87%

94334.12 88144.89 87116.65 84443.68 86296.26 85577.26 84776.40

3
30% 71% 81% 78% 79% 84% 93%

97689.88 89510.53 86619.09 86543.17 85487.73 85086.12 83041.88

4
62% 84% 77% 82% 80% 89% 85%

92538.22 86222.68 87402.21 86827.35 85629.22 84230.84 83664.17

5 0% 0%
2% 2% 22% 47% 74%

99666.75 99557.23 95892.60 90973.89 84776.14

6 0% 0% 0%
1% 9% 34% 64%

99921.99 98130.29 92421.01 87918.47

7 0% 0%
2% 1% 20% 44% 79%

99601.45 99673.91 95497.91 89819.80 83756.32

8 0% 0% 0%
1% 11% 48% 72%

99911.66 97763.70 91077.56 86381.38

9 0% 0%
2% 3% 15% 53% 80%

99607.87 99240.23 96522.20 88524.80 85093.18

10 0% 0% 0% 0% 0% 0% 0%

In figure 2 is showed the histograms produced by the average of the success rates for each age assign-
ment type. The left plot shows the average SR produced using the elitism variant, whilst the right plot those
produced by the no elitism version. Such results have been produced averaging on all τB values. Thanks
to these plots becomes easy to produce the efficiency ranking for each variant, which seem to be the same
in the overall, except for the first position: for the elitism variant appears type4 on the first rank; whilst
for the no elitism version the top one becomes type0. From the third position onwards, the two efficiency
ranking seems to be the same, respectively: 3) type2, 4) type3, 5) type1, 6) type5, 7) type9, 8)
type7, 9) type8, 10) type6, and 11) type10.

Since it is important to produce an efficiency ranking regardless of variants used, in figure 3 we show
the average success rate (ŜR) produced by both the variants on all experiments performed. From this plot,
emerge type0 as the best (ŜR = 87.27%), followed by type4 (ŜR = 86.75%), type2 (ŜR = 84.89%),
type3 (ŜR = 80.61), and type1 (ŜR = 73.93%). From these overall results appear clear as the last
type, the type10, is always the worst with an overall average success rate considerably low with respect
the others (ŜR = 4.39%), and never reaching the optimal solutions in no elitist variant (Fig. 2, plot b). Just
to note that the penultimate in the efficiency ranking between the age assignment types (type6) produces an
overall average success rate of ŜR = 38.75%.

Once generated the efficiency ranking for GA, it is possible to compare the outcomes obtained with the
ones produced by IA in [3], in order to reach the third and most important goal of this work. Analysing the
comparisons, then, it is possible to clearly assert that the top 4 types produced by IA are still in the top 4 of
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Table 3. GA on One–Max problem with ` = 2000. The results have been obtained by setting: pop size = 100, pc = 1, pm = 0.4, with and
without Elitism.

type τB = 5 τB = 10 τB = 15 τB = 20 τB = 50 τB = 100 τB = 200
Elitism

0
91% 88% 89% 92% 96% 92% 96%

82312.79 79513.60 80284.09 78748.99 76946.22 77181.40 76713.31

1
46% 78% 89% 86% 87% 91% 96%

96226.19 89019.29 84632.08 84135.64 81507.88 78715.07 78471.94

2
79% 85% 91% 92% 93% 88% 93%

86728.32 80317.57 80431.61 78505.86 78550.34 78540.41 77438.99

3
63% 84% 84% 92% 90% 89 92%

91211.17 84436.42 82546.80 80466.22 78691.13 78144.62 78627.42

4
81% 92% 92% 90% 96% 94% 96%

86788.92 81076.87 79704.66 80032.76 77980.19 77136.83 75580.17

5
59% 54% 77% 76% 88% 92% 91%

93334.05 92368.72 88048.81 86315.99 81170.38 76130.42 77768.30

6
1% 32% 45% 62% 87% 90% 93%

99989.08 97195.04 95906.89 91813.69 83105.46 80479.18 78291.70

7
33% 59% 74% 71% 80% 90% 95%

97217.75 90119.24 89718.72 87589.66 83268.17 78213.40 78284.81

8
6% 50% 69% 70% 85% 94% 95%

99720.49 94409.41 88542.49 89541.02 82873.96 78983.65 78189.25

9
44% 61% 68% 74% 91% 89% 95%

95440.97 91484.43 87646.74 87221.28 78151.71 79294.21 77613.35

10 0% 0% 0% 0% 0%
16% 56%

98535.69 93547.39
No Elitism

0
85% 88% 92% 95% 95% 95% 94

83264.41 79521.29 78683.06 78733.66 77829.72 77960.86 79148.00

1
30% 74% 86% 82% 89% 88% 92%

98132.36 90100.46 84718.40 84605.64 80768.79 80283.13 79894.21

2
74% 92% 92% 94% 93% 95% 95%

88613.47 80472.08 79932.29 78718.43 77271.95 78857.49 76172.57

3
62% 86% 88% 89% 92% 97% 95%

94039.55 84023.41 81425.63 79838.93 77831.94 78117.67 78376.93

4
83% 92% 93% 98% 90% 93% 93%

84655.22 80158.74 79879.89 77569.49 78153.02 77655.90 77784.34

5
29% 42% 43% 53% 66% 84% 93%

95268.10 92692.33 91418.28 88893.36 84100.89 79270.36 78672.59

6 0%
9% 12% 26% 59% 82% 89%

99385.86 98633.38 96286.96 87265.87 80200.76 79989.41

7
25% 40% 48% 48% 67% 81% 88%

96783.49 92715.84 91968.87 90444.85 83522.93 79741.93 79447.61

8
5% 32% 41% 43% 71% 88% 96%

99780.98 95006.62 92756.55 91618.77 82310.38 78390.08 77734.65

9
33% 48% 47% 50% 69% 79% 92%

95163.12 91905.64 91211.35 88393.57 84288.04 80440.52 77513.32

10 0% 0% 0% 0% 0% 0% 0%

the efficiency ranking produced by GA, respecting exactly the order of the first two positions. Further, the
worst age types on IA continue to be the worst even on GA, and in particular in the last two positions appear
type 6 and type 10 respectively. Their bad performances are due to the high diversity they produce,
not allowing a relevant lifetime to perform a good exploration. Finally, this research work, having found a
common efficiency ranking between IA and GA, provides a reliable individuals maturation time in order to
optimize the evolutionary learning and yield robust and efficient performances on those problems that show
similar landscape topologies, and similar complexities to the problem considered.

6 Conclusion

In this paper we show how the age assignment, i.e. how many generations an offspring must remain into
the population, plays a crucial role on the performances of any evolutionary algorithm, since it is strictly
related to a correct balancing between the exploration and exploitation mechanisms. In this research work
we present an experimental study focused on understanding the right maturation time of each solution in
order to optimize the evolutionary learning, which means to perform a careful search process, and take
advantage of the information discovered as best as possible. Since this experimental study is based on a
previous one, conducted on an immune inspired algorithm, the main goal of this paper is to check and prove
that the achievements previously obtained continue to be valid, and work, on a genetic algorithm. In this
way, we can assert the existence of a reliable lifespan able to provide, with high probability, robust and
efficient performances for any population-based algorithm, especially in uncertainty environments.
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Fig. 2. Average Success Rate over all performed trials for the elitism (left plot) and no elitism (right plot) variants.
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Fig. 3. Average Success Rate over all performed trials.

A classical genetic algorithm has been developed, based on the genetic operators: roulette-wheel-selection;
uniform crossover and flip mutation. The GA was properly adapted in order to reach the set out achievement,
adding an age assignment for each chromosome and introducing the aging operator, the use of which helps
the algorithm to escape from local optima. Eleven different age assignment types have been considered in
our study, each of which affects on the algorithm performances in different way: static ones; random ones;
and constructive change ones. Analysing the achievements obtained in this work, and comparing them with
the ones previously obtained by IA, it is possible to assert as the previous top 4 continue to be in the best
4 positions of the new efficiency ranking, keeping exactly the same order in the first two positions. In the
overall, it is possible also to say that the two efficiency rankings are approximately the same, except 2-3 po-
sitions that alternate each other. This then imply that the worst, or the two worst between the age assignment
types in IA continue to be the worst also in GA.

Having found a common efficiency ranking between IA and GA, points out the existence of a reliable
lifetime to be assigned to each individual - for any population-based algorithm - that with high probability
guarantees efficient and robust performance, especially when many information on the problem are not
known a priori. Of course these statements are valid on all those problems that show similar complexities
and similar landscape topologies to the problem tackled. In light of this, as future work, we want to test
and perform the same experimental study on a mathematical model, that is the NK-Model, which is able
to produce “tunable rugged” fitness landscapes. In this way we can test the achievements produced on
different roughness level of the landscape.
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1 Introduction 
Bionic Optimization is an elementary component of the metaheuristic research. In engineering design, 
Evolutionary Strategies and Genetic Algorithms are the most favored approaches, but we use other ideas 
as well. The central weakness of the classical version of these approaches is the restriction to deal with 
unique goals and non-scattering parameters. One deals with both problems by specific expansions of the 
basic methods, the robustness and reliability analysis on the one hand, the Multi Objective Optimization 
(MOO) on the other hand. It would be preferable to propose a combined, unified approach to solve both 
extensions simultaneously following ideas proposed e.g. by Wang [1]. However, we run into the field 
of very large computation sets and very complex basic theory, if we follow this road. Therefor we restrict 
ourselves here in this presentation to the question of MOO. We introduce the basic terms and explain 
some solution approaches using two elementary examples.       

2 The Expanded Optimization problem 
We want to expand the classical optimization problem of finding the best values of a given scalar 
function by varying its free parameters without violation of boundary conditions or other constraints to 
MOO problems. We propose formulations that follows the ideas outlined by Gekeler [2] and Wang [1],
but have many other parents as well. Assume a non-scalar function  

r = f(x) (1) 

Rewrite it in a more explicit form   

(r1, r2, . . rn) = f(x1, x2, . . xm),  xi,min  <  xi  <   xi,max, i = 1..m  (2) 

Here the rj,  j = 1..n are the responses, the xi, i = 1…m stand for the free parameters, of the system. We 
differentiate two types of responses    

(r1, r2, . . rn) = (s1, s2, . . sk, c1, c2, . . cl) (3) 

where the si, i = 1…k are the different goals to be optimized, while the constraints or restrictions ci have
to follow sets of d conditions  

gp(c1, c2, . . cl, x1, x2, . . . xm) < 0,   p = 1...d (4) 

The optimization task is to find the best values of the objectives s1, s2, . . sk, within the restrictions and the 
boundary conditions acceptable range. Evidently, there is no absolute and undoubted definition of the 
optimum of the vector assembled by the si. We want to discuss this problem in some more detail 
neglecting the fact, that all input data are always scattering as mentioned before. This would lead to an 
expansion into the field of reliability and robustness, which requires even more elaborated studies.  
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3 Solving MOO problems 
To solve MOO problems it is convenient to use two main approaches:  

3.1 Reduction to one combined goal or objective (Single Objective Optimization, SOO) is the most often 
used way to handle MOO problems. A very simple way to go this path is to remove all but one entry 
from the objectives list si (eq.3) and interpret them as additional restrictions cq, whose specific values 
now have to be defined. This definition is done by the user’s preferences, a subjective decision-making. 
Another way to find a SOO solution is to build a unique goal sunique as a function of the given goals si, 
e.g. by a weighted sum of these goals. The definition of such a function again is up to the users 
preferences. We use both ideas with much success. There exist many variants of this approach.   

3.2 Pareto fronts are sets of solutions where for all objectives si holds, that the increase of the value of 
one of them causes a decrease of the values of all other objectives. Fig. 1 depicts such a Pareto-front 
approach for a simple 2D-problem (Fig. 2).  Fig. 1a) shows the positions of the best solutions found (red 
and black) in the (x,y) space of allowable parameters, Fig. 1b) plots the Pareto front as goal2 vs. goal1 
(red and black points). When we found the Pareto front, we have a set of preferable solutions. The users 
might decide which element of this set they prefer. This selection of one specific solution is not part of 
the optimization process. It is as subjective as the switching of goals to restrictions proposed before.  

a) Random points in (x,y) space, Pareto best marked b) Pareto front: goal1 vs goal2 
Fig.1: Set of parameter combinations (a) and Pareto front (b) of the two-hill example presented below. 

4 Examples of MOO problems 
To explain the MOO solving strategies and demonstrate the problems occurring we propose two 
examples, a landscape with two hills (Fig. 2) and a beam under bending (Fig.3).  

Fig. 2: Two Hills as different goals in a MOO Fig3: Beam under load: minimize mass and deflection 
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For the two-hill problem the two goals are given by the heights g1 and g2 of the hills at a given position 
inside the defined (x,y)-region. Fig. 1 already showed the position of the best solutions and the Pareto 
front. We found the values of these two plots by a random search, indicated by the many points (grey) 
on both plots. We could have found a good guess of the Pareto front by introducing some required 
minimum values of g2 (or g1) and then find the corresponding optimum off g1 (or g2) indicated in Fig. 1,
where we introduced the restriction g2 > 1 and maximize g1 or vice versa.       

Fig. 3 presents a hollow beam with its dimensions. The size of the beam is modified by changing the 
parameters p1 and p2 of the inside cut out. These parameters are limited by some range pmin < pi < pmax.  
The two goals are the minimization of both the mass (g1) and the deflection (g2) under the given load F. 
Fig. 4a plots the position of the best solutions. We find all of them on the boundaries of the parameter 
range. Fig. 4b indicates that the plot of all the best solutions form a nearly smooth Pareto front. 

a) Position of the best solutions in 2D design space        b) Pareto front of the beam problem
Fig. 4: Hollow beam problem: positon of best and Pareto front 

5 Handling MOO problems using bionic Optimization 
Dealing with non-academic MOO problems often requires much computing time and might not yield 
satisfactory results. Bionic approaches using a parallel search of the solution space and allowing for a 
representation of the objectives distributions might be more efficient. Hybrid solutions combining the 
use of meta-models (e.g. Response Surfaces) and bionic search prove to be even better performing in 
some cases. From a given set of initial studies, we derive meta-models of the different objectives. These 
meta-models help to identify preliminary positions of Pareto-best solutions and the corresponding values 
of the goals. Bionic search of the surrounding of the preliminary Pareto front contributes to the 
improvement of the Pareto front. Switching between the deterministic search on the meta-model and the 
bionic history yields improved representations of the responses we are looking for.  

6 Conclusions  
To solve real MOO problems requires large efforts. It is often preferable to reduce them to SOO tasks. 
If the solution as MOO problems is unavoidable, strategies dealing with the surroundings of the Pareto 
front, including bionic optimization and meta-models might help to accelerate the process. Especially 
in the case of irregular responses e.g. due to many local optima, bionic approaches seem to be preferable, 
as they avoid of sticking to isolated local sub-optima.
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1 Abstract 

Global optimization is ubiquitous since optimization problems are inherent in nearly every 

research area, ranging from engineering to the natural sciences such as biology or chemistry. It is also 

an active research topic in many other areas such as mathematics, business, and the social sciences [1]. 

Although many efforts have been made to develop global optimization methods, current methods still 

have difficulties in solving real-world problems with some common but challenging characteristics 

[2]. As a result, the challenge of developing new methods, baptized Metaheuristics, which are better 

able to solve difficult problems, still attracts the interests of current researchers. Metaheuristic 

optimization is therefore a field of growing interest. 

Bioinformatics is a multidisciplinary research domain aiming the automatic processing of 

biological data. One of the Bioinformatics challenges is the CMD “Computational Molecular 

Docking”. CMD is an example of a difficult real-world optimization problem, which consists on the 

determination of the best possible matching between a protein target and a small organic drug-like 

compound able to interfere within the biological processes. Therefore, we can consider the docking 

problem as the problem of finding the global energy minimum of a molecular system corresponding to 

the best stable structure of the protein-ligand complex. Several optimization methods are used in CMD 

(see [3-4] for reviews), the most popular ones being GA [5-6] or SA [7-8]. 

CMD is composed of two steps; the first one is "Searching", the second step is "Scoring". The 

scoring step allows the evaluation and the ranking of the complex conformations (Ligand-Receptor) 

found in the searching stage. In the searching step, several simulation methods are used such as 

systematic search, determinist search and stochastic search [9-10].  

In our experiment, we use the Cuckoo Search method which is a stochastic search algorithm 

inspired by the parasitic breeding behavior of cuckoos [11-12]. We have chosen this algorithm because 

several studies indicate that Cuckoo Search is a powerful algorithm and successful results have been 

achieved in various applications such as in manufacturing optimization and physically - based runoff - 

erosion model [13-14]. A review of the literature, however, reveals no applications in molecular 

docking optimization and the aim of our work is then to investigate the algorithm’s performance to 

solve the protein-ligand docking problem. On the other hand, the majority of the docking methods use 

scoring function whereas ours uses an energy function issued from classical molecular mechanics, 

which includes the polarization energy. In Claverie’s force field, the total energy is the sum of four 

terms: electrostatic, polarization, dispersion, and repulsive energies [15]: 

 (1)  tot el pol disp repE E E E E   
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A variety of measures exist for evaluating pose predictions [16] but the Root Mean Square 

Deviation (RMSD) between the experimentally observed heavy atom positions of the ligand and those 

predicted by the docking program is mostly a standard way to evaluate poses. The RMSD values are 

calculated using the following expression [17]: 

      (2) 

N is the atoms number and δ is the distance between atoms’ pairs. RMSD unit used in

structural biology is the Angstrom (Å) [18]. 

Therefore, in order to assess the performance of our docking program, we calculated the 

RMSD between the predicted pose of the ligand and its experimental position. Our docking approach 

is illustrated on four PDB protein-ligand complexes. RMSD values for all the four cases are less than 2 

Å showing the efficiency of our software, and making our docking approaches promising. 
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Abstract. This paper investigates an optimization problem involving the production plan-
ning, product allocation and scheduling of products in the largest bulk port terminal existing
in Brazil. The main contributions of this article are related to the use of a parallel approach
to solve the integrated problem. The methodology uses a combination of heuristics, column
generation and optimization package. The computational experiments (based on real cases)
showed that the parallel solution was faster in all tested instantes reaching gains close to
90%.

1 Introduction

In 2015, maritime trade reached a total of 9.8 billion tons, a volume comprising mostly containers
and dry and liquid bulk cargo [16]. Of this total, 4.5 billion tons are of dry cargoes (coal, iron
ore, grains, bauxite, among other products). According to several works as [12], [15] and [13], a
careful and optimized analysis of terminal operations is essential to ensure efficient transport of
these loads.

In this work, we solve a real problem involving the production planning, product allocation
and scheduling of products in the largest bulk port terminal existing in Brazil. This problem can
be modeled as the Integrated Product Flow Planning and Scheduling Problem (PFPSP ), a two
decision-making problem that has critical importance to ensure efficient operation at port terminal
facilities. The PFPSP can be defined, in general, as follows: there are a set of supply nodes,
where products are available for transportation, storage nodes where the products are stocked and
demand nodes or delivery subsystem for shipping products. Specialized equipment with predefined
capacities is used to transport the products within the network. An equipment route between nodes
has a given capacity and handle one product at a time.

The defined problem can be applied in different scenarios, such as: in the mining industry, bulk
ports, agroindustry, among others. In all these cases, the supply nodes are the arrival points of
products (iron ore, grains, coal), a storage yard, the place where the products are stored and the
point of demand a node where the products are delivered in final destinations. There are several
challenges involved in storage yards management.Besides, the solutions obtained by investigating
this problem can be applied not only to bulk ports but also in other operations that involve the
flow of cargo between supply, stock and demand points. Figure 1 highlights the three major nodes
related to this problem.

The offer node represents the arrival or supply of products to the system. The stock node is
responsible for temporary storage. This storage can be done in sheds, outdoors (in the case of iron
ore) or silos (in the case of grains). Finally, the demand node, which represents the destination
of the products. This destination can be the end customer, industries or another cargo terminal.
Trucks, conveyor belts, ships, and trains can be used to transport products between these nodes.
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Fig. 1. Offer, Stock and Demand nodes.

In 2017, Menezes et al. [10] proposed an algorithm to solve the PFPSP . Their algorithm
uses a combination of heuristics and column generation and provides initial solutions to a Branch
and Price method. Despite the good results found by Menezes et al. [10] the method had a high
computational cost. In some instances, the proposed algorithm spend more than four hours to
found a solution. In this research, we proposed a new approach to solve the problem. Our algorithm
also uses a combination of heuristics and column generation, but instead of work as a sequential
algorithm as Menezes et al.[10], it uses a parallel framework. Our results demonstrate that our
parallel algorithm was faster in all tested instantes reaching gains close to 90%.

This paper is organized as follows: section 2 presents the literature review. Section 3 defines
the problem and presents some sets and variables used in the mathematical formulation. Section 4
discusses the solution strategy applied. Finally, section 5 is dedicated to computational experiments
and the paper ends with conclusions.

2 Literature review

The integrated approach to solve Planning and Scheduling is commonly adopted in the literature.
In Grossmann et al. [19], is investigated an integrated production problem, whose goal is to deter-
mine at each period which products to manufacture, as well as to establish an optimal capacity
modification plan, such that future demand is satisfied. Bruno et al. [5], investigates the integration
of Planning and Scheduling of a Network of Batch Plants. The problem is to define the amounts
of products to be produced in each time period, the allocation of products to batch units and the
detailed timing of operations and sequencing of products. Other researchers in this same direction
are the works of: [18], [6], [9], [8]), and, more recently, [11] and [17].

The central problem study in this article involves the flow of products between supply nodes,
storage areas, and demand nodes. The references highlighted below are related to mathematical
models and algorithms for problems in bulk cargo terminal. Bilgen et al. [2], study the problem
of blending and allocating ships for grain transportation. Byung et al., [7] study the allocation
of products in the stockyard. This problem is solved using a mixed-integer programming model.
Barros et al. [1], develop an integer linear programming model for the problem of allocating berths
in conjunction with the storage conditions of the stockyard. Boland [3], address the problem of
managing coal stockpiles in Australia. Singh et al. [15], present a mixed-integer programming model
for the problem of planning the capacity expansion of the coal production chain in Australia.
Finally, Robenek et al. [14], proposes an integrated model for the integrated berth allocation and
yard assignment problem in bulk ports.

3 Integrated Production Planning and Scheduling

The mathematical model for the Integrated Production Planning and Scheduling Problem was
initially proposed in [10]. All production is planned for a given time horizon, divided into T periods.
Routes are classified into three types: routes x that transport products from the Supply node to the
Storage yard, routes y from the Supply node to the Demand node, and routes z from the Storage
yard to the Demand. The number of routes is limited and they may share equipment. Thus, if
two different products are assigned to routes sharing equipment, these routes must be active at
non-overlapping intervals. Figure 2 shows a case where two routes (routes 1 and 2) share the same
equipment.

The Figure 3 describes at a high level the objective function and the main constraints of the
model. In general, the formulation represents the production planning, that is, it defines which
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Fig. 2. Routes with shared equipments Fig. 3. PFPSP Model

product, route, the quantity and in what period a product will be transported. The formulation
also represents the scheduling problem, that will define the start and the end time of use of each
route, guaranteeing that routes sharing equipment are not executed simultaneously.

4 Column Generation method

The PFPSP formulation can be broken into a restricted linear master problem (RMLP), repre-
senting the production planning and the pricing subproblem (scheduling), responsible for providing
columns for the RMLP. In the PFPSP formulation, the time required to transport the products
is limited by the duration of one period. Thus, these constraints determine the start time of each
task in a specific period and consider the disjunction between conflicting tasks. These constraints
impose great difficulty in solving the PPSFP. An alternative to overcome this obstacle is to divide
the period t into micro periods because the time needed to transport the products between offer,
stock and demand nodes, are supposed to be smaller than the duration of one period.

To show the entire procedure of solving the PFPSP, we present a small illustration of the
method. Suppose that the relaxed PFPSP (by disregarding the scheduling constraints) has been
solved and that the following variables (tasks) for the period 3 (three) were extracted from the
solution (Table 1). The complete methodology of the column generation procedure can be found
in [10].

Table 1. Solution of the relaxed PFPSP (disregarding scheduling constraints)

Vertices Variables Values Routes

A x1
23 4 R1

B x2
53 6 R2

C y8553 3 R8

D y9333 5 R9

E z10663 6 R10

F z6443 3 R6

In the first row of Table 1, the variable x1
23 (column Variables) represents that the product

2 should be carried by Route 1 in period 3, and the total time to transport this product on
Route 1 (column Routes) will be 4 hours (column Values). This variable corresponds to task or
vertex A in the conflict graph. The remaining rows of the Table 1 have similar operations. Figure
4 illustrates the conflict between routes. Routes 1 and 2 share equipment and therefore cannot
operate simultaneously. The same is true for the routes numbered 6 and 9 and three other routes
sharing equipment among themselves (routes 6, 8, and 10).

To generate the weighted conflict graph G (Figure 5), its vertices are defined at column Vertices
in Table 1, the weight of each vertex is initially considered as the duration (column Values) and
edges are created considering conflicts of Figure 4.

Once the graph is obtained, the next step is to solve it with one greedy algorithm. Figure 6
presents a possible solution. Based on Figure 6, the number of microperiods obtained (equivalent to
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Fig. 4. Routes with conflicts

Fig. 5. Weighted conflict graph
Fig. 6. Heuristic solution

the total number of vertex colors) is three (3). Microperiod one (1) contains the subset of vertices
(A, C and D), which are equivalent to variables x1

23, y8
553 and y9

333, respectively. The constraints
(32), (33), and (34) after the initial column generation are as follows:

x123 ≤ µ13 , π1
223

x253 ≤ µ23 , π2
553

y8553 ≤ µ13 , π8
553

y9333 ≤ µ13 , π9
333

z10663 ≤ µ33 , π10
663

z6443 ≤ µ23 , π6
443

Considering the variables π1
223 to π6

443, the values of these dual variables are obtained after the
RMLP solution. Now the process of column generation begins: the tasks and values of their dual
variables are used to create the weighted conflict graph (Figure 7).

Fig. 7. Weighted graph Fig. 8. DSATUR solution

To color a graph G with k colors is equivalent to finding k independent sets. Therefore, a strategy
to return more columns to the RMLP in each period is to produce more than one independent set.
For this purpose, a heuristic based on the Weighted Vertex Coloring Problem (WVCP) is adopted.
From the greedy strategies implemented, the one that has given the best results is DSATUR. It
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was initially developed for the VCP by [4] based on the classic greedy strategy for this problem.
The DSATUR heuristic receives as input the weighted graph (Figure 7) and returns a color for
each vertex (Figure 8). For each color of Figure 8, if the solution contains a microperiod of reduced
negative cost, the tasks associated with this color will be part of a new microperiod available for
the RMLP. The new columns for RMLP are as follows:

x123 ≤ µ13 +µ63 , π
1
223

x253 ≤ µ23 +µ43 , π2
553

y8553 ≤ µ13 +µ43 , π8
553

y9333 ≤ µ13 +µ63 , π
9
333

z10663 ≤ µ33 +µ63 , π
10
663

z6443 ≤ µ23 +µ53 , π6
443

The iterative process continues until the DSATUR heuristic no longer yields attractive columns
for the RMLP. At this moment, the optimal solution for the pricing subproblem is found using
optimization packages. If this solution contains a column of negative reduced cost, then the iterative
process is restarted. Otherwise, the entire column generation procedure is terminated.

4.1 Parallel Approach

At each step that the pricing subproblem is solved, t subproblems are solved (one for each period).
Because the subproblems are independent, it is possible to solve them using a parallel approach,
which can be applied for both the exact (based on the maximum weight independent set) and
heuristic (based on the weighted vertex coloring problem).

The following pseudo-code highlights this procedure. The sequential version of this procedure
was initially published in [10]. The code referring to lines 8 through 19 in the procedure detailed
in section 4 was parallelized using the parallel programming API (OpenMP (2008)). This tool
provides a simple and intuitive API for multithreaded environments. The main characteristics and
functionalities can be found in Chapman et al. (2007).

1: procedure ParallelCG .
2: Ω ← GetInitialColumns() . generates initial columns for RMLP
3: dual← ∅
4: Solution← ∅
5: repeat
6: dual← SolveRMLP (Ω) . exact solution by solver
7: End← true
8: Start Parallel (OpenMp)
9: for i = 1→ T do . number of periods

10: Colors← DSATUR(i, dual) . Returns only colors with negative reduced cost (WVCP
problem)

11: if Colors = ∅ then . Heuristic above failed to provide new columns
12: Colors← ExactSolutionSubproblem(i, dual) . exact solution (pricing subproblem)-

Cplex parallel mode
13: end if
14: if Colors 6= ∅ then
15: Ω = Ω ∪ Colors
16: End = false
17: end if
18: end for
19: End Parallel
20: until End = true
21: Solution← SolveRMLP (Ω) . Cplex parallel mode
22: LowerBound = Solution
23: if Fractional(Solution) = True then . checks whether the solution is fractional
24: Solution← GetIntegerSolution(Solution)
25: end if
26: UpperBound = Solution
27: end procedure
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4.2 Primal Heuristic

Only the conversion of relaxed variables from RMLP to integer,after converging the column gen-
eration procedure, and its resolution into a MIP solver, does not provide a good upper bound. To
provide a higher quality upper bound, a heuristic was developed for PPSFP, based on a variable-
fixing and depth-first search strategy: the fixing and search heuristic (FSH). The following algo-
rithms illustrate the operation of this heuristic.

1: procedure FSHHeuristic .
2: Solution← ParallelCG()
3: V alue← 0.2
4: for i = 1→ 3 do .
5: if LinearSolution(Solution) then .
6: FSHFase1(V alue)
7: Solution← ParallelCG()
8: V alue = V alue+ 0.2
9: end if

10: end for
11: if ( (IntegerSolution(Solution)) or (Solution = infeasible) ) then
12: Return Solution
13: end if
14: repeat
15: FSHFase2()
16: Solution← ParallelCG()
17: until ( (Solution = Integer) or (Solution = infeasible) )
18: Return Solution
19: end procedure

The FSH Heuristic is divided into two phases: in Phase 1 (lines 4 to 10), consider the optimum
solution of the RMLP (when there are no more columns with a reduced negative cost), line 2
of the FSHHeuristic procedure. From the initial node, for each subarea and period, set the most
fractional patio allocation variable (fspt) to 1, whose quantity of stored product (variable s

pt s is
greater than 80% of the subarea capacity. Then start the parallel column generation process again:
solve each iteration for the RMLP and the pricing subproblem until there are no more columns with
negative cost to be inserted. If the solution found is either whole or unfeasible, quit the heuristic.
Otherwise, create another node, now setting allocation variables whose inventory is greater than
60% of capacity. Repeat the whole process again. If the solution found is not yet complete, repeat
for 40 % of capacity. This heuristic step is described between lines 4 through 10 of the pseudocode.
The rate parameter (line 6) corresponds to the values of 80%, 60% and 40% (which are incremented
in line 8).

Finally, if an entire solution has not yet been found, the resolution of Phase 2 starts (lines
15 to 18): select the most fractional allocation variable, set its value to 1, and repeat the column
generation process (line 16). Repeat Phase 2 until an entire solution or an impractical solution is
found.

5 Computational Experiments

The experiments are performed based on a real product flow problem in an iron ore port terminal in
Brazil, recognized as one of the largest worldwide. The basic parameters are the number of periods,
the products and the routes. In general, they work with seven periods of one day or fourteen periods
of twelve hours. The experiments were conducted using a computer cluster, composed of XEON
processors with 8 physical threads, hyperthread and 32 GB RAM. The machines are connected by
a Gigabit network, running version 12.5 of the CPLEX solver. For all instances, a time limit of 5
hours was set. Table 2 highlights the main parameters used to create the instances.

The first and second columns of Table 3, contains the type, and name of each instance. For the
first column (Type), the instances were divided into three levels of difficulty: For the first set (type
1 Instances), it was assumed that any one of the P available products could be allocated to any
subarea. For the second set (type 2), the full set of products is split into two subsets: the first subset
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Table 2. Data used to generate the instances

Parameter Description
Stockyard The product storage area is divided into four stockyards.
Delivery Two berths: two ships can be loaded simultaneously at berth 1.
Equipment Five car dumpers, four ore reclaimers, three stackers/reclaimers

(equipment that performs both tasks), and eight stackers.
αpt 2 (two monetary units)

βnpt 10 (ten monetary units for the berth number one), 50 (fifty mon-
etary units for the berth number two).

γs
p,p′,t 10 (ten monetary units)

λpp′ Based on the following formula: 0.01 (monetary unit) ∗|p − p′|,
where |p−p′| represents the quality deviation between the product
p and p′.

σr Based on the following formula: 0.01 (monetary unit) ∗ length of
route r.

of products could be stored in any subarea of stockyards 1 and 2, and the second subset could be
stored in the subareas of stockyards 3 and 4. Finally, for the third set (type 3), the products were
split into four subsets, each one allocated to one of the four stockyards. The instance 8P5Prod
corresponds a planning horizon of 8 periods, and 5 different products being handled. Columns ZLB
and ZUB provide the best lower and upper bounds, respectively. The GAP column provides the
solution, computed as, GAP = 100(ZUB − ZLB)/ZUB , ts are the elapsed computational times,
expressed in seconds. The character (−) represents instances for which the solver could not obtain
a solution for the PFPSP due to insufficient memory.

The Table 3 presents three solution approaches for PFPSP: sequential heuristic, parallel heuris-
tic and exact solution (through the use of the CPLEX solver). The results shown in Table 3 indicate
that solving the PFPSP in optimization packages is not feasible. The solver was able to produce
solutions only for 20 instances. In the rest, because insufficient memory, it was not possible to
obtain even an upper bound. With the heuristic, it is possible to obtain solutions for all instances,
all supplies and demands were met. As expected, the parallel heuristic solved instances in less time.
Its performance was superior to sequential heuristics and to the CPLEX solver in all cases.
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Fig. 9. Relative gain between parallel and sequential solution

The Figure 9 represents the relative gain, in terms of time, between parallel and sequential
solution. The x-axis represents several instances while the y-axis represents the relative gain in
percentage. When a gain reach 60% means that the parallel algorithm was 60% faster than the
sequential approach.

6 Final Remarks

In this work, we consider an integrated problem of planning and scheduling. The problem is general
and can be applied to represent various scenarios related to the flow of bulk cargo (iron ore, coal,
and grains). It was proposed a Parallel approach to solve the PFPSP. Computational experiments
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Table 3. Computational Experiments

Sequential Heuristic Parallel Heuristic CPLEX

Type Instance ZLB ZUB t(s) Gap(%) t(s)
Number
of nodes

ZLB ZUB t(s) Gap(%)

4P5Prod 67.55 68.40 57 1.24 20 9 68.27 68.27 219 0.00
4P10Prod 77.32 91.21 518 15.22 175 15 82.23 82.23 3354 0.00
8P5Prod 125.69 150.03 241 16.22 45 21 128.61 128.61 1241 0.00
8P10Prod 141.18 259.18 1410 45.53 336 24 - 259.18 1410 -
15P5Prod 234.13 292.38 375 19.92 52 13 243.62 243.64 16664 0.00
15P10Prod 298.25 547.85 4770 45.56 1069 39 301.42 922432.00 18007 0.99

1 15P15Prod 171266.00 171392.00 6820 0.07 1824 38 - 171392.00 6820 -
15P20Prod 433229.00 433251.00 2291 0.01 838 17 - 433251.00 2291 -
20P5Prod 331.74 391.16 1330 15.19 155 43 341.81 465.94 1330 0.26
20P10Prod 480.14 644.34 5617 25.48 1275 40 - 644.34 5617 -
20P15Prod 211939.00 212026.00 7339 0.04 2104 32 - 212026.00 7339 -
20P20Prod 664364.00 664416.00 4026 0.01 1363 19 - 664416.00 4026 -

4P5Prod 77.94 78.08 13 0.18 5 9 78.01 78.01 69 0.00
4P10Prod 100.59 111.44 96 9.74 34 16 103.29 103.29 255 0.00
8P5Prod 146.98 147.11 37 0.09 8 14 147.11 147.11 86 0.00
8P10Prod 170.41 244.52 236 30.31 47 19 175.84 175.84 433 0.00
15P5Prod 274.54 275.13 68 0.21 12 14 275.13 275.13 622 0.00
15P10Prod 350.31 394.14 358 11.12 49 17 362.38 362.39 3950 0.00

2 15P15Prod 509.26 629.03 2024 19.04 415 42 - -
15P20Prod 587.68 731.79 6026 19.69 2410 42 - -
20P5Prod 382.62 383.83 96 0.32 16 14 383.83 383.83 858 0.00
20P10Prod 553.18 633.40 700 12.66 82 23 570.5 570.50 6203 0.00
20P15Prod 703.22 932.54 2884 24.59 584 41 738.50 42106.40 18006 0.98
20P20Prod 761.28 1022.87 11922 25.57 5241 68 - -

4P5Prod 73.45 73.72 20 0.36 7 10 73.72 73.72 32 0.00
8P5Prod 137.03 149.06 87 8.08 20 15 137.75 137.75 230 0.00
8P10Prod 155.76 220.13 414 29.24 99 19 160675.00 160.68 1856 0.00
15P5Prod 254.53 280.16 212 9.15 32 19 256819.00 256.82 1157 0.00

3 15P15Prod 461.89 605.08 4715 23.66 1154 57 - -
15P20Prod 555.41 914.35 11847 39.26 3228 76 - -
20P5Prod 357.78 384.69 299 7.00 43 26 361281.00 361.28 2101 0.00
20P10Prod 507.79 617.94 2145 17.83 452 39 - -
20P15Prod 641.92 860.85 7376 25.43 1820 63 - -
20P20Prod 714.18 1159.96 17058 38.43 4867 76 - -

were conducted considering a sequential and parallel version of the method, and the results were
compared to an exact approach based on CPLEX solver. As a future work, a parallel branch and
price algorithm is being developed. Another research topic is the development of a stochastic op-
timization model, capable of considering uncertainty surrounding supply, demand and equipment
failure.
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Abstract

In recent years, there is a significant direction of researchers toward metaheuristics to solve hard
optimization problems. All metaheuristic techniques are inspired from natural phenomena and an-
imals’ social behaviours. In this paper a new metaheuristic optimization technique inspired from
Wolf Pack Behaviour is proposed and presented. This algorithm imitate the special interaction ex-
isting between different members of a specified wolfs pack. To evaluate the WPBO performances,
the presented algorithm is benchmarked on 23 well-known test functions and compared with differ-
ent metaheuristic techniques. the performnces of our algorithms are also tested in high dimensions,
six test function contain 150, 200 and 500 variables are used. The comparison results show that
the proposed algorithm outperforms other algorithms in many benchmark functions.

Keyword

Metaheuristics, Swarm Intelligence, Optimization, Wolf Pack Behaviour, WPBO.

1 Introduction

In the last few decades, there has been a growing interest in metaheuristics to solve hard opti-
mization problems, especially when the exact methods are unable to solve these problems or they
demand an excessive computational time. Numerous metaheuristic techniques have been proposed
and developed in the literature; almost all metaheuristics have some common points; they are in-
spired from natural phenomena behaviours, they didn’t use the gradient of fitness function, they
start with a number of candidate solutions generated randomly from the search space then they
applied different tools to update the positions of the candidate solutions and converge iteratively
to the global optimum solution.
The success of any metaheuristic technique depend to its capacity to ensure a balance between the
exploration and exploitation phases of the search space, in order to check different locations and
exploit the neighbouring locations of good solutions in the search space [1].

Wolves behaviour has been a source of inspiration of a metaheuristic technique called Grey
Wolf Optimizer (GWO) proposed by Mirjalili in 2014 [2], that mimics the hierarchy dominance
and hunting mechanism of grey wolves.

In this paper a new metaheuristic technique inspired from the wolf pack behaviour (WPBO)
is proposed, the presented algorithm is so different from the GWO; the initialized population is
divided into four groups, based on the fitness values of solutions, each group is subjected to the
next higher group and order the next lower group, the number of wolves in each group changed
iteratively in order to allow the algorithm to explore efficiently the search space then transit it to
the exploitation phase.
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The rest of this paper is organized as follow, in the second section the proposed algorithm is
explained, the results of the evaluation are discussed in the third section and finally section four
concludes with a summary.

2 Wolf Pack behavior

2.1 Inspiration
Wolves are highly social animals that live in packs (Fig.1.a). A pack is an extended family group
follows a very strict leading system that can be represented by a pyramid as in figure (Fig.1.b).
At the top, there is the leader Alpha, the dominant member, who issues all decisions about eating
sleeping and the walking direction...etc. After him there are the subordinate betas, they are the
best individuals after alpha; they subject to alpha decisions and order the rest wolves in lower level.
In the third level, we find the elders, the guards and the scouts; they are responsible for protection
and warning the pack in case of an imminent danger, also, they are the first to be sacrificed in case
of ambush. At the pyramid base, we find the rest individuals of the pack that follow the orders of
the dominant wolves. [2]

-a-

-b-

Fig. 1: The hierarchical organization of the wolves in the pack

Wolves behaviour has been a source of inspiration of a new metaheuristic technique called Grey
Wolf Optimizer (GWO) in 2014 [2], in which the author have modelled mathematically the hunting
strategy and the social hierarchy of grey wolves in order to design GWO.
In this algorithm; a number of candidate solutions are initialized randomly in the search space,
after the fitness evaluation of each solution, the best solution Xα, the second best solution Xβ and
the third best solution Xδ are defined then the positions of each solution are updated using (Eq.1)

Xt+1 = X1 + X2 + X3
3 (1)

Where;
X1 = Xα −A1Dα , X2 = Xβ −A2Dβ , X3 = Xδ −A3Dδ
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Dα = |C1Xα −Xt| , Dβ = |C2Xβ −Xt|, Dδ = |C3Xδ −Xt|
A = 2.a.r1 − a
C = 2.r2
r1 and r2 are two random vectors in [0,1]
To transit the algorithm from exploration to exploitation a takes a decreasing value from 2 to
0. Like all the metaheuristics, the GWOs processes are repeated until the maximum number of
iteration is achieved.
In this paper, we have proposed a new metaheuristic technique inspired also from wolf behaviour,
it shares with GWO the same inspiration but the algorithm is different.

2.2 Wolf pack behaviour optimization

While Wolf pack behaviour optimization (WPBO) is a population-based metaheuristic technique,
we start the algorithm by a random initialization of a number Np of candidate solutions, after that
in order to model the hierarchical organization of the wolves in the pack, the candidate solutions
are ranked from the best solution to the worst then we divide the population into four groups; Gα,
Gβ , Gδ and Gω representing the first, the second, the third and the fourth group respectively. The
difference between WPBO and GWO is that in WPBO α, β and δ are groups of solutions and not
one solution for each one.

Fig. 2: The population partition

As mentioned before, the wolves in each level are subjected to the orders of the wolves in the
adjacent higher level and in their part; they order the wolves in the next lower level. To model
mathematically the dominance discipline of wolves, each candidate solution updates its positions
by using the following equations;

Xt+1 = Xg −A1.Dg (2)
Dg = C1.Xg −Xt (3)

If the candidate solution belongs to the first group Gα; Xg represents the global best solution
found until the current iteration, if it belongs to the second group Gβ ; Xg represents a candidate
solution randomly selected from Gα, if it belongs to the third group Gδ; Xg represents a candidate
solution randomly selected from Gβ but if it belongs to the fourth group Gω ; Xg represents a
candidate solution randomly selected from Gδ. The difference in Xg between the solutions allows
the algorithm to explore the search space better.
The two vectors A1 and C1 are defined like in GWO algorithm. To transit the algorithm from
exploration to exploitation, we have proposed to move one solution from a level to the upper level
at each iteration, with this manner in the last iteration all solution belong to Gα and they are
attracted toward the global best solution.

If the strategy of passing the solutions from one level to the other begin since iter = Maximum iteration
2

the exploration will be improved, but if it starts since the first iteration iter = 1 the exploitation will
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-a-

-b-

Fig. 3: The strategy of solutions moving from a level to another
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be improved, for that we have proposed two versions of WPBO; WPBO1 (iter = Maximum iteration
2 )

and WPBO2 (iter = 1).
The proposed algorithm can be presented in Algorithm 1;

Algorithm 1 WPBO algorithm
1: Initialize the parameters (Np and Itermax)
2: Random initialization of candidate solutions
3: for t = 1 : Itermax do
4: Update the parameters A, a and C
5: Update the groups
6: Update the positions of candidate solutions
7: Evaluation of candidate solutions with the fitness function
8: End for

3 Experimental results

The WPBO performances are tested in two phases. Firstly the presented algorithms are bench-
marked on 23 well-known test functions. Then the performances of our algorithms are analysed in
high dimensions test functions.

3.1 Experiment 1

In the first part, the presented algorithms are benchmarked on 23 well-known test functions de-
scribed in Appendix A and compared with different metaheuristic techniques such as Particle
Swarm Optimization (PSO) [3], Artificial Bee Colony (ABC) [4], Cultural Algorithm (CA) [5],
Sine Cosine Algorithm (SCA) [6] and Grey Wolf Optimizer (GWO) [2].

The curves of fitness values according to the iteration number obtained with F01, F03, F11
and F22 functions are illustrated in figures (Fig4-Fig7), a statistical test with ANOVA (analysis of
variance) method is provided in figure (Fig.8)

Table 1: Optimization results of our algorithm and other metaheuristics

Functions Optimum PSO ABC CA SCA GWO WPBO 1 WPBO 2

F01

Mean
0

0.3970 0.1336 1.2946e-04 1.2728 8.1334e-41 1.6662e-221 3.7581e-238

StDev 0.3209 0.0324 1.3350e-04 3.3294 1.1758e-40 0 0

Rank 6 5 4 7 3 2 1

F02

Mean
0

0.0352 0.1752 59.2268 2.3977e-06 8.0399e-47 7.7689e-220 2.5781e-229

StDev 0.1624 0.0990 20.9776 6.6258e-06 8.3453e-47 0 0

Rank 5 6 7 4 3 2 1

F03

Mean
0

1.6452e+003 8.4519e+03 2.6431e+04 3.8001e+03 2.8663e-11 9.6296e-215 5.9934e-233

StDev 640.9846 1.7992e+03 4.6212e+03 3.0736e+03 7.8706e-11 0 0

Rank 4 6 7 5 3 2 1

F04

Mean
0

2.1999 12.3781 3.1395 5.3804 1.3831e-21 2.1367e-230 3.4521e-239

StDev 1.7124 1.6148 3.2499 5.9093 2.8568e-21 0 0

Rank 4 7 5 6 3 2 1

F05

Mean
0

33.0197 27.8865 48.5678 27.0538 25.8985 28.8868 28.8480

StDev 31.9313 0.4019 115.9528 0.7684 0.7736 0.0366 0.0526

Rank 6 3 7 2 1 5 4

F06

Mean
0

2.7682e+004 3.3316e+04 1.5645e+04 3.1148e+04 1.2398e+03 6.1978 6.1636

StDev 4.9476e+003 5.1635e+03 3.3031e+03 5.9109e+03 330.2118 1.0394 1.0077

Rank 5 7 4 6 3 2 1

F07

Mean
0

0.0251 0.0311 0.0701 0.0086 1.9404e-04 3.0110e-05 1.1959e-05

StDev 0.0170 0.0079 0.0177 0.0085 9.6654e-05 2.8478e-05 1.1354e-05

Rank 5 6 7 4 3 2 1

F08

Mean
-418.9829 * n

-9.9460e+003 -9.1745e+32 -1.0400e+04 -4.3341e+03 -6.3427e+03 -6.8723e+03 -6.7581e+03

StDev 514.9218 2.1229e+33 669.8460 285.6626 818.9499 1.0918e+03 1.0281e+03

Rank 3 1 2 7 6 4 5
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Functions Optimum PSO ABC CA SCA GWO WPBO 1 WPBO 2

F09

Mean
0

275.2287 308.3371 316.9494 231.5441 47.6089 6.1550e-12 1.5007e-11

StDev 17.2402 20.9358 18.6367 47.0853 15.1017 2.2175e-11 4.2357e-11

Rank 5 6 7 4 3 1 2

F10

Mean
8.8818e-16

13.4428 16.4168 11.1855 16.7991 0.0844 9.2145e-12 1.7497e-12

StDev 0.7387 0.7822 0.8800 3.8739 0.0292 1.7279e-11 4.8074e-12

Rank 5 6 4 7 3 1 2

F11

Mean
0

43.5010 57.5828 18.1817 36.2411 0.0848 0 0

StDev 11.9431 9.5749 4.6308 15.6611 0.0495 0 0

Rank 5 6 3 4 2 1 1

F12

Mean
1.5705e-032

0.0456 0.5025 4.1989 0.3651 0.0120 0.1877 0.2152

StDev 0.0902 0.1092 5.9838 0.0549 0.0119 0.0709 0.1058

Rank 2 6 7 5 1 3 4

F13

Mean
0

0.0040 0.1013 0.0062 2.0343 0.2046 2.2251 2.2097

StDev 0.0095 0.0132 0.0096 0.1694 0.1377 0.5291 0.4361

Rank 1 3 2 5 4 7 6

F14

Mean
0.998004

0.9980 1.0297 1.1561 1.7920 3.3878 1.5121 1.5529

StDev 4.3578e-013 0.1571 0.7905 0.9918 3.8337 1.3110 1.0721

Rank 1 2 3 6 7 4 5

F15

Mean
0.0003075

0.0036 0.0010 0.0044 9.5601e-04 0.0019 5.4946e-04 7.2135e-04

StDev 0.0075 3.3967e-05 0.0122 3.9461e-04 0.0056 3.7901e-04 5.1893e-04

Rank 6 4 7 3 5 1 2

F16

Mean
-1.0316285

-1.0316 -1.0315 -1.0316 -1.0316 -1.0316 -1.0316 -1.0316

StDev 7.0682e-013 7.6299e-05 6.2476e-16 5.2826e-05 1.6968e-08 1.5051e-05 4.5242e-05

Rank 2 7 1 6 3 4 5

F17

Mean
0.398

0.3979 0.3980 0.3979 0.3999 0.3979 0.3979 0.3979

StDev 1.0120e-011 6.9784e-05 0 0.0017 1.5976e-06 9.4208e-05 4.9353e-05

Rank 3 1 2 7 4 6 5

F18

Mean
3

3.0000 3.0001 3.0000 3.0000 3.0000 3.0004 3.0003

StDev 1.8965e-012 1.8513e-04 1.3628e-15 9.3354e-05 2.1140e-05 6.6328e-04 3.6212e-04

Rank 2 5 1 4 3 7 6

F19

Mean
-3.86

-3.8628 -3.8625 -3.8628 -3.8537 -3.8612 -3.8184 -3.8304

StDev 1.0583e-007 2.3838e-04 1.8467e-15 0.0037 0.0025 0.0748 0.0659

Rank 3 4 2 5 1 7 6

F20

Mean
-3.32

-3.2602 -3.2515 -3.2792 -3.0135 -3.2608 -3.1685 -3.1762

StDev 0.0606 0.0403 0.0582 0.2057 0.0732 0.0921 0.1083

Rank 3 4 1 7 2 6 5

F21

Mean
-10.1532

-6.9258 -10.1018 -7.7627 -3.2472 -9.9496 -10.1500 -10.1326

StDev 3.0358 0.1039 3.5566 1.6226 1.0105 0.0038 0.0241

Rank 6 3 5 7 4 1 2

F22

Mean
-10.4029

-7.8961 -10.3587 -7.5721 -4.5168 -10.4009 -10.3945 -10.3620

StDev 3.4918 0.0345 3.5908 1.4180 0.0011 0.0098 0.0961

Rank 5 4 6 7 1 2 3

F23

Mean
-10.5364

-8.5370 -10.4930 -7.7253 -4.4472 -10.3185 -10.5300 -10.5180

StDev 3.3054 0.0230 3.6025 0.9653 1.0813 0.0111 0.0342

Rank 5 3 6 7 4 1 2

Overall Rank 4 6 5 7 2 3 1

The difference between the two proposed algorithms, WPBO1 and WPBO2, is in the number
of iterations from which the algorithm begins to move the solutions from one level to the other
and change the sizes of the groups. And since this strategy makes the solutions more and more at-
tracted to the global best solution, so we can say that the difference between WPBO1 and WPBO2
algorithms lies in the exploration and exploitation phases of each one of them.
In WPBO1 algorithm, the level changing of solutions starts at iter = Maximum iteration

2 , which
gives to the algorithm more time to explore the search space, from the comparison results in table
1, WPBO1 surpass WPBO2 in multimodal functions, especially F21, F22 and F23, whose need more
exploration to avoid the attraction to local optimums. Unlike, WPBO2 that starts from the first
iteration, the solution move to the first group Gα, faster, which allows the algorithm to concentrate
the search in potential solution and improve the exploitation by consequence. The results in F1,
F2, F3 and F4, validate this concept.
The influence of large exploration time given by WPBO1 is clearly presented by the evolution of
fitness functions in figures from Fig.4 to Fig.7, and the ANOVA test of some chosen functions in
Fig.8. Also, the rapid move to the exploitation phase proposed in WPBO2 has proved its benefits
by the improvement of the convergence to the optimal solution, and this is shown in figures from
Fig.4 to Fig.7 too.
These results show that our proposed algorithm has, in most cases, outperformed the other algo-
rithms
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Fig. 4: Fitness curves of F01, F03, F11 and F22

Fig. 5: ANOVA test of F01, F03, F11 and F22
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3.2 Experiment 2

To evaluate the performances of our algorithms in high dimensional functions. Six test functions
selected from the precedent functions, contain 150, 200 and 500 variables, are used. the results of our
algorithms are compared with different swarm intelligence algorithms like PSO, ABC and GWO.
Starting from the results represent the tables 2,3 and 4, our algorithms WPBO1 and WPBO2
outperform all the other swarm itelligence algorithms in all the used test functions. Which prove
their effectivenss in high dimensional functions.

Table 2: Optimization results with dim = 150
Functions PSO ABC GWO WPBO 1 WPBO 2

F1 27883,92 68567,97 1,35E-14 4,50E-228 7,38E-244
F2 101,07 2,52E+40 1,65E-18 5,15E-226 9,62E-239
F4 45,29 96,94 0,00215 6,30E-236 2,21E-249
F6 339866,52 401426,36 74698,36 34,3225 37,1750
F9 2010,11 2375,02 722,825 1,16E-11 7,73E-12
F11 1746,50 2843,67 6,2109 0 0

Table 3: Optimization results with dim = 200
Functions PSO ABC GWO WPBO 1 WPBO 2

F1 52954,56 200068,67 1,69E-11 4,60E-229 1,53E-237
F2 219,7935 1,61E+62 7,47E-16 3,31E-221 2,16E-235
F4 49,6474 97,7190 1,7195 2,88E-231 8,72E-248
F6 385834,30 581699,86 105657,38 48,28 49,48
F9 2740,51 3359,65 1263,94 9,09E-13 2,32E-11
F11 2909,58 4629,14 16,0304 0 0

Table 4: Optimization results with dim = 500
Functions PSO ABC GWO WPBO 1 WPBO 2

F1 404901,68 1490066,96 1,15E-05 2,52E-223 8,07E-234
F2 1416,61 6,32E+220 1,01E-09 1,92E-216 1,84E-231
F4 62,6579 99,3180 43,2951 1,34E-237 6,20E-245
F6 1208082,56 1486091,90 511209,11 127,5441 123,2278
F9 7585,52 8664,04 4356,54 9,09E-13 9,09E-13
F11 8046,87 13376,62 319,37 0 0

4 Conclusion

A new metaheuristic inspired from the relation between different members of a wolf pack was pre-
sented and evaluated through diverse benchmark functions. Two versions of the WPBO algorithm
were suggested, one improves the exploration ability, and the other improves the exploitation, and
they both have given excellent results comparing with other well known metaheuristics.
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Fig. 6: Fitness curves of F01 with high dimensions

Appendix A
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Test Functions Dimension Range Maximum
Iteration

F01 =
∑n
i=1 x

2
i 30 [-100,+100] 500

F02 =
∑n
i=1|xi|+

∏n
i=1|xi| 30 [-10,+10] 950

F03 =
∑n
i=1(

∑i
j=1 xj)2 30 [-100,+100] 500

F04 = maxi{|xi|, 1 ≤ i ≤ D} 30 [-100,+100] 1000
F05 =

∑D−1
i=1 [100× (xi+1 − x2

i )2 + (xi − 1)2] 30 [-30,+30] 8000
F06 =

∑D
i=1([xi + 0.5])2 30 [-100,+100] 15

F07 =
∑D
i=1[ix4

i + random[0, 1)] 30 [-1.28,+1.28] 1500
F08 =

∑D
i=1−xi sin(

√
|xi|) 30 [-500,+500] 1500

F09 =
∑D
i=1[x2

i − 10 cos(2πxi) + 10] 30 [-5.12,+5.12] 40
F10 = −20exp(−0.2

√
1
D

∑D
i=1 x

2
i )

−exp( 1
D

∑D
i=1 cos(2πxi)) + 20 + e

30 [-32,+32] 60

F11 = 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos( xi√

i
) + 1 30 [-600,+600] 70

F12 = π
D{10 sin2(πyi)
+

∑D−1
i=1 (yi − 1)2 [1 + 10 sin2(πyi + 1)]

+(yD − 1)2 +
∑D
i=1 u(xi, 10, 100, 4)}

yi = 1 + xi+1
4

u(xi, a, k,m) = {
k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

30 [-50,+50] 2000

F13 = 0.1{10 sin2(πyi)
+

∑D−1
i=1 (yi − 1)2 [1 + 10 sin2(πyi + 1)]

+(yD − 1)2 +
∑D
i=1 u(xi, 10, 100, 4)}

30 [-50,+50] 2000

F14 = [ 1
500 +

∑25
j=1

1
j+

∑2
i=1

(xi−aij)6 ]−1 2 [-65.53,+65.53] 150

F15 =
∑11
i=1[ai − x1(b2

i +bixi)
b2

i
+b1x3+x4

]2 4 [-5,+5] 400
F16 = 4x2

1 − 2.1x4
i + 1

3x
6
1 + x1x2 − 4x2

2 + 4x4
2 2 [-5,+5] 200

F17 = (x2 − 5.1
4π2x

2
1 + 5

πx1 − 6)2 + 10(1− 1
8π ) cos(x1) + 10 2 [5,+10]× [0,+15] 180

F18 = [1 + (x1 + x2 + 1)2

(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]
×[30 + (2x1 − 3x2)2

(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2 [-5,+5] 200

F19 = −∑4
i=1 ci exp (−∑3

j=1 aij(xj − pij)2) 3 [0,+1] 100
F20 = −∑4

i=1 ci exp (−∑6
j=1 aij(xj − pij)2) 6 [0,+1] 250

F21 = −∑5
i=1[(X − ai)(X − ai)T + ci]−1 4 [0,+10] 200

F22 = −∑7
i=1[(X − ai)(X − ai)T + ci]−1 4 [0,+10] 200

F23 = −∑10
i=1[(X − ai)(X − ai)T + ci]−1 4 [0,+10] 200

Appendix B

The code sources used in this paper were downloaded from these addresses:

GWO: https://www.mathworks.com/matlabcentral/fileexchange/47258-grey-wolf-optimizer-toolbox

SCA: https://www.mathworks.com/matlabcentral/fileexchange/54948-sca–a-sine-cosine-algorithm
ABC and CA :http://yarpiz.com/
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Abstract 

E-commerce amplifies the direct linking from customers to manufacturers and enabling mass-
personalization. So, the Industry 4.0 is able faster to make the personalized-product. In this paper, we 
present a hybrid meta-heuristic based multi-agent (called “hGATS+MAS”) model for Industry 4.0. 
The objective is to schedule production orders as regards just-in-time with energy-efficiency. In this 
model, a Genetic Algorithm is made for a global search of the exploration space by a Master 
Scheduler Agent (MSA). Then, a local search is made by a Tabu Search to guide a set of Scheduler 
Agents (SAs).  

Key  words : Industry 4.0; Smart-Factory; Hybrid meta-heuristic; Multi-Agent System; Flexible Job 
Shop Scheduling Problem; Genetic algorithm;  Tabu search 

1. Introduction

The changes in the economic, political and technological evolution theses last years, have considerably 
affected our way to consume goods and services. The role of customers changed from a product-buyer 
to a product-designer himself [1]. In fact, E-commerce amplifies the direct linking from customers to 
manufacturers and enabling mass-customization or mass-personalization. 

Industry 4.0 is able faster to offer the personalized-product. One major key of the Industry 4.0 is the 
“Smart-Factory” or the “Factory of the Future” (FoF) [2]. The Smart-Factory is a strongly automated 
and agile manufacturing system. Smart-Factory is piloted by an intelligent order fulfillment system 
[3], without human intervention (or almost) and manufactures for 24 hours a day and 7 days a week.  

Mass-customization implies that the Smart-Factory is flexible, able to respond just-in-time delivery for 
a sustainable environment and with the energy-efficiency objectives. Theses multi-objectives are 
usually conflicting. In this case, how optimize scheduling production orders (PO) respecting 
simultaneously these different multi-objective constraints? An ideal solution which optimizes all the 
objective functions simultaneously cannot be found [4]. Multi-objective meta-heuristic algorithms are 
one of the most commonly used methods to obtain Pareto optimal solutions for a multi-objective 
optimization problem [5].  

Furthermore, Industry 4.0 applies the multi-agent technology [6] that achieves complexity 
management, decentralization, intelligence, modularity, flexibility, robustness, adaptation, and 
responsiveness [7]. According to Nouri et al. (2018) [8] the multi-agent algorithm is an efficient and 
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effective approach to solve the multi-objective problems, especially for the problems on a large scale. 
In this case, how multi-agent system (MAS) can be used to schedule production orders (PO)? 

In other words, how combine multi-agent system (SMA) and multi-objective meta-heuristics to 
schedule production orders into Industry 4.0? 

Consequently, to balance multi-objective scheduling constraints for Industry 4.0 we apply a hybrid 
meta-heuristics within a multi-agent system in two search levels.  In a first level a genetic algorithm 
(GA) is developed to find global near-optimal initial-solutions. In the second level, a tabu search (TS) 
algorithm locates the best final solutions for each cluster. The hybrid genetic algorithm (GA) and the 
tabu search (TS) are implemented in two hierarchical multi-agent systems (hGATS+MAS). 
The rest of this work is ordered as follows. In section 2, we provide a literature review on 
hybridization meta-heuristics into multi-agent system (MAS) to solve a flexible job shop scheduling 
problems. Section 3 presents briefly the formulation problem. Section 4 explains the hGATS+MAS 
proposed model.  In section 5, we comment the experimental results. Finally, Section 6 provides the 
conclusions and the future works.  

2. Literature review

Kacem et al., (2002) [9] proposed a Pareto approach based on the hybridization of fuzzy logic 
(FL) and evolutionary algorithms (EAs) to solve a flexible job-shop scheduling problem (FJSP). They 
minimize three objectives: makespan, total workload machines and maximum workload machine. 

Wu and Weng (2005) [10] considered a multi-agent scheduling for a flexible job shop. They 
consider earliness and tardiness objectives. They develop two heuristic algorithms for jobs sequencing 
to deal with two kinds of jobs. The two kinds of jobs are defined to distinguish jobs with one operation 
left from jobs with more than one operation left. Different criteria are proposed to route these two 
kinds of jobs. The computational experiments show that the proposed multi-agent scheduling method 
significantly outperforms the existing scheduling methods in the literature. The proposed method is 
quite fast for a large scale. 

Xia and Wu (2005) [11] applied the combination of s swarm optimization (PSO) and 
simulated annealing algorithm (SA) to solve the problem. 

Gao et al. (2008) [12] have developed a hybridizing genetic algorithm with variable 
neighborhood descent. They use the ability of genetic algorithms (GA) for a global search. Then, they 
use the local search of variable neighborhood descent (VND). The hybrid-algorithm minimizes three 
objectives for a flexible job shop scheduling problems (FJSP): makespan, maximal workload machine 
and total workload machine. 

Ennigrou and Ghédira (2005) [13] proposed two Multi-Agent approaches based on the Tabu 
Search (TS) meta-heuristic. They have distinguished between the global optimization approach where 
the tabu search (TS) has a macro vision on the system and the local optimization approach (FJS 
MATSLO) where the optimization distribute  a collection of agents, each of them has its own local 
view. 

Zhang et al. (2009) [14] proposed hybridizing the two optimization algorithms, particle swarm 
optimization (PSO) and tabu search (TS) algorithms, an effective hybrid approach for the multi-
objective FJSP. PSO which integrates local search and global search scheme possesses high search 
efficiency. And TS which is a meta-heuristic designed to find a near optimal solution of combinatorial 
optimization problems.  
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Rajabinasab and Mansour (2010) [15] have studies a several dynamic events: stochastic 
processing times, uncertainty job arrivals, unpredicted machine breakdowns for a flexible job shop 
problem considering. A multi-agent scheduling system is a based on a pheromone approach. The 
simulation experiments are performed under various configurations: due date, utilization level, mean 
time to repair maintenance, breakdown level. 

Moslehi and Mahnam (2011) [16] solve a multi-objective flexible job-shop scheduling 
problem by hybridization the birds’ flight inspired particle swarm (Bio-PSO) and local search (LS) 
algorithm. 

Henchiri and Ennigrou (2013) [17] developed a multi-agent model based on a hybridization of 
two meta-heuristics. A particle-swarm optimization (PSO) optimizes globally. The tabu search (TS) 
optimizes locally and gets a good exploitation of the good areas. 

Rezki et al. (2016) [18] proposed a multi-agent system for complex process monitoring 
activities as detection, diagnosis, reconfiguration, and identification. They combine many intelligent 
techniques such as: multivariate control charts, neural networks, bayesian networks, and expert 
systems. 

Nouri et al. (2018) [8] propose a hybrid metaheuristics-based clustered holonic multi-agent 
model to solve FJSP in two stages. A neighborhood-based genetic algorithm (NGA) is applied in the 
first stage. In this stage a scheduler agent explore a global search space. In the second stage, cluster-
agents guide local searches using a tabu search algorithm. This hybridization technique improves the 
quality of the proposed model by decreasing computational time. 

Table 1 summarizes the previous literature review. Our work is based on model of Nouri et al. (2018) 
[8] . However, our work differs from that of Nouri et al. (2018) [8] and other authors cited in the 
literature review, in that it integrates JIT and Energy consumption cost objectives to optimize 
simultaneously. In the next section, we formulate the problem. 

Table 1: summary of the literature review 
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3. Problem Formulation

The scheduling production orders for a Smart-Factory in the context of the Industry 4.0 can be 
assimilated as a scheduling problem with three sub-problems. The first sub-problem is a just-in-time 
(JIT) scheduling into a Partial Flexible Job Shop Scheduling Problem (JIT-PFJS/SP). The second is 
Materials Handling (as AGVs, robots) Scheduling Problem (MH/SP) and finally the last, an Energy-
Efficiency Scheduling Problem (EE/SP). However, in this work we do not take into account the 
transportation robots and we equate (very realistically) our problem as a just-in-time flexible job shop 
with energy-efficiency (JIT-FJS-EE/SP). In the following, we briefly describe the three sub-problems. 

a. Flexible Job Shop Scheduling Problem (JIT-FJS/SP)

The flexible job shop scheduling problem (FJS-SP) could be formulated as follows. There is a set of n 
jobs J = {J1, . . . , Jn} to be processed on a set of m machines M = {M1, . . . , Mm}. Each job Ji forms a 
sequence of ni operations {Oi,1,Oi,2, . . . ,Oi,ni} to be executed successively according to the specified 
order. Each alternative machines M(Oi,j) is capable of processing each operation Oi,j. 

The ideal JIT schedule is one in which all jobs finish exactly on their assigned due dates. Job that 
completes early is storage inventory until its due date, whereas a job that completes after its due date 
can lead to the loss of a customer. For that reason, the Earliness and Tardiness represent excellent keys 
performance indicators [19], [20]. 

We think a JIT scheduling and for each operation Oij we have two penalty factors: ���  and ���. Early 

operation is penalized by the cost ������ and tardy operation by ������. The purpose is to minimize, for 

all operations, the total costs of earliness and tardiness simultaneously. 

min �� =  ∑ ∑ � ���. max(0, ��� −  ���)���
���

�
���  (1) 

min �� = ∑ ∑ ����. max(0, ��� −  ���)���
���

�
���  (2) 

���: unit tardiness penalty cost for job j 
���: unit earliness penalty cost for job j 
��� : Completion time of job j 
���: due-date of job j 

b. Energy-Efficiency Scheduling Problem (EE/SP)

A Time-of-use electricity (TOU) tariff is a good opportunity for electricity consumers to reduce their 
energy bills by shifting their usage from on-peak periods to off-peak ones [21]. Time-of-use strategy 
offers variable electricity tariffs over time: high price in on-peak periods and low price in off-peak 
periods [22]. Scheduling the production orders in a planning horizon, according TOU tariffs decrease 
the total electricity cost strongly. 

The calculation of total energy consumption (TEC) is indicated by Equation (3) and it considers two 
machine modes: processing, and idle-sleep mode. 

min � = ∑ ∑ ��! �∑ �"!# + �%!#
&
"�� �'

#��
(
!�� (3) 

�"!#  processing energy consumption on 
machine at speed s at period t 
�%!#  idle-sleep energy consumption on 
machine k at period t 
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To make clear the JIT-FJS-EE/SP, table 2 shows a sample problem of three jobs and four machines. 
The number corresponds to a processing-time and “-“indicate that the operation cannot be processed 
on the related machine. Figure 1 shows an example of an optimal scheduling with regard to the 
earliness, tardiness and energy efficiency constraints. 

Table 2 : Example of instance for a FJSP

Figure 1: Example of optimal scheduling 

4. Hybrid meta-heuristic-based multi-agent system

A multi-agent system (MAS) consists a collection of individual agents, each agent displays a certain 
amount of autonomy with respect to its actions and perception of a domain. This work is based on 
model of Nouri et al. (2018) [8] and we use a hybrid meta-heuristic approach processing in two levels: 
global search level with a genetic algorithm and (GA) generating initial–solutions and local search 
level with tabu search (TS) starting from the initial-solutions. 

At the first level, a global exploration use a genetic algorithm (GA) to find feasible zones in the search 
space and a aggregating operator allowing regrouping them in a “set of clusters”. The choice of GA is 
motivated by the fact that a GA is able to produce several different faster near optimal solutions [23]. 
In fact, in a GA, each candidate solution to a problem (know as a “chromosome”) is an ordered fixed-
length array of values for attributes (“genes”). 

In the second level, a Tabu Search (TS) algorithm is implemented to near-locate the best individual 
solution for each cluster. The choice of Tabu Search (TS) is justified by the fact it produces better 
solution, with less computing time, than other meta-heuristics [24]. Indeed, Tabu Search (TS) 
algorithm is a meta-heuristic method search starting from an initial solution as current solution and 
using internal memory [25]. The advantage of TS over other methods is to use its internal memory to 
prevent from searching previous visited areas. Therefore, it is easier to lead towards local optimum in 
sort time. 

The operation method of the proposed model is implemented in two hierarchical multi-agent systems, 
named hybrid Genetic Algorithm with Tabu Search within a Multi-agent System (hGATS+MAS), see 
Figure 2. 
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Figure 2: Hybrid meta-heuristic based Multi-Agent System (hGATS+MAS) [8] 

The first multi-agent level is composed by a Master Scheduler Agent (MSA). This mission is to 
prepare globally the near-optimal clusters (or regions) of the search space. The second multi-agent 
level contains a set of Scheduler Agents (SAs). There missions is to provide the best local solution into 
the global near-optimal solution. 

A. Master Scheduler Agent 

The role of the Master-Scheduler Agent (MSA) is to identify regions with high average fitness. The 
search space is done during a fixed number of iterations. Then, a clustering operator is integrated to 
divide the best identified areas by the GA in the search space to different parts where each part is a 
cluster. Then, MSA creates N Scheduler Agents (SAs) to organize the passage to the next step of the 
global algorithm. After that, the MSA remains in a “stop state” until to receipt the optimal solutions 
provide from the SA for each cluster. The process it finally finishes by providing the final solution. 

B. Scheduler Agent 

To each cluster, each Scheduler Agent (SAs) applies individually a local search technique by a Tabu 
Search algorithm. The tabu search conduct the research into their search space improves the quality 
from the final population of the genetic algorithm. In fact, this process is executed simultaneously by 
all the set of the SAs agents. Each SA starts the research from a near-optimal solution of its cluster 
searching to arrive at new most important individual solutions separately in its assigned cluster. 

5. Experimental Results

The proposed (hGATS+MAS) is implemented in java language. The tests are conducted on PC with 
an IntelR CoreTM i5-4300U 1.9-GHz CPU with 8 GB of RAM memory. We use the Integrated 
Development Environment (IDE) eclipse We code the algorithm and the multi-agent into a platform 
Jade22. 

To test the proposed model, we simulate a scheduling instance for 6 machines and 8 jobs. We apply 
here 4 situations with 30 replications. To stress the algorithm, we used the following constraints: the 
availability date of all the POs is fixed at 22:00 at the latest. 

Figure 3a shows the configurations where Tardiness penalty cost is the most important, the rest are all 
equal. In this case the completion time is minimized. Both Figure 3b and 3c, shows configurations 
where Earliness penalty cost is most important. In Figure 3d we show planning scheduling where 
energy cost is increasing, so the jobs are sequencing in the way to circumvent on-peak electricity cost. 
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Figure 3a: High Tardiness penalty cost Figure 3b: High Earliness penalty cost and low 
Energy cost 

Figure 3c: High Earliness penalty cost and High 
Energy cost 

Figure 3d: High Energy Cost 

6. Conclusion

In this paper, we present a hybrid meta-heuristic based multi-agent (hGATS+MAS) model for Industry 
4.0. The objective is to schedule production orders as regards just-in-time with energy-efficiency. In 
this model, a Genetic Algorithm is made for a global search of the exploration space by a Master 
Scheduler Agent (MSA). Then, a local search is made by a Tabu Search to guide a set of Scheduler 
Agents (SAs).  

We tested our model with hard constraints and it responds in a very low time. However, we did not 
perform a benchmark test to compare its effectiveness. In the very near future, we look forward to 
comparing our model with instances from the literature. Finally, we will search to treat other 
configurations of the FJSP, such as by integrating materials handling (robots, AVGs) constraints in the 
shop floor, maintenance scheduling and other extensions of energy-efficiency as power consumption. 
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1 Introduction and related works

We present in this paper an approximation approach for solving the two-machine job shop schedul-
ing problem under availability constraints one one machine. In real industrial settings, it is often
necessary to address situations where the machines become unavailable during periods of time
throughout the scheduling horizon for different reasons. In this context, machines may be unavail-
able due to deterministic events such as preventive maintenance.

For the studied problem, a set of jobs and two machines are considered. Each job has to be
processed given an order through the two machines. The processing times of all operations are
known. Every job is to be processed on at most one machine at a time and each machine performs
no more than one job at a time. Machines are not continuously available for processing. Further,
the beginnings and durations of each unavailability period is known in advance and operations are
not able to be preempted neither by unavailability periods nor by other operations. The goal is to
minimize the makespan, i.e., the maximum completion time of all jobs on the two machines.

In many industrial application such as Additive and Subtractive manufacturing implying the use
of machine tools or machine shops, the manufacturing process could be modeled on two machine
jobs shop scheduling problem. The application could concern also conveyor transport, robotic
transportation, Material handling or conditioning and many other problems.

Literature considers various cases relating to the processing of an operation interrupted by
an unavailability period. Lee [1] introduces three types of operations. An operation that cannot
be finished before the next unavailability period of a machine is defined as resumable if it can
be continued after the machine is available again and non-resumable where it must be totally
restarted. The semi-resumable operation must be partially restarted when th machine become
available. [2] defines the problem when the processing of an operation cannot be interrupted neither
by the starting of another operation, nor by an availability period as strictly as non-preemptive
job shop scheduling problem with availability constraints. [3] defines unavailability period that
allow an operation to be interrupted as crossable period and the one that prevent interruption as
non-crossable period.

It is well known that the two-machine job shop problem with no availability constraints is
solvable optimally and polynomially by Jackson’s algorithm [4]. However, it becomes strongly
NP-Hard if the machines are not continuously available. Lee [5, 1] proves that the resumable,
non-resumable or semi-resumable two-machine flow shop problem with a one availability constraint
on one machine is NP-hard for each of these cases.

In [6], we present an heuristic which is the application of the Jackson’s algorithm when the
scheduling of jobs take into account the unavailability periods that their duration and starting
time are known in advance. we have also demonstrated that the worst case ratio is equal to 2. The
retained results deduce that the more the number of unavailabilities increases the more the quality
of the solution obtained approximately deteriorates considering the number of idles times generated
which is equal to the number of unavailability period. In [6], it is proved that there exists an optimal
order guaranteeing that jobs before, after and between each two consecutive unavailability periods
are ordered following Jackson’s rule, for two-machine job shop with unavailability periods on one
machine.

Facing the requirement to obtain good solutions for problems, we develop a constructive heuris-
tic method to deal with the two machine job shop under availability constraints and we compare
computational results with the heuristic H1 provided in [6].
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2 Approach

The construction heuristic (Hconstr) uses Jackson’s rule in its approach. First, the order of jobs is
found according to this rule (JKO). The choice of the unavailable machine is completely similar
as long as the two-machine scheduling problem is symmetrical. We consider that machine M1 is
the unavailable for periods.

Each job in M1 is affected into a suitable interval following JKO order. The first job candidate
is inserted in the first interval, If the completion time of the affected job on machine M1 is greater
than the starting time of the unavailability, the job is assigned to the following interval, until its
final assignment. The procedure repeats for te next job following JKO order. The algorithm ends
when all jobs are affected. When the set of jobs to be executed in each interval is defined, we use
the order proved in [6] (Property 6) that schedules these sets and guaranteeing that of jobs order
in each interval is optimal.

3 Computational results and discussion

The proposed algorithms are coded in the C + + language. We use for run a PC with 2.60GHz
Intel(R) Core (TM) i5-4210M CPU and 8.00 GB, on Linux operating system.

We employed the (15 jobs/15 machines, 20 jobs/15 machines, 30 jobs/15 machines) Taillard’s
job shop instances [7]. We took the first two values of each job, corresponding to its durations on
the two first machines for each instance.

Further, we add the parameters concerning period of unavailability to be fixed on machine M1.
The duration of the uth unavailability period is assumed equal to the average of the processing

times of the operations on machine M1 : gu = tu − su =

∑N

i=1
pi1

N .
We generate instances considering the location of the uth unavailability period. The starting

date of this period is set according to the total number of unavailability periods considered on
machine M1 : su = u

U+1

∑
i∈N pi1 − 1

2gu.
Table 1 illustrates the heuristic performance (Hconstr) proposed in this paper with respect to

the H1 heuristic. It presents makespan (Cmax) the gap to lower bound (Gap = Cmax−LB
LB (%))

and the execution time by each heuristic (CPU(s)). Figure 1 summarizing these results, indicates
clearly that the heuristic proposed in this paper outperforms H1 proposed in [6]. Obviously, these
good performance of the proposed approach is due to the fact that Hconstr consider in each job’s
assignment all intervals (I1, ..., IU+1) so each idle time that can not be filled by a defined job could
be used by one of the next jobs to assign. Furthermore, the average gap displayed by the figure is
determined related to the lower bound (see [6]) which is not necessarily the optimal solution.
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Fig. 1. Average gap Cmax−LB
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(%) for each instance size (N = {15, 20, 30} , U{N/4, N/2})
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Table 1. Comparison results, Hconstr and H1 (Taillard instances N = {15, 20, 30}, P3)

N
U = N/4 U = N/2

LB
H1 Hconstr

LB
H1 Hconstr

Cmax Gap(%) CPU(s) Cmax Gap(%) CPU(s) Cmax Gap(%) CPU(s) Cmax Gap(%) CPU(s)

15

902 902 0.00 <0.001 902 0.00 0.002 938 1163 23.99 <0.001 1083 15.46 0.001
819 939 14.65 <0.001 824 0.61 0.001 999 1277 27.83 <0.001 1095 9.61 0.002
936 1005 7.37 <0.001 949 1.39 0.001 1144 1463 27.88 <0.001 1348 17.83 0.002
852 895 5.05 <0.001 855 0.35 0.001 1003 1250 24.63 <0.001 1139 13.56 0.002
972 1082 11.32 <0.001 988 1.65 0.001 1188 1499 26.18 <0.001 1383 16.41 0.002
983 1064 8.24 <0.001 1024 4.17 0.001 1199 1488 24.10 <0.001 1424 18.77 0.003
1084 1263 16.51 <0.001 1102 1.66 0.001 1324 1643 24.09 <0.001 1564 18.13 0.002
967 1182 22.23 <0.001 993 2.69 0.001 1179 1497 26.97 <0.001 1447 22.73 0.002
1109 1235 11.23 <0.001 1205 8.66 0.002 1353 1740 28.60 <0.001 1665 23.06 0.002
800 911 13.88 <0.001 825 3.13 0.001 976 1195 22.44 <0.001 1125 15.27 0.001

20

1268 1458 14.98 <0.001 1358 7.10 0.002 1518 1862 22.66 <0.001 1739 14.56 0.004
1178 1334 13.24 <0.001 1199 1.78 0.002 1413 1734 22.72 <0.001 1631 15.43 0.004
1265 1425 12.65 <0.001 1347 6.48 0.002 1515 1921 26.80 <0.001 1777 17.29 0.003
1293 1433 10.83 <0.001 1319 2.01 0.002 1548 1940 25.32 <0.001 1745 12.73 0.003
1082 1215 12.29 <0.001 1108 2.40 0.002 1297 1656 27.68 <0.001 1505 16.04 0.003
1332 1485 11.49 <0.001 1340 0.60 0.002 1597 2020 26.49 <0.001 1875 17.41 0.004
1387 1595 15.00 <0.001 1452 4.69 0.002 1662 2117 27.38 <0.001 1901 14.38 0.003
1326 1534 15.69 <0.001 1397 5.35 0.002 1591 1970 23.82 <0.001 1890 18.79 0.004
1291 1462 13.25 <0.001 1368 5.96 0.002 1546 1969 27.36 <0.001 1834 18.63 0.004
1433 1650 15.14 <0.001 1494 4.26 0.002 1718 2164 25.96 <0.001 2075 20.78 0.004

30

2053 2367 15.29 <0.001 2119 3.21 0.004 2493 3167 27.04 <0.001 2819 13.08 0.008
1964 2355 19.91 <0.001 1986 1.12 0.004 2388 3050 27.72 <0.001 2799 17.21 0.009
1945 2164 11.26 <0.001 1993 2.47 0.003 2361 2937 24.40 <0.001 2840 20.29 0.009
1828 2234 22.21 <0.001 1849 1.15 0.004 2220 2817 26.89 <0.001 2586 16.49 0.007
1967 2152 9.41 <0.001 2031 3.25 0.004 2391 2975 24.42 <0.001 2690 12.51 0.007
1975 2211 11.95 <0.001 2015 2.03 0.004 2399 3060 27.55 <0.001 2759 15.01 0.009
2184 2454 12.36 <0.001 2249 2.98 0.005 2656 3307 24.51 <0.001 2962 11.52 0.009
1768 2020 14.25 <0.001 1815 2.66 0.003 2144 2622 22.29 <0.001 2420 12.87 0.008
1784 2018 13.12 <0.001 1810 1.46 0.004 2168 2667 23.02 <0.001 2472 14.02 0.007
1890 2183 15.50 <0.001 1944 2.86 0.004 2298 2932 27.59 <0.001 2754 19.84 0.008

4 Conclusion

We present a constructive heuristic based on Jackson’s rule, to resolve approximately the non-
preemptive two-machine job shop scheduling problem under availability constraints on one ma-
chine. The proposed heuristic outperforms the one presented previously in [6]. This will allow to
obtain a quality approximate solution in a very small computational time (ms). Obviously, it helps
to get a good upper bound for the exact resolution of the problem.
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Abstract 

Recently, the scientific community has given a lot of attention to research evaluation. In this 

framework, one of the major issues in the scientometrics literature is ranking scientific journals by 

quantifying their “impact”, based on citation data. Many methods have been introduced to this purpose, 

among which we can find, for instance, the well-known “impact factor”, which is basically an average of 

citations. However, a rigorous approach to this ranking problem consists of performing a functional 

comparison between citation distributions, unlike a scalar comparison of indices. This gives rise to a pre-

order relation, i.e. the second-degree stochastic dominance, also denoted as generalized Lorenz dominance 

(GLD) [1], which makes it possible to rank a large part of the distributions. Unfortunately, pre-orders are not 

complete orders, so that, within a given set, there may be many pairs of distributions that cannot be ranked 

by GLD. Moreover, the verification of the GLD may represent an issue from a computational point of view. 

We show with a heuristic argument that the citation distributions of journals can be described by some basic 

statistical tools, such as the mean and the Gini index. In particular, we argue that knowledge of the mean and 

the Gini index may be sufficient to provide a good approximation of the verification of the dominance 

relations that may be (or may be not) satisfied among a set of pairs of journals.  Therefore, we propose a rule 

that may be used to find the dominant journal, in terms of impact, within a given set, and, consequently, we 

introduce an algorithm to implement such rule. Empirical results show that the method provides a good 

approximation and can therefore yield a reliable ranking. 
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Abstract 

Film transfer coefficient is one of the most challenging variables to measure in experimental heat transfer. This happens 

because such variable depends on too many others. Examples include type of media (gas or liquid), body geometry, fluid 

flow, thermal conductivity, and many more thermodynamic properties. In this paper, we propose estimating such coefficient 

by solving an inverse heat transfer problem via the Cuckoo Search global optimization algorithm. The designs were achieved 

through the entropy generation minimization criterion, also powered by Cuckoo Search, employing several specifications 

(material, working fluid and �̇�). Our data show great estimations for signal-to-noise ratios above 30 dB, which can be reached

with virtually any modern temperature sensors. 

Keywords: inverse heat transfer problem; rectangular microchannel heat sink; Cuckoo Search; global optimization. 

Introduction 

Thermal management of modern electronic devices is a 

well–known problem nowadays. Such problem arises during 

design and operation processes [1,2]. It is easy to find many 

reported solutions including theoretical, numerical and 

experimental studies [3-6]. Specifically, microchannel heat 

sinks (MCHSs) have been employed on this problem, and 

they are recurrently implemented in high thermal power 

dissipation applications [7-9]. This idea began with an early 

implementation proposed by Tuckerman and Pease in [10]. 

MCHSs mainly ensure a maximal dissipation of electronic 

power losses and a minimal additional energy consumption. 

For that reason, multiple MCHS design strategies have 

appeared in literature [11-13]. Among the most recent and 

powerful ones resides the one pioneered by Bejan [14]. His 

approach focuses on the thermodynamics-based Entropy 

Generation Minimization (EGM) criterion.  

Every practical electronic thermal management system, 

such as a MCHS, may have its performance altered when 

operating in a noisy environment. Moreover, practical 

engineering applications require precise estimation of some 

parameters, parting from temperature measurements. Some 

examples include thermophysical properties of materials and 

coolants, as well as boundary and initial conditions, and 

energy source distributions. This kind of problem is known 

as an Inverse Heat Transfer Problem (IHTP) [15]. Its solution 

can help study the differences between theoretical and real

system performance. For that reason, after implementing a

MCHS, as well as any practical engineering system, it is 

necessary to add an estimation procedure for eventually 

tuning the system. This can help prevent marginal or 

unexpected behaviors. 

IHTP have been broadly used on diverse areas of practical 

engineering, with very creative methodologies. For example, 

Wang et al. estimated the grinding heat flux from a 2D 

temporal and spatial temperature distribution, throughout a

surgical bone grinding process, implementing sequential 

function specification method and sequential programming 

[16]. Li et al. determined multiple heat sources for a mold 

heating system of the injection machine by solving a 3D 

inverse heat conduction problem [17]. Cornejo et al.

approached the thermophysical properties of food in the

freezing temperature range, by implementing an inverse 

method based on simulation results [18]. Wang et al.

determined heat transfer coefficients in a steel billets 

continuous casting process under large disturbance. They 

used an approach based on weighted least squares and 

Levenberg-Marquardt (LM) [19]. Mohebbi et al. accurately 

determined thermal conductivity as a linear temperature

function in a 2D steady-state heat conduction process [20]. 

Luo and Yang calculated the total heat exchange factor by 

solving the IHTP via a combined method based on gradients. 

They employed it as reference trajectories for a control 
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system in a reheating furnace [21]. On the other hand, 

Chanda et al. reached a practical thermal conductivity tensor 

of anisotropic composite materials, via a characterization 

methodology powered by an artificial neural network and a 

genetic algorithm [22]. Dhiman and Prasad found empirical 

correlations for local and average Nusselt numbers of a 

heated hollow cylinder in cross flow of air, implementing the 

LM method [23]. Furthermore, other works have been aimed 

at improving traditional IHTP solving methodologies, by 

including Tikhonov regularization. An alternative inversion 

model was studied by Mu et al. They solve an optimization 

problem by splitting it out in several simpler sub-problems,

and then tackling each one through the Broyden-Fletcher-

Goldfarb-Shanno algorithm [24]. Additionally, Duda 

proposed an inverse method to avoid the stability drawbacks 

of classical methods when solving IHTPs while using real-

time measurements [25]. 

Nevertheless, very few manuscripts have reported IHTP 

solutions on heat sinks applications. Bodla et al. found the 

optimal ranges for uncertainties related to geometry and 

operating conditions in fin heat sinks using a stochastic 

methodology [26,27]. Huang et al. estimated the optimal 

perforation diameter of a perforated pin-fin heat sink for a 

desired temperature reference [28]. Sudheesh and Siva 

characterized some parameters associated to heat transfer in 

trailing heat sinks for the reduction of stresses and distortions 

from welded structures [29]. Chen et al. determined average 

convective heat transfer coefficients of an operating plate-fin 

heat sink, under different fluid flow conditions. They solved 

the IHTP with the help of FLUENT simulation data [30, 31]. 

More specific works have dealt with microchannel heat sinks, 

such as the one of Huang et al., who accurately estimated the

dynamic heat transfer coefficient in a multi-microchannel

evaporator under disturbance. Authors approached the three-

dimensional IHTP using a combined strategy of the 

tridiagonal matrix algorithm, Newton-Raphson, and local 

energy balance. Moreover, Maciejewska and Piasecka 

determined the thermal coefficients involved on a deep 

minichannel vertically oriented and filled with an electronic 

cooling liquid, using the Trefftz method. 

As aforementioned, most works focus on the use of 

gradient-based techniques. Thus, we strive to fill the 

knowledge gap regarding the performance of modern 

optimization techniques for these kind of problems. Hence, 

we use an alternative methodology for solving inverse heat 

transfer problems. As stated, we consider a modern 

optimization algorithm instead of gradient-based techniques. 

To illustrate this methodology, average convective heat 

transfer coefficients were estimated for different scenarios. 

We analyze several noise levels by creating different 

synthetic temperature measurements. To solve the IHTP, we 

follow an approach that uses the least-square error (LSE) 

criterion as the objective function, and the Cuckoo Search 

(CS) algorithm as an optimizer. Noiseless temperature data 

were obtained from solving a forward problem. Such 

problem represents a MCHS designed under certain 

specifications with the EGM criterion, also powered by CS. 

Results show great estimations for signal-to-noise (SNR) 

values above 30 dB. 

This paper starts by describing the heat transfer problems, 

i.e. the thermal management scenario followed by its 

corresponding design, as well as by the forward and inverse 

problems. The employed optimization algorithm, Cuckoo 

Search, is introduced in the next section. Subsequently, the 

procedure carried out is detailed in the Methodology section, 

and results achieved are presented and discussed afterwards.

The manuscript wraps up by summarizing the main 

highlights and remarks. 

1. The Heat Transfer Problem

The steady state heat transfer process of any thermal

mechanism can be effectively approached through its 

equivalent thermal resistance (𝑅 [W/K]). This statement also 

covers a microchannel heat sink structure. Thus: 

�̇� = 𝜃/𝑅, (1) 

where �̇� [W] is the net heat transfer rate entering into the

system, and 𝜃 [ºC] is the finite difference of temperatures 

between the system isothermal boundary (𝑇𝑖  [ºC]) and its

surroundings (𝑇𝑎 [ºC]) [13]. The latter is a measurable

quantity allowing engineers to make decisions or control 

their systems. Specifically, MCHS performance is directly 

related to 𝜃 behavior in microelectronic thermal management 

applications, where electronic components must operate

below a threshold temperature to avoid any failure. Thus, 

finite difference of temperatures between the chip–heat sink 

interface (𝑇𝑖  [ºC]) and the ambient (𝑇𝑎 [ºC]) can be written

as, 

𝜃 = 𝑇𝑖 − 𝑇𝑎 = 𝑄𝑅. (2) 

Moreover, 𝑅 is comprised of several heat transfer 

mechanisms within the MCHS, according to literature. In this 

study, two simple components are employed:  

𝑅 = [2ℎ𝑁𝐿ℎ𝑠(𝑤𝑐 + 𝜂𝑝𝐻𝑐)]
−1

+ [𝜌𝑤𝑓𝐺𝑤𝑓𝑐𝑤𝑓]
−1

, (3) 

where the right hand terms of eq. (3) correspond to 

resistances due to convection inside channels, and to calorific

capacitance of the working fluid, respectively. Hence, it is 

easy to notice that 𝑅 depends on three kinds of parameters:

design specifications, thermophysical properties and 

empirical correlations. The first set mainly consists on 

geometrical parameters, such as 𝑊ℎ𝑠 [m] and 𝐿ℎ𝑠 [m]. They

respectively represent the width and length of the heat sink. 

𝐻𝑐  [m], 𝑊𝑐 = 2𝑤𝑐 [m], 𝑊𝑝 = 2𝑤𝑝 [m], and 𝑁 = (𝑊ℎ𝑠 −

𝑊𝑐)/(𝑊𝑐 + 𝑊𝑝) are the channel height, channel width, wall

width, and number of channels. This group also includes the 

non–geometrical design parameter 𝐺𝑤𝑓  [m3/s], which is the

volume flow rate of the working fluid. The second group 

contains thermophysical properties of the body material of 

the heat sink (ℎ𝑠) and working fluid (𝑤𝑓): density (𝜌 

[kg/m3]), thermal conductivity (𝑘 [W/m⋅K]), and specific

heat capacity (𝑐 [J/kg⋅K]). The last classification of 

parameters corresponds to empirical correlations and related 

expressions, such as the convective heat transfer coefficient
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(ℎ[W/m2⋅K]), and the efficiency (𝜂𝑝). These parameters have 

a commonly accepted form, as: 

ℎ = (
𝑘𝑤𝑓

𝐷ℎ
) 𝑁𝑢, with  𝐷ℎ =

2𝑊𝑐𝐻𝑐

𝑊𝑐 + 𝐻𝑐
,  (4) 

𝜂𝑝 =
tanh(𝑚𝐻𝑐)

𝑚𝐻𝑐
, with  𝑚 = √

2ℎ(𝑤𝑝 + 𝐿ℎ𝑠)

𝑘𝑤𝑝𝐿ℎ𝑠
,  (5) 

where 𝑁𝑢 is the dimensionless Nusselt number, and 𝐷ℎ [m]

is the effective hydraulic diameter of one channel. 

Once design specifications, thermophysical properties 

and correlations are defined, the temperature difference in a 

heat sink application, 𝜃, can be approximated via eq. (2). Let 

�⃗� be a vector containing all parameters required to obtain 𝜃, 

𝜃(�⃗�) ∶ 𝑹𝐷 → 𝑹 since �⃗� ∈ 𝑹𝑫. There are infinite possible 

values for �⃗�, but their selection depends on the practical 

application and engineer expertise. Say �⃗� is formed by two 

parameter vectors, �⃗� = (�⃗�, 𝑧), where �⃗� is the set of known 

parameters from a practical setup specification, e.g. size

constraints, fluid flow pumping power and net heat flux. 

Likewise, 𝑧 is the vector of parameters subject to the expert

knowledge, whose values can enhance or jeopardize the

system performance. As an illustrative example, �⃗� and 𝑧 

could be: 

�⃗� = (𝑊ℎ𝑠, 𝐿ℎ𝑠, 𝐻𝑐𝜌ℎ𝑠, 𝜌𝑤𝑓, 𝑘ℎ𝑠 , 𝑘𝑤𝑓 , 𝑐𝑤𝑓, … )
⊺
 

𝑧 = (𝑤𝑐 , 𝑤𝑝 , 𝐺𝑤𝑓)
⊺
 ,

, 

Nevertheless, it is possible to reduce any uncertainty by 

finding, objectively, the best configuration for 𝑧. Such 

configuration can be reached through several conceptual 

schemes. One example is to use a minimization procedure of 

the equivalent thermal resistance. Fortunately, there exists a

recurrent and powerful methodology for finding these 

parameters, based on the second law of thermodynamics.

This process is based on the Entropy Generation 

Minimization (EGM) criterion. EGM has been employed by 

several authors since 2009 for designing microchannel heat

sinks [5, 13]. They minimize the total entropy generation rate

(�̇�𝑔𝑒𝑛  [W/K]), given by,

�̇�𝑔𝑒𝑛(𝑧) = [(
�̇�2

𝑇𝑎
)

𝑅(�⃗�)

𝑇𝑖(�⃗�)
+ (

𝐺𝑤𝑓

𝑇𝑎
) ∆𝑃(�⃗�) ]

�⃗⃗�

,  (6) 

where 𝑇𝑎 and 𝑇𝑖  are temperatures of the ambient and the chip–

heat sink interface, respectively. They are both related with 𝜃 

as 𝜃 = 𝑇𝑖 − 𝑇𝑎, and thus with �̇� and 𝑅 by eq. (1). Moreover,

∆P [Pa] is the pressure drop perceived by the working fluid 

flowing throughout the system with a volume flow rate of 

𝐺𝑤𝑓 [m3/s], which can be modelled as shown,

∆𝑃 =
𝜌𝑤𝑓

2
𝜁1

2 (𝑓𝑐

𝐿ℎ𝑠

𝐷ℎ
+ 1.79 − 2.32𝜁2 + 0.53𝜁2

2), (7) 

𝜁1 =
𝐺𝑤𝑓

𝑁𝑊𝑐𝐻𝑐
, and    𝜁2 =

𝑊𝑐

𝑊𝑐 + 𝑊𝑝
.  (8) 

In eq. (7), 𝑓𝑐 is the Darcy friction factor for the inner walls of

the channels. For the sake of brevity, more information about

all described concepts and formulae can be found in [13]. 

However, some parameters from the third classification, i.e., 

empirical correlations, are just approximate forms obtained 

for general cases which could be erroneous in several specific 

and suitable applications. Hence, a more accurate form or 

value for these parameters is needed. 

Many studies have dealt with the estimation of unknown 

quantities, which usually comes from the solution of an 

inverse problem. They have used measurements from an 

experimental setup implementing the traditional Least 

Squared Error (LSE) criterion, which consists on minimizing 

𝜀(𝑧) [15], such as 

𝜀(𝑧) = |𝜃𝑚 − 𝜃(�⃗�)|
2

2
,  (9) 

since �⃗�𝑚 [ºC] is the vector of temperature difference 

measurements at the chip–heat sink interface with respect the 

ambient. 𝜃(�⃗�) [ºC] is the vector of values calculated for the 

same temperature difference, using a known functional form 

(or model), a set of known parameters �⃗�, and candidate

values for the unknown parameters 𝑧, with �⃗� = (�⃗�, 𝑧). |⋅|2
2  is 

the ordinary Euclidian two–norm. 

Finally, all the aforementioned about the electronic

thermal management scenario, based on a microchannel heat

sink, can be summarized in three heat transfer problems 

presented as is now described. 

1.1.  Design heat transfer problem 

In a given practical scenario for a microelectronic thermal

management problem (i.e., the conceptual design of a

microchannel heat sink), with a defined set of specifications 

and constraints �⃗�, it is possible to determine a set of 

parameters 𝑧. They optimize the system performance, 

operating in steady state, in the sense of the entropy 

generation. From eq. (6), 

𝑧∗ = argmin𝑧{�̇�𝑔𝑒𝑛(�⃗�)},

s. t.  𝑧𝑙 ≼ 𝑧 ≼ 𝑧𝑢.
(10) 

1.2 Objective of the direct heat transfer problem 

The direct heat transfer problem is laid out with the

objective of calculating the temperature in a chip–heat sink 

interface, for a specific microelectronic heat sinking process. 

Heat power dissipation is assumed to be uniform and 

homogeneous. Other known parameters and constrictions are 

given by �⃗� = (�⃗�, 𝑧). They are evaluated using the 

mathematical model from eq. (2), as  

𝜃(�⃗�) ≜ �̇�𝑅(�⃗�),  (11) 

where �⃗� = (𝑊ℎ𝑠, 𝐿ℎ𝑠 , 𝐻𝑐 , 𝑤𝑐 , 𝑤𝑝 , … )
⊺
 is the vector of all

parameters detailed in eq. (3). 

Some parameters of �⃗� can be determined via a design 

process for a given set of specifications and constraints �⃗�, as

it was mentioned in the design heat transfer problem. 

1.3 Objective of the inverse heat transfer problem 
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In contrast, the inverse heat transfer problem is laid out

with the objective of estimating some parameter values of �⃗� 

which are unrelated to the design specifications �⃗�, say 𝑧 as 

�⃗� = (�⃗�, 𝑧). The selected scenario for this corresponds to a 

practical microchannel heat sink, where at least one

temperature is measurable. This can be achieved by solving 

𝑧∗ = argmin𝑧{𝜀(�⃗�)},

s. t.  𝑧𝑙 ≼ 𝑧 ≼ 𝑧𝑢.
(12) 

where �⃗� and 𝑧 are vectors of known and unknown 

parameters, respectively, since �⃗� = (�⃗�, 𝑧) is the vector of all 

parameters from the direct problem formulation, that is �⃗� =

(𝑊ℎ𝑠 , 𝐿ℎ𝑠, 𝐻𝑐 , 𝑤𝑐 , 𝑤𝑝, … )
⊺
. The set of values of 𝑧 for the

experimental setup can be obtained from a conceptual design, 

or from previous knowledge of the direct problem solution. 

2. Cuckoo Search algorithm

Cuckoo Search (CS) is a modern global optimization 

algorithm. CS has been widely implemented. It was 

formulated by Yang and Deb in 2009, as a bio-inspired 

technique that mimics the brood parasitism behavior of 

certain species of cuckoos in nature [32]. CS can be described 

in few words as a mutation–based swarm–intelligence

algorithm with Lévy flights. It is formally described by using 

the following mathematical definitions, and its overall logic 

is laid out in Pseudocode 1. 

Definition 1. Let 𝔛𝑡 = {�⃗�1
𝑡 , … , �⃗�𝑁

𝑡 } be a finite set of

candidate solutions for any optimization problem in 𝑹𝑫, with

known cost function 𝑓: 𝑹𝑫 → 𝑹. 𝑁 is the number of

candidate solutions, 𝐷 is the number of unknown variables 

and, �⃗�𝑘
𝑡 ∈ 𝑅𝐷 denotes the 𝑘–th candidate solution at the step

t of an iterative procedure, let it be Cuckoo Search algorithm. 

Definition 2. Let 𝔛𝑡+1 represents the finite set of new

candidate solutions which improves the previous set of 

solutions 𝔛𝑡 through two strategies, i.e., Lévy flights and

eggs discovery. Each candidate of 𝔛t+1 suffices 𝑓(𝔛𝑡+1) ≤
𝑓(𝔛𝑡).

Definition 3. Let �⃗�∗
𝑡 ∈ 𝔛𝑡 be the best solution found at the

t–th iteration, determined by �⃗�∗
𝑡 = argmin{𝑓(𝔛𝑡)}.

Definition 4. Strategy 1—Let �⃗�𝑘
𝑡+1 ∈ 𝑹𝑫 be a new

candidate position obtained by 

�⃗�𝑘
𝑡+1 = �⃗�𝑘

𝑡 + 𝛿𝑥𝜆𝐿⨀(�⃗�𝑘
𝑡 − �⃗�∗

𝑡), (13) 

where 𝛿𝑥 is the step size, commonly set as 0.1 for 𝐷 ≤  3 and

0.01 for 𝐷 > 3. 𝜆𝐿 is a vector of i.i.d. symmetric Lévy stable

random numbers, and ⨀ is the Hadamard–Schur product. 

Definition 5. Strategy 2—Let �⃗�𝑘
𝑡+1 ∈ 𝐑𝑫 be a new

candidate position with an associated probability 𝑝𝐷, related

to the chance that a host bird discovers a hidden egg, which 

is determined as 

�⃗�𝑘
𝑡+1 = �⃗�𝑘

𝑡 + �⃗⃗�⨀𝒽(�⃗⃗� − 𝑝𝐷)⨀(�⃗�𝑖
𝑡 − �⃗�𝑗

𝑡), (14) 

where �⃗⃗� ∈ 𝑹𝑫 is a vector of i.i.d. uniform random numbers

between 0 and 1, 𝒽 is a multidimensional form of the 

Heaviside function, and �⃗�𝑖
𝑡 , �⃗�𝑗

𝑡 ∈ 𝔛𝑡 with 𝑖 ≠ 𝑗, where 𝑖 and 𝑗

are selected randomly. 

Pseudocode 1. 

Cuckoo Search (CS) algorithm  

INPUT: 𝑓: 𝑹𝑫 → 𝑹, 𝑁 > 2, 𝛿𝑥, 𝑝𝐷 ∈ [0,1], and stopping criteria: 𝑀 ≫ 1, 

and others (if they exist) 

OUTPUT: 𝑥∗
𝑡 from Definition 3. 

STEP 1: Make 𝑡 ← 0 and initialize 𝔛0 using Definition 1 

STEP 2: Find 𝑥∗
0 using Definition 3 

WHILE (𝑡 ≤ 𝑀) AND (any stopping criteria is not reached) DO 

STEP 3: Update 𝔛𝑡+1 according to Definition 2 using Definition 4 

STEP 4: Update 𝔛𝑡+1 according to Definition 2 using Definition 5 

STEP 5: Find 𝑥∗
𝑡+1 using Definition 3, and make 𝑡 ← 𝑡 + 1 

END WHILE 

3. Methodology

All experiments were performed in a numerical 

computing platform, running on an iMac model 15.1, with an 

Intel Core i5 CPU at 1.6–2.7 GHz, 8 GB RAM, and macOS

Sierra v10.12.1. Each case of study was repeated a hundred 

times for statistical purposes. As previously stated, we used 

the Cuckoo Search (CS) algorithm as an optimizer. 

Parameters for CS were tuned following [33]. 

This work was carried out in two stages, which are 

graphically presented in Fig. 1. System specifications are laid 

out in Table 1. Moreover, two materials for the heat sink 

body, and two fluids for the coolant were considered, as

Table 2 shows. In the first case we used Silicon (Si) and High 

Thermal Conductive Graphite (HTCG). In the second case, 

we used air and ammonia gas (NH3). Fig. 1a shows the 

solution of the forward problem, equation (11), under several

design conditions and specifications (�⃗�), and with multiple 

target net heat power (�̇� [W]) values. Design parameters (𝑧) 

were obtained by minimising the entropy generation rate of 

the entire system, i.e., by solving eq. (6) with the Cuckoo 

Search algorithm presented in Pseudocode 1. Parameters ℎ 

and 𝑓𝑐 from eq. (4) and (7), respectively, were calculated

using equations (15) – (17), where 𝑅𝑒 is the Reynolds 

number [13]. 

ℎ = (
𝑘𝑤𝑓

𝐷ℎ

) [2.253 + 8.164 (1 +
𝑊𝑐

𝐻𝑐

)
−1.5

], (15) 

𝑓𝑐 = 𝑅𝑒−1(𝜁3
1.14 + 𝜁4

2)0.5, (16) 

𝜁3 = 7.6953𝑅𝑒
𝐷ℎ

𝐿ℎ𝑠

, 𝜁4 = 24.34 − 9.82
𝐷ℎ

𝑊𝑐 + 𝐻𝑐

, (17) 
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(a)                                                    (b) 

Figure 1. (a) Direct and (b) Inverse Heat Transfer Problems. 

Table 1. 

Values assumed for design parameters of the system. 

Design specifications, �⃗� Design variables, 𝑧 

Parameter Value Parameter Value 

𝐻𝑐 1.7 mm 𝐺𝑤𝑓 (0, 0.01] m3/s 

𝐿ℎ𝑠, 𝑊ℎ𝑠 51 mm 𝛼 = 𝑊𝑐/𝐻𝑐 (0, 1]  

𝑇𝑎 300 K  𝛽 = 𝑊𝑐/𝑊𝑝 [1, 100] 

�̇� 25, 30, … , 150 W 

Table 2. 

Thermophysical property values for heat sink materials and working fluids: 
High Thermal Conductive Graphite (HTCG), Silicon (Si), Air, and 

Ammonia Gas (NH3).  

Property HTCG Si Air NH3 

𝜌 [kg/m3] 1000 2330 1.1614 0.7 

𝑘 [W/m⋅K] 1900 148 0.0261 0.0270 

𝑐 [J/kg⋅K] 742 703 1007 2158 

𝜈 × 10−5 [m2/s] - - 1.58 1.47 

4. Results and discussion

Fig. 2 shows the optimal values of design parameters 

𝐺𝑤𝑓
∗ , α∗ and β∗. This means that �̇�𝑔𝑒𝑛,𝑚𝑖𝑛 =

�̇�𝑔𝑒𝑛(𝛼∗, 𝛽∗, 𝐺𝑤𝑓
∗ ). Or, in other words, that such parameters

minimize entropy production of the microchannel heat sink. 

Each one of the plotted markers correspond to an optimal 

design for all combinations of build materials, such as silicon 

(Si) and High Thermal Conductive Graphite, and working 

fluids like Air and Ammonia gas (NH3). 

Likewise, Fig. 3 presents the minimal entropy generation 

rate (�̇�𝑔𝑒𝑛,𝑚𝑖𝑛) for each one of the obtained designs. Values

are plotted for different electronic power dissipation (�̇�)

levels. As observed, the entropy generation rate increases (as 

expected) as the net heat power is augmented. There is also a 

noticeable difference when choosing a different material (i.e.

Si or HTCG) to build the MCHS. This effect is also evident 

when choosing a different fluid (i.e., Air or NH3) to act as a 

coolant. The combination HTCG-NH3 laid out best results in 

terms of minimal entropy production, overcoming the

traditional combination of Si-Air, which corroborates 

reported results in the literature. Moreover, Fig. 3 evidences 

the influence of implementing a certain material or fluid. For 

high power applications, i.e., beyond 60 W, this effect

becomes more evident.  

This influence is strongly reflected on the behavior of the 

optimal equivalent thermal resistance (𝑅∗). Figure 4 shows

data for each fluid. In this figure, 𝑅∗ decreases when �̇�
increases to avoid an excessive rise of temperature inside the

electronic package, and reducing the overall effects due to 

irreversibilities in the MCHS. 

Figure 2. Optimal values reached for the design variables 𝐺𝑤𝑓
∗  [m3/s], 𝛼∗ and 

𝛽∗ varying the net heat power dissipation (�̇� [W]) from an electronic device. 

Figure 3. Minimal entropy generation rate (�̇�𝑔𝑒𝑛,𝑚𝑖𝑛 [W/K]) varying the net 

heat power dissipation (�̇� [W]) from an electronic device. 

Furthermore, optimal difference temperature values of 𝜃∗ 

can be calculated from the 𝑅∗ data (Fig. 4), using eq. (2).

These values are presented in Fig. 5. Such information 

complements the minimal entropy production reached from 

the design procedure. Besides, it is a practical and measurable

quantity, which describes the performance of the thermal 

management system. 
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Figure 4. Optimal values of equivalent thermal resistance (𝑅∗ [K/W]) 

varying the net heat power dissipation (�̇� [W]) from an electronic device. 

Figure 5. Optimal values of temperature finite difference (𝜃∗ [ºC]) varying 

the net heat power dissipation (�̇� [W]) from an electronic device. 

Fig. 6 displays results from the forward problem, in terms 

of θ, contaminated with additive white Gaussian noise

(AWGN), to emulate a measured dataset. We employed 

several values of signal–to–noise ratio (𝑆𝑁𝑅 [dB]) to analyze 

the performance of our approach under different scenarios. 

The measured temperature difference is identified as 𝜃𝑚.

Fig. 7 presents results from the inverse heat transfer 

problem, where 𝜃𝑒 is the estimated temperature difference.

Furthermore, estimated convection heat transfer coefficients 

are shown in Fig. 8. Striving to complement our data, Table 

3 summarizes the root-mean-square error (RMSE) for each 

combination of material and fluid, and for all noise levels. 

Figure 6. Measured temperature difference (𝜃𝑚 [ºC]) values, varying the net 

heat power dissipation (�̇� [W]), with several values of noise (𝑆𝑁𝑅 [dB]) 

Figure 7. Estimated temperature difference (𝜃𝑒 [ºC]) values, varying the net 

heat power dissipation (�̇� [W]), with several values of noise (𝑆𝑁𝑅 [dB]) 

Figure 8. Estimated film heat transfer coefficient (ℎ𝑒 [W/m2⋅K]) values, 

varying the net heat power dissipation (�̇� [W]), with several values of noise 

(𝑆𝑁𝑅 [dB]) 

Table 3. 

Root-mean-square error (RMSE) of estimated values for ℎ, varying the net 

heat power �̇�, with different materials and working fluids.

RMSE 

𝑆𝑁𝑅 [dB] Si-Air Si-NH3 HTCG-Air HTCG-NH3

Noiseless 0.00 0.00 0.00 0.00 

40 2.04 1.64 0.27 0.34 

30 3.17 7.52 0.70 0.99 

20 8.55 72.22 5.79 4.39 

10 12.48 27.54 5.33 10.00 

5 19.28 33.78 6.22 10.70 

5. Conclusions

This article proposed an alternative strategy for 

estimating convection heat transfer coefficients in electronic 

thermal management applications. Such a strategy solves the 

associated inverse heat transfer problem. In the present case, 

we tackled this inverse problem via the Cuckoo Search (CS)

algorithm, by minimizing a cost function based on the least-

square error. This methodology was illustrated with a 

microchannel heat sink with several design conditions. 

Average convective heat transfer coefficients were estimated 

from several synthetical temperature measurements, with 

different noise levels. Reference temperature data were 

obtained by solving the forward problem, based on the 
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equivalent thermal resistance model of a previously designed 

microchannel. Finally, these designs were achieved through 

the entropy generation minimization criterion, also powered 

by CS, employing several specifications (material, working 

fluid and �̇�). Results agreed remarkably well for signal-to-

noise ratios above 30 dB, which can be reached with any 

modern temperature sensors. 
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1 Introduction 

In this work potential usage and impact of various algorithms of metaheuristic specification for 

portfolio optimization are studied. In particular, we focus on problems, in which different risk 

and dependency measures are involved and their non-parametric estimation is required. For this 

purposes, novel approach based on fuzzy transform approach is utilized. Particular approaches 

are evaluated using real data from various markets. 
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1 Introduction

Graphs are often used to model relationships between elements. In some situations, it is necessary
to distinguish the different types of connections between the vertices of the graphs [1–4]. Such
situations can be modeled by multicolored graphs. In this context, an edge-colored graph is a graph
G = (V,E), with a set of labels or colors L and a color function fc : L→ E which assigns a color
from L to each edge of E.

A rainbow cycle [5] is a cycle with all its edges with different colors. Single vertices are
considered trivial rainbow cycles. A rainbow cycle cover for the graph G is defined as a disjoint
collection of rainbow cycles, which means that each vertex can only belong to exactly one rainbow
cycle. The Rainbow Cycle Cover (RCC) problem consists of finding the minimum number of disjoint
rainbow cycles covering G.

Figure 1 shows an example of an edge-colored graph with 5 possible colors (labels) for the edges.
A feasible solution for the RCC problem on this graph is shown in Figure 2. In this case there are
two non-trivial rainbow cycles and one trivial rainbow cycle.

Fig. 1: A multicolored graph
Fig. 2: A rainbow cycle cover of the graph with
two non-trivial rainbow cycles and one trivial
rainbow cycle.

The RCC problem has been proved to be NP-hard in [6]. In [7] it is shown that it is still NP-hard
even if the graph does not have cycles of size 3. Recently, an integer mathematical formulation
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was proposed for this problem and tested for 3 hours in instances with up to 50 vertices. The
experiments showed that this problem increases its complexity considerably as the number of
vertices increases [8].

In the last years, different strategies have been developed that combine exact and heuristics
algorithms. In this context, matheuristics [9–11] have attracted the attention of the scientific com-
munity. Matheuristics may use some features of the mathematical models developed for the prob-
lems to customize heuristics to solve these problems or use heuristics to improve time effectiveness
of mathematical programming techniques.

In this work, we develop a matheuristic based on the Iterated Local Search metaheuristic for
the RCC problem, in order to quickly obtain solutions with good quality. The remainder of this
paper is organized as follows. Section 2 presents the mathematical formulation used for the RCC
problem. In Section 3, the algorithms that compose the matheuristic are presented. In Section 4,
experimental results obtained with the instances proposed in [12] and [13] are presented. Finally,
in Section 5 the conclusions of this paper are discussed.

2 Mathematical Formulation

Given an undirected graph G = (V,E), where V denotes the set of vertices (|V | = n) and E the
set of edges, let δ(v) be the set of edges incident to a vertex v in G, where d(v) = |δ(v)| denotes
the degree of vertex v. The set El = {e ∈ E | fc(e) = l} is the set of edges associated with a
color l ∈ L. Finally, R denotes the family of all non-trivial rainbow cycles of the graph G, where a
non-trivial rainbow cycle H ∈ R is defined by its edge set, i.e., H ⊆ E.

A formulation for the RCC problem was used in [8]. This formulation uses a set of indices
I = {0, . . . , c− 1} that represents possible non-trivial cycles in a solution. Note that if this value is
unknown, then it can be set to c = b |V |3 c, that occurs when all rainbow cycles have the minimum
length (3 edges).The formulation uses the binaries variables ycv (set to 1, if and only if the vertex
v belongs to the non-trivial cycle c) and xce (set to 1, if and only if the edge e belongs to the
non-trivial cycle c). The formulation is shown below:

min
∑

c∈I
γc +

∑

v∈V

(
1−

∑

c∈I
ycv

)
(1)

subject to:
∑

v∈V
ycv ≤ |L|γc, c ∈ I (2)

∑

v∈V
ycv ≥ 3γc, c ∈ I (3)

c−1∑

c=0

ycv ≤ 1, v ∈ V (4)

∑

e∈δ(v)
xce = 2ycv, v ∈ V, c ∈ I (5)

∑

e∈H
xce + xcf ≤ |H|, H ∈ R, f ∈ E \H, c ∈ I (6)

∑

e∈El

xce ≤ 1, l ∈ L, c ∈ I (7)

γc+1 ≤ γc, c ∈ {0, . . . , c− 2} (8)
c∑

c=v+1

ycv = 0, v ∈ V : v < c (9)

ycv ≤
∑

w<v

yc−1w , v ∈ V \ {0}, c ∈ {2, . . . , c− 1} (10)

where δ(S) = {{u, v} ∈ E | u ∈ S and v ∈ V \S}.
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The objective function (1) aims to minimize the number of rainbow cycles. The first part
minimizes the sum of the number of non-trivial cycles γc. The second part tries to force the
vertices to belong to a cycle, giving a sufficient large weight M to each trivial cycle (i.e. isolated
vertex).

Constraints (2) express that the number of vertices belonging to a non-trivial cycle cannot be
greater than the number of colors. Constraints (3) ensure that a non-trivial cycle must have at
least three vertices. Constraints (4) guarantee that a vertex will belong to at most one non-trivial
cycle. Constraints (5) ensure that a vertex belonging to a non-trivial cycle must have exactly two
adjacent edges. Moreover, constraints (6) prevent two different non-trivial cycles to use the same
variable γc. Constraints (7) impose that in each non-trivial cycle there may be at most one edge
with color l.

Constraints (8)-(10) are not necessary for the model, but their inclusion helps to eliminate
symmetric solutions. Constraints (8) ensure that a variable for the non-trivial cycle γc is not used
if the variable γc−1 is not used. Constraints (9) indicate that a vertex v, with index lower than c,
cannot belong to a non-trivial cycle with index c, such that c > v. Finally constraints (10) impose
that a vertex v can only belong to a non-trivial cycle with index c if at least one vertex w, where
w < v, belongs to the non-trivial cycle with index c− 1.

3 Matheuristic for the RCC problem

Algorithm 1 shows the pseudocode for the ILS heuristic [14] developed to quickly obtain good
quality solutions for the RCC problem. First, an initial solution is generated for the problem (line
1) and a local search is applied to this solution to improve the quality of the constructed solution
(line 2). Between lines 3 and 7, iterations are performed until a stopping criterion is reached. In
each iteration, a perturbation in the current solution is done trying to escape of a local optimum
and then a local search is performed. In line 6, a criterion is used to decide if the current solution
will be replaced by the new generated solution. In our implementation, the best solution found
is updated every time a better solution is obtained in the local search. Moreover, we use as stop
condition that a maximum of 10 iterations be performed, as we want to quickly get a solution.
Algorithm 1: Iterated Local Search
Input: The graph G.
Output: A rainbow cycle cover R.

1 x0 ← Initial_Solution(G)
2 x∗ ← Local_Search(G)
3 repeat
4 x′ ← Perturbation(x∗)
5 x∗

′ ← Local_Search(x′)
6 x∗ ← AcceptanceCriterion(x∗, x∗

′
, history)

7 until termination condition met
8 return x∗

3.1 Initial Solution

The mathematical formulation for the RCC problem works well for small graphs, but as the size
of the graphs increases, the computational time to solve the problem increases very fast. One of
the causes is the large number of variables and restrictions of this model.

Let ILP (q)(G) be the procedure that solves the formulation for the RCC in the graph G, re-
stricting to q the number of non-trivial cycles. Algorithm 2 shows the pseudocode used to construct
an initial solution for the RCC problem.

Basically, Algorithm 2 solves the mathematical formulation by restricting the maximum num-
ber of non-trivial cycles to two. Each non-trivial cycle found will be part of the solution under
construction. Then, the algorithm solves again the restricted mathematical formulation for the
induced graph on the set of isolated vertices. This process is repeated until the solution for the
induced graph does not contain any non-trivial cycle. In that case, all the vertices will be added
to the solution as trivial cycles (line 11). When fixing the maximum number of non-trivial cycles
for the formulation, the number of the variables and the restrictions are considerably reduced.
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Algorithm 2: Initial Solution
Input: The graph G.
Output: A rainbow cycle cover R.

1 R← ∅
2 R′ ← ILP (2)(G)
3 N ← non-trivial cycles in R′

4 T ← trivial cycles in R′

5 while N 6= ∅ do
6 R← R ∪N
7 H ← induced graph by T
8 R′ ← ILP (2)(H)
9 N ← non-trivial cycles in R′

10 T ← trivial cycles in R′

11 R← R ∪ T
12 return R

3.2 Local Search

Once an initial solution is obtained, a local search is applied (Algorithm 3). A neighbor solution of a
current solution is obtained as follow. First, any two non-trivial cycles are removed and their vertices
are added to the set of isolated vertices. The other non-trivial cycles are fixed. Then, ILP (q)(G) is
applied over the set of isolated vertices limiting the maximum number of non-trivial cycles to three.
Then, the neighbor is obtained joining the solution obtained by solving the formulation ILP (3)

over the set of isolated vertices with the previous fixed non-trivial cycles.
Instead of analyzing all the possible neighbors obtained by removing two non-trivial cycles,

we decided to analyze NN neighbors for a given solution. We set NN as two times the amount
of non-trivial cycles. The reason is to limit to a linear exploration of the search space related to
the number of non-trivial cycles and not to a quadratic one, as it would be if exploring all the
neighbors obtained by removing each two non-trivial cycles.

Moreover, we explored this neighborhood using the first improvement strategy that stops the
local search as soon as the first neighbor that improves the current solution is found.

Algorithm 3: Local_Search
Input: A rainbow cycle cover R.
Output: A rainbow cycle cover R∗.

1 nN ← 0
2 R∗ ← R
3 while nN < NN do
4 nN ← nN + 1
5 N ← non-trivial cycles in R∗

6 T ← trivial cycles in R∗

7 C,C′ ← any two cycles in N
8 N ← N \ {C ∪ C′}
9 T ′ ← all vertices in the cycles C and C′

10 H ← induced graph by T ∪ T ′
11 R′ ← ILP (3)(H)
12 if |N |+ |R′| < |R∗| then
13 R∗ ← N ∪R′
14 nN ← 0

15 return R∗
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3.3 Perturbation

The goal of the perturbation in the ILS metaheuristics is to escape from local optima and to
introduce diversity in the search space. To achieve this, α|N | (α ∈ (0, 1]) non-trivial cycles of the
set of non-trivial cycles of the solution are removed. Then, the solution is reconstructed in a similar
way to the one performed in Algorithm 2. The main difference is that when the ILP (2) procedure
is executed the first time, restrictions are added to avoid forming the removed cycles.

Algorithm 4: Perturbation
Input: A rainbow cycle cover R.
Output: A perturbed rainbow cycle cover R∗.

1 N ← non-trivial cycles in R
2 LC ← list formed by α|N | cycles in N
3 LR← list of restrictions to avoid forming cycles in LC.
4 N ← N \ LC
5 T ← trivial cycles in R and the vertices in LC
6 R← ∅
7 flag ← 0
8 while N 6= ∅ do
9 R← R ∪N

10 H ← induced graph by T
11 if flag = 0 then
12 R′ ← ILP (2)(H,LR)
13 flag ← 1

14 else
15 R′ ← ILP (2)(H)

16 N ← non-trivial cycles in R′

17 T ← trivial cycles in R′

18 R← R ∪ T
19 return R

4 Experimental analysis

In this section, the results obtained by the proposed matheuristic are presented. We analyze the
same set of instances used in [12] and some of the instances used in [13]. These instances correspond
to graphs with number of vertices ranging from 20 to 100, and densities varying between 0.1, 0.2
and 0.3. The number of colors is always smaller than the number of vertices and varies between
3 and 18. The tests were developed on an Intel (R) Core i5-4460S CPU @ 2.90GHz, with 6 Mb
cache and 8 Gb of RAM using the operating system Fedora 22 and all methods were programmed
in C ++ language using the gcc compiler.

The IBM ILOG CPLEX 12.6 was used to solve the problem using the ILP formulation with a
single thread of execution and 10800 seconds as time limit. All other CPLEX parameters were left
to their default values.

As the graphs of these instances have small dimensions, we decided to use α = 1
3 in the

perturbation procedure. The IBM ILOG CPLEX 12.6 was used to solve the model ILP (q)with a
single thread of execution and 30 seconds as time limit for graphs with 50 vertices or less and 60
seconds for graphs with more than 50 vertices.

4.1 Summary of computational results

The computational results are summarized in Table 1, where each line presents average statistics
over five instances. The first four columns report the group identification (ID), number of vertices
(n), number of edges (m) and number of colors (l) respectively. Columns 5 and 6 present, respec-
tively, the average number of rainbow cycles found and average execution time in seconds obtained
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Table 1: Experiments results for ILS(ILP ).
ID n m l ILP ILP-time ILS(ILP ) ILS(ILP )-time gap

1 20 39 3 18.0 0.00 18.0 0.12 0.0
2 6 13.6 0.01 13.6 1.19 0.0
3 11 10.6 0.03 10.6 1.66 0.0
4 20 58 3 14.8 0.14 14.8 1.25 0.0
5 6 9.8 0.23 9.8 4.37 0.0
6 12 6.8 0.24 6.8 8.85 0.0
7 20 77 4 10.0 0.41 10.0 1.79 0.0
8 7 6.6 0.53 6.6 6.81 0.0
9 13 4.6 0.36 4.6 9.30 0.0
10 30 74 4 21.8 0.31 21.8 1.44 0.0
11 7 19.4 0.45 19.4 9.87 0.0
12 13 15.4 0.32 15.4 9.83 0.0
13 30 117 4 18.2 4.43 18.2 2.66 0.0
14 7 13.0 4.09 13.0 8.36 0.0
15 14 9.6 2.57 9.6 29.02 0.0
16 30 161 4 15.2 94.43 15.4 3.94 0.2
17 8 8.0 64.15 8.4 13.96 0.4
18 15 5.4 8.67 5.4 55.04 0.0
19 40 118 4 30.6 1.31 30.6 2.79 0.0
20 7 24.8 2.77 24.8 9.32 0.0
21 14 20.4 1.53 20.4 12.58 0.0
22 40 196 4 25.0 83.04 25.2 5.09 0.2
23 8 15.8 1717.42 15.8 15.41 0.0
24 16 11.0 23.78 11.0 41.63 0.0
25 40 274 5 14.6 1322.37 15.0 7.44 0.4
26 9 8.4 2388.52 9.4 22.59 1.0
27 17 5.2 561.52 5.6 55.63 0.4
28 50 173 4 35.8 35.80 35.8 3.15 0.0
29 8 30.2 60.29 30.2 22.59 0.0
30 15 23.0 45.75 23.0 33.53 0.0
31 50 295 5 25.2 825.95 26.0 8.72 0.8
32 9 18.2 505.61 19.0 24.32 0.8
33 17 12.4 938.91 12.6 50.65 0.2
34 50 418 5 19.6 7503.57 20.4 11.42 0.8
35 9 12.2 10306.44 13.4 25.96 1.2
36 18 6.4 2931.14 6.6 91.83 0.2
37 100 595 5 69.4 ... 69.0 32.85 -0.4
38 10 56.4 ... 54.0 151.77 -2.4
39 19 46.2 ... 46.0 267.82 -0.2
40 100 1090 6 46.4 ... 43.8 116.26 -2.6
41 11 36.6 ... 32.6 335.23 -4.0
42 21 34.0 ... 23.4 312.22 -10.6
43 100 1585 6 44.4 ... 33.6 92.47 -10.8
44 11 33.6 ... 20.8 445.28 -12.8
45 21 30.0 ... 10.8 463.62 -19.2
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by solving the problem using the mathematical formulation ILP presented in Section 2. Columns
7 and 8 present the same information obtained using the matheuristic ILS(ILP ). The last column
shows the gap, calculated as:

gap =
ILP − ILS(ILP )

ILP

When the matheuristic ILS(ILP ) obtains a better result than the exact method ILP , values are
highlighted in boldface.

For graphs with 20 and 30 vertices, the branch-and-cut used few seconds to obtain the exact
solution. In these graphs, the matheuristic ILS(ILP ) has spent more time and obtained the optimal
values for all groups, except for the groups with id = 16 and id = 17. For graphs with 40 and 50
vertices, the matheuristic presents a very small gap related to the exact method and a maximum
average time of 91.83 seconds (reached in the group with id = 36). The proposed method is quite
effective in groups of graphs with 100 vertices. In these groups, the branch-and-cut fails to find the
optimal values for all instances in a time limit of 3 hours (10800 seconds) of execution, and the
proposed matheuristic got much better results in a maximum average time of 463.62 seconds.

5 Conclusions

In this work, a based ILS matheuristic was proposed for the Rainbow Cycle Cover problem. The
developed method uses the restricted model to execute the different stages. According to the results,
the matheuristic obtains very precise values for instances up to 50 vertices. Moreover, for graphs
with 100 vertices, the performance of the matheuristic was superior to that of the branch-and-cut
in terms of time and quality of the results.
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1 Introduction 

Metaheuristics are widely used methods for solving complex optimization problems of continuous 

or combinatorial nature. Some population-based methods conceived specifically for solving continuous 

optimization problems have been adapted and discretized [1]. They have therefore the ability to solve a 

wider variety of problems (including binary and discrete). The Particle Swarm Optimization algorithm 

(PSO) is one of those continuous methods that have been adapted over the years by the use of discretization 

techniques to solve problems with integer variables [1]. 

The Multiple Sequence Alignment (MSA) is an NP-hard [2] optimization problem of bioinformatics. 

The goal is to get an alignment of biological sequences which gets the highest resemblance score. This is 

done by adding or removing gaps in the chosen sequences and by evaluating the alignment according to the 

fitness function using the PAM250 or BLOSUM62 matrix. The best location of these gaps needs to be found 

in order to get the best result. It has an increasing difficulty the more sequences are used and the larger they 

are. The PSO is one of the methods that have been found to be quite efficient in solving MSA related 

problems [3]. Even if this metaheuristic has been enhanced over the years, it has however demonstrated 

premature convergence and difficulties in solving high dimensional problems [3, 4]. The goal of this paper is 

to help enhance the results provided by PSO algorithms on high-dimensional discrete problems like the 

MSA. A discrete hybrid PSO method based on the Comprehensive Learning PSO (CLPSO) [5] and the 

Cooperative Learning PSO (CoLPSO) [4] is proposed in this paper and will be compared to other PSO 

methods used to solve the MSA. 

2 Related Works on the PSO 

The PSO [6] is an evolutionary algorithm where a population improves with the help of all 

individuals on each generation. It replicates the behavior of birds in a flock or fish in a school as they are 

looking for food. It uses cooperation inside the swarm (flock, school) so that every particle (bird, fish) can 

improve with the aid of the rest of the swarm. When a particle is looking for a good solution (food source), it 

exchanges information with the swarm on the solutions observed so that all particles can potentially help 

each other to reach an optimum. A particle 𝑖 in generation 𝑡 evolves in a swarm by updating its velocity 𝑣𝑖
𝑡

using Equation 1, where numbers 𝑟1 and 𝑟2 are randomly generated between 0 and 1. A particle knows its

best position visited so far 𝑝𝑖 and the best global position of the swarm 𝑔. All components of a particle are

pondered according to its inertia weight 𝑤 and two coefficients, 𝑐1 and 𝑐2. The particle is then updated using

its current position 𝑥𝑖
𝑡 and the updated velocity calculated with Equation 2.

𝑣𝑖
𝑡+1 = 𝑤 ∙  𝑣𝑖

𝑡 + 𝑐1 ∙  𝑟 1 ∙  (𝑝𝑖 − 𝑥𝑖
𝑡) +  𝑐2  ∙  𝑟 2 ∙  (𝑔 − 𝑥𝑖

𝑡) (1) 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (2) 
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The PSO algorithm evolved through the years. Variants of this metaheuristic have been proposed to 

improve the results obtained on different sets of problems. The CLPSO is a PSO variant which is efficient in 

getting the particles out of local optima when optimizing continuous multimodal functions [5]. It adds a 

comprehensive learning process at the beginning of the algorithm which is triggered when solutions stop 

improving for a fixed number of generations. It also modifies Equation 1 from the PSO by removing the 

global component of the formulation and replacing it with Equation 3. The CoLPSO is a PSO variant 

developed to help optimize high scale continuous optimization problems [4]. Considering that the 

performance of the PSO declines the more dimension is added to the problem, this variant gets around this 

weakness by separately optimizing each dimension of the standard PSO algorithm. The loop iterating the 

particles and the one iterating the dimensions are swapped during implementation. It is conceived so that the 

swarm is comprised of as many sub-swarms as there are dimensions in the problem. Each of these sub-

swarms act on its own and is made of many one-dimensional particles. Communications are made between

swarms once every generation to communicate best solutions so far and to build the global solution. 

𝑣𝑖
𝑡+1 = 𝑤 ∙  𝑣𝑖

𝑡 + 𝑐1 ∙  𝑟 1 ∙  (𝑝𝑖 − 𝑥𝑖
𝑡) (3) 

Maitra and Chatterjee [7] proposed an hybrid named HCoCLPSO made from the CLPSO and the 

CoLPSO. This hybrid combines the comprehensive learning process from the CLPSO and the sub-swarms 

system made of one-dimensional particles from the CoLPSO. The HCoCLPSO has been applied on the 

image segmentation problem using multilevel thresholding and gets good results on high-dimensional 

continuous optimization problems. This paper uses a discretized version of this hybrid to solve the MSA. 

3 Proposed methodology 

Some PSO methods have been used to solve the MSA. In most cases, an efficient way to do this is to 

fill the particles with gaps positions from the sequences that are needed to align them. Considering that a 

solution to common alignment problems contains from 20% [8] to 40% [9] gaps, it is possible to deduce the 

maximum number of gaps that can be added to an entire alignment. This number determines the dimension 

𝐷 of a particle. The codification of a solution used in this paper is similar to Moustafa and al. [3]. In their 

work, a position is represented by a single vector with the coordinates of every gap in an alignment. An 

additional component is added to each particle indicating how many gaps are needed in each sequence to fill 

the maximum length of the alignment. In this paper, the maximum length includes the extended 20%. The 

goal of this PSO in solving the MSA is to move the gaps to different locations in the alignment in order to 

find the highest score from the Sum of Pair (SOP) function. The SOP is used to increase the similarity match 

between every two sequences in an alignment. For an aligned dataset of 𝑚 sequences, the score is calculated

for every two sequences 𝑆𝑎 and 𝑆𝑏 in a position 𝑥𝑖
𝑡 of a particle 𝑖 as shown in Equation 4. In this work, the

pairwise alignments are evaluated according to the scoring matrix PAM250. If two characters are similar, a 

positive score is added to the total fitness of the alignment. If there is a mismatch or a character is aligned 

with a gap, a penalty is subtracted as a negative score. 

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑠𝑐𝑜𝑟𝑒 (𝑆𝑎(𝑥𝑖,𝑑
𝑡 ), 𝑆𝑏(𝑥𝑖,𝑑

𝑡 ))𝐷
𝑑=1 (4) 

We first discretize the HCoCLPSO algorithm with two different techniques. These two techniques 

have been chosen for their eligibility to be used to solve the MSA and their good performances. The first 

technique keeps the PSO formulation for continuous optimization and adds a transformation process to a 

particle’s position before it is evaluated by the fitness function [10]. These processes are called Forward 

transformation (Equation 5) and Backward transformation (Equation 6). They allow a position to convert its 

real-size values to an integer format and vice-versa. Each converted value represents the location of a gap in

a sequence. The factor ℎ in these equations has been established to 100 by Cuevas and al.  

𝑥𝑖
′ = −1 +

𝑥𝑖ℎ5

103−1
(5) 

𝑖𝑛𝑡[𝑥𝑖
′] =

(1+𝑥𝑖
′)(103−1)

5ℎ
 (6)

The second technique is the one used by Moustafa and al. [3]. It defines each number contained in a 

position of the PSO as integers representing the locations of all gaps in an alignment. The velocity is still 
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defined as real values as they represent a displacement vector applied to the position of a particle. The values 

contained in the new velocity 𝑣𝑖
𝑡+1 calculated in Equation 1 are then rounded before being added to a

particle’s position in Equation 2. In both techniques, the fitness function takes in consideration the 

possibility that gaps get aligned together, thus producing an alignment with an empty column that must not 

penalize the global alignment score. 

The proposed methods is tested on some Balibase benchmarks of different lengths [11]. The score 

obtained with SOP is compared with two other methods from the literature: FTLPSO [3] and TLPSO-MSA 

[12]. Both of these methods compare themselves with well-known MSA tools such as CLUSTAL Omega,

CLUSTAL W2, TCOFFEE, KALIGN and DIALIGN-PFAM. 

4 Conclusion 

In this extended abstract, the main concepts of solving the MSA with PSO have been highlighted. 

Two PSO variants are presented (CLPSO and CoLPSO) along with a hybrid version made of these two. 

Considering that the MSA is a discrete problem, two ways to discretize the PSO are presented. The 

experimental process is approached in order to compare the experimental results with methods from the 

literature (FTLPSO and TLPSO-MSA). The purpose of this contribution is to enhance the application of 

PSO and other population-based methods on a wider variety of problems by using variants and discretization 

techniques. It also aims at improving the PSO performances on discrete and high-scale optimization 

problems such as the MSA. 
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Abstract. A nature-inspired context-aware service platform in IoT or ambient computing environments
is presented. Context-aware services are required to adapt themselves to environmental changes. We
have developed adaptation mechanisms that utilize gravity and repulsive forces between users and ser-
vices. Our system is constructed as a non-centralized distributed service platform for executing context-
aware services and managing location sensing systems. It can dynamically deploy software for defining
services at computers in accordance with contexts, e.g., the locations of users in the real world. We
evaluated the system using real applications with real users in a museum.

1 Introduction

Our final objective is to construct a general-purpose infrastructure for providing numerous users with
context-aware services in large-scale public spaces, e.g., city-wide spaces. For example, city-wide com-
puting environments consist of numerous computing devices and provide a variety of services to diverse
users, some of them may behave unexpectedly. THe infrastructure also need to be scalable and robust,
even when it consists of numerous devices that may occasionally be inactive. Like large-scale distributed
systems, the scale and complexity of such a context-aware system is beyond our ability to manage using
conventional approaches such as centralized or top-down approaches. Nature-inspired approaches enable us
to manage large-scale context-aware service infrastructures in a non-centralized and peer-to-peer manner.

This paper introduces a nature-inspired approach for providing context-aware services. The approach
is built on two metaphors from nature: gravitational and repulsive forces between software for defining
services and target entities, including people or spaces that the services are provided for in the real world
(Fig. 1). The former deploys software for defining services at computers nearby the targets and executing
them there. It is used as a relocation between users and services. The latter prevents software for defining
services from being at computers nearby the locations of the targets. It is used as a relocation technique
between similar services. Some of the metaphors in the approach were discussed in our previous paper [8].
In this paper, we address an application of the metaphors to a context-aware system in the real world.

The approach is constructed as a general-purpose platform for context-aware services combining the
two metaphors. To ensure independence from the underlying location systems, the platform introduces
virtual counterparts for the target entities and spaces and the two metaphors represent the relationships
between software for defining services and virtual counterparts corresponding to their targets. This paper
presents the design and implementation of the platform and our evaluation of our nature-inspired approach
for context-aware services through a visitor guide in a real museum as a case study.

In Section 2 of this paper briefly describes our nature-inspired approach and its requirements. Section
3 describes the design and implementation of the approach and Section 4 presents our initial experiences
with the approach. Section 5 surveys related work. We conclude in Section 6 with a briefly summary and
mention of future work.

2 Basic Approach

Although our final objective is to provide a context-aware service platform in the real world. In this paper
we address the nature-inspired approach behind the platform.

2.1 Requirements

First we discuss the requirements of our application, which is a visitor guide system in a science museums
in this paper. The goal of a science museum is to provide experiences to visitors that will enhance their
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Fig. 1. Gravitational and repulsive policies

knowledge of science from the exhibitions, and not their experiences with ambient-computing, including
context-awareness. Not all visitors have sufficient knowledge about the exhibits in museums should be
provided, so annotations about the exhibits on par with their knowledge and interests should be provided.
Since their knowledge and experience are varied, they may become puzzled (or bored) if the annotations
provided are beyond (or beneath) their knowledge or interest. Supplementary annotation services dependent
on the visitors are needed in order for them to fully understand the exhibits.

The platform itself should enable context-aware annotation services to be provided from both stationary
and mobile terminals. However, our target museum wants to primarily use stationary terminals rather than
mobile terminals because if services are provided from mobile terminals, visitors tend to pay attention to
the terminals instead of the exhibits. Some visitors may not have their own mobile terminals, e.g., cellular
phones and smartphones and they tend to dislike complex operations and interactions with systems. It is
also difficult for some visitors, particularly children, the elderly, and handicapped people, to interact with
annotation services.

Therefore, such services should be executed at nearby computers to minimize latency in communication
between user-interface devices and server-side computers for reasons of response. Computers in public
spaces may have only limited resources, such as restricted levels of CPU power and memory. They cannot
support all the services that may be needed beforehand. Software for defining annotation services should be
deployed at such computers only while those services are needed.

Museums are not expressly large-scale spaces and do not have as many users as say, entire cities. Nev-
ertheless, our final goal is a city-wide context-aware service platform that will provide a variety of services
to massive numbers of users from numerous heterogeneous computers. Therefore, our platform is designed
for a city-wide context-aware scenario.
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2.2 Nature-inspired context-aware service platform

The key idea behind the platform presented in this paper is to separate between application-specific ser-
vices for users from context-aware policies of such services. There have been many attempts to provide
context-aware services, but these services depends so heavily on their target contexts so that most of them
cannot be used for other contexts. However, context-aware services themselves are common. For example,
location-aware annotation services on exhibits designed for running on mobile terminals are often activated
only when their users are close to the exhibits. At the same time, the contents of the annotation services
themselves may be able to be used on stationary terminals. To reuse such services in other context, the
platform provides contextual conditions that the services should be activated as policies defined outside the
services. The policies can be classified into two types: gravitational and repulsive forces between services
and the target entities and spaces.

Virtual counterparts To introduce the metaphors of gravitational and repulsive forces to context-aware
services, we abstract away the underlying systems, including location-sensing systems. Our platform has
the following two kinds of agents, discussed below.

– Physical entities, people, and spaces can have their digital representations, called virtual-counterpart
agents, in the platform. Each virtual-counterpart is automatically deployed at computers close to its
target entity or person or within the space. For example, a virtual-counterpart for users can store per-
user preferences and record user behavior, e.g., exhibits that they have looked at.

– The platform assumes an application-specific service to be defined in a software component and ex-
ecutes the component as an autonomous entity, called a service-provider agent, individually for each
agent. In the current implementation, existing Java-based software components, e.g., JavaBeans, can
define our services.

The first and second agent are executed in runtime systems and can be dynamically deployed at the runtime
systems different computers. They are executed as mobile agents [10] that can travel from computer to
computer under their own control. When a user approaches closer to an exhibit, our system detects that user
migration by using location-sensing systems and then instructs that user’s counterpart agent to migrate to a
computer close to the exhibit.

Context-aware deployment as forces between agents As mentioned previously, we introduce nature-
inspired agent deployment policies based on two metaphors: gravitational and repulsive forces. Virtual-
counterpart and service-provider agents are loosely coupled so that they can be dynamically linked to others.
The current implementation has two built-in gravitational policies:

– An agent has a follow policy for another agent. When the latter migrates to a computer or a location,
the former migrates to the latter’s destination computer or to a computer nearby.

– An agent has a shift policy for another agent. When the latter migrates to a computer or a location, the
former migrates to the latter’s source computer or to a computer nearby.

Each service-provider agent can have at most one gravitational policy. Although the gravitational policy
itself does not distinguish between virtual-counterpart and service-provider agents, in the above policies,
we often assume the former to be a service-provider agent and the latter to be a virtual-counterpart agent.
For example, when a visitor stands in front of an exhibit, the underling location-sensing system detects the
location of the visitor and then the visitor’s virtual counterpart agent is deployed at a computer close to the
current location. When service-provider agents declare follow policies for the counterpart agent, they are
deployed at the computer or nearby computers.

The current implementation has two built-in repulsive policies. Each service-provider agent can have
zero or more repulsive policies in addition to the shift policy.

– An agent has an exclusive policy for another agent. When the former and latter are running on the same
computer or nearby computers, the former migrates to another computer.

– An agent has a suspend policy for another agent. When the former and the latter are running on the same
computer or nearby computers, the former is suspended until the latter moves to another computer.

Each service-provider agent can have at the most one repulsive policy. To avoid the redundancy of agents
whose services are similar at the same computers, we use repulsive force between service-provider agents.
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3 Design and Implementation

Our platform consists of three parts: (1) context information managers, (2) runtime systems, and (3) mobile
agents with nature-inspired deployment policies, as shown in Fig. 2. The first provides a layer of indirection
between the underlying locating-sensing systems and agents. It manages one or more sensing systems to
monitor contexts in the real world and provides neighboring runtime systems with up-to-date contextual
information of its target entities, people, and places. The second is constructed as a distributed systems
consisting of multiple computers, including stationary terminals and users’ mobile terminals, in addition
to servers. Each runtime system runs on a computer in the real world and is responsible for executing
and migrating virtual-counterpart and service-provider agents with nature-inspired deployment policies. It
evaluates the deployment policies of agents and then deploys the agents at runtime systems. The third is
virtual-counterpart or service-provider agents, where the former offers application-specific content, which
is attached to physical entities, people, and places, and the latter can be defined as conventional Java-based
software components, e.g., JavaBeans.

Sensing system monitor

Location-sensing
system (Proximity)

Location-sensing
system (Proximity)

Spot 1

Contextual Information
Manager (CIM)

Spot 2
Location

information
database

Contextual
event

manager

Service-provider
agent

Visitor’s virtual
counterpart agent

Agent migration

Terminal Terminal
User migration

Follow policyRuntime system Runtime system

Abstraction
filter

Abstraction
filter

Fig. 2. Architecture.

3.1 Context information manager

Each context information manager (CIM) manages one or more sensing systems to monitor context in
the real world, e.g., people and the locations of the target entities and people. For example, the current
implementation of CIM supports several sensing systems, including active RFID-tag systems. Here we
describe how the manager notifies runtime systems nearby the locations of people and physical entities
through an active RFID-tag system.

CIM monitors the RFID-tag systems, detects the presence of tags attached to people and entities, and
maintains up-to-date information on the identities of RFID tags that are within the zones of coverage of
its RFID tag readers. To abstract away the differences between the underlying locating systems, each CIM
maps low-level positional information from each of the locating systems into information in a symbolic
model of the location. The current implementation represents an entity’s location, called a spot, e.g., spaces
of a few feet, which distinguishes one or more portions of a room or building. A CIM either polls its sensing
systems or receives the events issued by the sensing systems or other CIMs. Each CIM has a database for
mapping the identifiers of RFID tags and virtual counterparts corresponding to physical entities, people, and
spaces attached to the tags. These database may maintain information on several tags. When a CIM detects
the existence of a tag in a spot, it multicasts a message containing the identifier of the tag, the identifiers
of virtual counterparts attached to the tag, and its own network address to nearby runtime systems. When
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there are multiple candidate destinations, each of the agents that is tied to a tag can select one destination
on the basis of the profiles of the destinations. When the absence of a tag is detected in a spot, each CIM
multicasts a message with the identifier of the tag and the identifier of the spot to all runtime systems in its
current sub-network.

3.2 Runtime system

Runtime systems migrate agents to other runtime systems running on different computers through TCP
channels using mobile-agent technology [10].

Agent execution and migration management Each runtime system is built on Java virtual machine (Java
VM) version 1.7 or later, which conceals differences between the platform architectures of the source and
destination computers (Fig. 3). It governs all the agents inside it and maintains the life-cycle state of each
agent. When the life-cycle state of an agent changes, e.g., when it is created, terminates, or migrates to
another runtime system, its current runtime system issues specific events to the agent.
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Fig. 3. Runtime system

When an agent is transferred over the network, not only its code but also its state is transformed into
a bitstream by using Java’s object serialization package and then the bit stream is transferred to the des-
tination. Since the package does not permit the stack frames of threads to be captured, when an agent is
deployed at another computer, its runtime system propagates certain events to to instruct it to stop its active
threads. Arriving agents may explicitly have to acquire various resources, e.g., video and sound, or release
previously acquired resources.

The system only maintains per-user profile information within those agents that are bound to the user. It
instructs the agents to move to appropriate runtime systems near the user in response to his/her movements.
Thus, the agents do not leak profile information on their users to third parties and they can interact with
mobile users in a personalized form that has been adapted to respective, individual users. The runtime
system can encrypt agents to be encrypted before migrating them over a network and then decrypt them
after they arrive at their destinations.

Agent deployment management Our nature-inspired deployment policies are managed by runtime sys-
tems without a centralized management server. When a runtime system receives the identifiers of virtual
counterparts corresponding to physical entities, people, and spaces attached to newly visiting tags, it discov-
ers the locations of the virtual counterparts by exchanging query messages between nearby runtime systems.
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Each runtime system periodically advertises its address to the others through UDP multicasting, and these
runtime systems then return their addresses and capabilities to the runtime system through a TCP channel.1

The procedure involves four steps. When an agent migrates to another agent’s runtime system, each agent
automatically registers its deployment policy with the destination. The destination sends a query message
to the source of the visiting agent. There are two possible scenarios: the visiting agent has a policy for an-
other agent or it is specified in another agent’s policies. 3-a) Since the source in the first scenario knows the
runtime system running the target agent specified in the visiting agent’s policy , it asks the runtime system
to send the destination information about itself and about neighboring runtime systems that it knows, e.g.,
network addresses and capabilities. If the target runtime system has retained the proxy of a target agent that
has migrated to another location, it forwards the message to the destination of the agent via the proxy. 3-b)
In the second scenario, the source multicasts a query message within current or neighboring sub-networks.
If a runtime system has an agent whose policy specifies the visiting agent, it sends the destination informa-
tion about itself and its neighboring runtime systems. 4) The destination next instructs the visiting agent or
its clone to migrate to one of the candidate destinations recommended by the target, because this platform
treats every agent as an autonomous entity.

3.3 Agent

Each mobile agent is attached to at most one visitor and maintains that visitors’s preference information
and programs to provide customized annotations. Each virtual counterpart agent keeps the identifier of the
tag attached to its visitor.

Each agent in the current implementation is a collection of Java objects in the standard JAR file format
and can migrate from computer to computer and duplicate itself by using mobile agent technology.2 Each
agent must be an instance of a subclass of the Agent class.

class Agent extends MobileAgent implements Serializable {
void go(URL url) throws NoSuchHostException { ... }
void duplicate() throws IllegalAccessException { ... }
setPolicy(ComponnetProfile cref,

MigrationPolicy mpolicy) { ... }
setTTL(int lifespan) { ... }
void setAgentProfile(AgentProfile cpf) { ... }
boolean isConformableHost(HostProfile hfs) { ... }
void send(URL url, AgentID id, Message msg)

throws NoSuchHostException, NoSuchAgentException, ... { ... }
Object call(URL url, AgentID id,

Message msg) throws NoSuchHostException,
NoSuchAgentException, ... { ... }

....
}

Each agent can execute go(URL url) to move to the destination specified as a url by its current plat-
form, and duplicate() creates a copy of the agent, including its code and instance variables. The
setTTL() specifies the life span, called the time-to-live (TTL), of the agent. The lifespan decrements
TTL over time. When the TTL of an agent reaches zero, the agent automatically removes itself.

Our system enables agents to define the computational resources they require. When an agent migrates
to the destination according to its policy, if the destination cannot satisfy the requirements of the agent, the
platform system recommends candidates that are runtime systems in the same network domain to the agent.
If an agent declares repulsive policies in addition to a gravitational policy, the platform system detects the
candidates using the latter’s policy and then recommends final candidates to the agent using the former
policy, assuming that the agent is in each of the detected candidates.

1 We assumed that the agents comprising an application would initially be deployed at runtime systems within a
localized space smaller than the domain of a sub-network.

2 JavaBeans can easily be translated into agents in this platform.
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4 Experience

We concluded an experiment at the Museum of Nature and Human Activities in Hyogo, Japan using the
proposed system.3 As shown in Fig. 4 a sketch maps the various spots located in the museum. The exper-
iment was carried out at four spots in front of specimens of taxidermied animals specifically i.e., a bear,
deer, racoon dog, and wild boar. Each spot provided five different pieces of animation-based annotative
content about the animals, e.g., its ethology, footprints, feeding, habitats, and features, and had a display
and Spider’s active RFID reader with a coverage range that roughly corresponded to the space, as shown in
Fig. 5.

Spot 1

Spot 2 Spot 3

Spot 4
Spot 2

Spot 1

Fig. 4. Experiment at the Museum of Nature and Human Activities in Hyogo.

Pendant
(with RFID tag)

Ambient
Display

RFID
reader

Fig. 5. Spot at Museum of the Nature and Human Activities in Hyogo.

All visitors in the experiment were provided with a pendant containing an RFID tag. The idea was
designed to have visitors imagine that their agents, which were virtual owls, were inside their pendant.
When visitors armed their pendants first started in the experiment, an operator input points of interest and

3 The aim of this experiment is to provide context-aware services in a real space rather than evaluating this system.
Consequently, not all the deployment policies are evaluated here.
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the route by means of a Web browser running on a portable terminal. Visitors also created their own virtual
counterparts and service-provider agents, where the latter agents had a follow deployment policy for the
former agent. For example, suppose a visitor enters the spot with the specimen of a racoon dog. The visitors
counterpart agent is deployed at a computer close to the specimen and then the service-provider agents are
deployed at the computers according to their follow deployment policy.

time

time

time

Opening animation

Closing animation

Annotation about racoon dog

Fig. 6. Animation of service-provider agent

As shown in Fig. 6, their service-provider agents play annotation about the ethology, footprints, feeding,
habitats, and features of the animal (specimen) in their current spots. We simultaneously provided two
different routes for visitors in order to evaluate the utility of our support for user navigation. Both routes
guided visitors to various destination spots while ensuring that they walked around an exhibition booth
consisting of four spots two or three times, as shown on the right in Fig. 4. That is, a visitor might visit the
same spots two or three times depending on the navigation providing by the agents. Both the experiments
offered visitors animation-based annotative content about the animal in front of them so that they could
learn about it while observing the corresponding specimen.

In addition, we could dynamically change users’ routes by replacing the current service-provider agents
with other service-provider agents that declared deployment policies for the virtual counterpart agent cor-
responding to the users.

As there are many visitors in museums, we cannot adequately cope with conflicts caused by multiple
users. For example, two visitors might simultaneously view and hear at most one annotation provided from
a stationary computer in an exhibition space under the impression that the annotation is just for them. To
solve this problem, we used suspend policy. First, visual representation of the agents, i.e., characters was
used to help visitors to identify who the annotation is for, and second, each runtime system is equipped with
a queuing mechanism for exclusively executing agents for multiple simultaneous users. When two users
enter the same spot, the CIM sends two notification messages to the runtime system in that spot in the order
in which they entered. The runtime system can send events to the agents bound to the two users in that
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order, or it can explicitly send an event to one of the agents. After the first has handled the event, it sends
the same event to the second one. The current implementation supports several queuing policies, e.g., LIFO
and synchronization among more than two users.

We conducted the experiment over a two-week period. Each day, more than 60 individuals or groups
took part in the experiment. The majority of the participants were groups of families or friends aged from
7 to 16. Most visitors answered questionnaires consisting quizzes and feedback on the system along with
information on their gender and age. Almost all the participants (more than 95 percent) provided positive
feedback on the system. Typical feedback included statements like “We were very interested in or enjoyed
the system”, “We could easily answer the quizzes by moving between the spots”, and “We gained detailed
knowledge about the animals by watching them in front of where we were standing.” Most visitors only
paid attention to the colors of the agents, rather than the characters or visual effects. They appeared to be
more interested in looking at the animal specimens than the agents.

To evaluate the performance overhead of the deployment policies presented in this paper, we imple-
mented and evaluated a non-deployment policy version of the system. When this version detected the pres-
ence of a user at one of the spots, it directly deployed a service-provider agent instead of virtual counterpart
agents. We measured the cost of migrating a null agent (a 5-KB agent, zip-compressed) and an annotation
agent (1.2-MB agent, zip-compressed) from a source computer to a recommended destination computer
that was recommended. The latency of discovering and instructing a virtual counterpart or service-provider
agent attached to a tag after the CIM had detected the presence of the tag was 420 ms. Without any deploy-
ment policies, the respective cost of migrating the null and annotation agents between two runtime systems
running on different computers over a TCP connection was 41 ms and 490 ms after instructing agents to
migrate to the destination. When the null or annotation agent had a follow policy for the virtual counterpart
agent, the respective cost of migrating the null and annotation agents between two runtime systems running
on different computers over a TCP connection was 185 ms and 660 ms. These results demonstrate that the
overhead of our deployment policy can be negligible in context-aware services.

Our experiment at the museum is a case study in our development of ambient-computing services in
large-scale public spaces. However, we could not evaluate the scalability of the system in the museum
because it consisted of only four terminals. Even so, we have a positive impression on the availability of the
system for large-scale public services. This is because the experimental system could be operated without
any centralized management system. The number of agents running or waiting on a single computer was
bound to the number of users in front of the computer.

5 Related Work

This section discusses several bio-inspired approaches to distributed and multi-agents systems. A few at-
tempts have provided infrastructures for real distributed systems, like ours. The Anthill project [1] by the
University of Bologna developed a bio-inspired middleware for peer-to-peer systems composed of a collec-
tion of interconnected nests. Autonomous agents (called ants) can travel across the network trying to satisfy
user requests same as ours. The project provided bio-inspired frameworks called Messor [5], and Bison
[6]. Messor [5] is a load-balancing application of Anthill and Bison is a conceptual bio-inspired platform
based on Anthill. The main difference between Anthill including its applications and our platform is that
it introduces agents as independent entities which ours permits agents to be self-organized. The Co-Field
project [4] by the University di Modena e Reggio Emilia proposed the notion of a computational force-field
model for coordinating the movements of a group of agents comprising mobile devices, mobile robots, and
sensors. However, the model only seems to be usable within the limits of simulation and not in a real dis-
tributed system. Our deployment policies are similar to the dynamic layout of distributed applications in
the FarGo system [2], but FarGo’s policies aim at allowing an agent to control others, whereas our policies
aim at allowing an agent to describe its own individual migration, since our platform always treats agents
as autonomous entities that travel from computer to computer under their own control. FarGo’s policies
may conflict when two agents can declare different relocation policies for a single agent. In contrast, our
platform is free of any conflict because each agent can only declare a policy to relocate itself.

That system presented in this paper is an application of our previous bio-inspired system [8]. The system
was a general-purpose test-bed platform for implementing and evaluating bio-inspired approaches over real
distributed systems. It enabled each software agent to be dynamically organized with other agents and
deployed at computers according to its own organization and deployment policies. In contrast, this paper
addressed a practical system with nature-based approaches used in the real world with real users for real
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applications. We presented an outline of mobile agent-based services in public museums in our earlier
versions of this papers [7, 9], but did not describe any nature-inspired deployment policies in those works.

6 Conclusion

This paper presented a context-aware service platform with a nature-inspired or self-organizing approach.
The system enabled two individual agent to specify one of the deployment policies as relocations between
the agent and another. It can not onlymove individual agents but also a federation of agents over a distributed
system in a self-organized manner. We evaluated the system by applying it to visitor-assistant services
in a museum. When visitors move from exhibit to exhibit, the visitors’ virtual counterpart agents can be
dynamically deployed at computers close to the current exhibits to accompany the visitors via their virtual
counterpart agents and play annotations about the exhibits. Visitors and service-provider agents are loosely
coupled because the agents are dynamically linked to the virtual counterpart agents corresponding to them
by using our deployment policies.

There are still a couple of issues that need to be resolved. For example, some readers may consider
that the non-centralized management architecture we used was not needed to operate the context-aware
visitor-guide services in a museum. However, our final goal is to provide large-scale context-aware services
with nature-inspired centralized management approaches in large spaces, e.g., cities. We therefore need to
demonstrate the scalability of the platform for large-scale context-aware services.
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1 Introduction 
Many real world optimization problems, both in combinatorial and continuous optimization, involve 

simultaneous optimization of multiple incommensurable and often competing objective functions. For these 
optimization problems, there are usually many solutions of interest, each of which represents some 
compromise among objective functions, rather than a single optimum. These solutions, widely known as 
Pareto front, are optimal in the broader sense that no other solution in the search space is better over all of 
the objectives. Consequently, we can define two goals in multiple-objective (MO) optimization: (i) 
discovering solutions as close to the Pareto front as possible; and (ii) finding solutions as diverse as possible 
in the obtained solutions set. Satisfying these two goals is a challenge for any MO algorithm [1]. In recent 
years, the adaptation of metaheuristics has been proven to be a winning alternative for the simultaneous 
optimization of several objectives. Among others, the extensions of the genetic algorithm [2] and the 
differential evolution (DE) [3] inspired respectively the algorithms NSGAII [1] and DEMO [4].  

Among MO problems in industry, those with continuous variables require a particular exploration of 
the search space in order to approach as close as possible the optimal real values. The DE algorithm, which 
is recognized for having a global search capability [5], proposes to consider solutions as vectors and to use 
vector displacement to explore solutions. Other population-based metaheuristics offer more exploitation 
capability, such as the invasive weed optimization (IWO) algorithm [6]. This metaheuristic is inspired by the 
proliferation of seeds in an environment. The analogy with nature makes it possible to translate r-selection 
and K-selection in order to make exploration at the beginning of resolution and then to make more 
exploitation. State of the art [7, 8] are available on a variety of metaheuristics adapted to solve continuous 
problems.

The main contribution of this paper is introducing a new powerful hybrid algorithm involving DE to 
solve continuous MO problems. This hybridization is carried out with the IWO algorithm in order to balance 
the exploration and exploitation capabilities in the solution search process. This new algorithm, noted as 
IWODEMO, aims at the two goals of MO metaheuristic, namely to converge towards the Pareto-optimal 
front and to find diversified solutions. To the best of our knowledge, IWO multi-objective algorithms 
currently do not offer a comparison with DE methods [9, 10]. Another part of the contribution is then to 
propose a comparative study under equitable experimental conditions. To do this, the proposed algorithm is 
compared to three algorithms from the literature (NSDE, DEMO and ADE-MOIA) to solve the same group
of instances, for an equivalent computing power and with the maximum of common components. 

2 The proposed algorithm: IWODEMO 
The IWODEMO algorithm proposes hybridization between the DE and IWO algorithms. A 

description of the proposed algorithm is outlined in Figure 1. The initial population POP0 of size N will 
evolve over several iterations producing an exact number of N offspring. A solution 
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, often called vector, is represented by D decision variables. As in IWO, a solution 
produces a number of offspring in relation to its rank in the sorted population. Two factors are used for this 
purpose: a dominance factor (sorting by front as in NSGAII [1]) and an isolation factor (crowding distance). 
Once the population is sorted, the solution that occupies the first rank (the most isolated) produces the first 
offspring. Then, the following solutions produce descendants until N offspring are produced. At each 
iteration g, a solution  produces a number of offspring NDi,g proportional to its objective function value. 

Create randomly an initial population POP0 of size N and evaluate each solution  on each objective 
Sort POP0  according to dominance and isolation factors  
WHILE no stopping rule is invoked 

WHILE NbOffspring < N 
For each NDi,g offsprings of 

REPRODUCTION - Create a trial vector  with adaptive mutation DE/rand/1/bin 
SELECTION – 3 possible cases 

a) If  dominate , replace  by
b) If  is dominated by , delete  and do WEED COLONIZATION
c) If no dominance relationship, add  to POPg

WEED COLONIZATION – (Only if  is dominated) 
Plant a seed  according to IWO weed colonization: (1) 
Do SELECTION with  (instead of 

Sort POPg  according to dominance and isolation factors 
Delete identical solutions in POPg and progressive REDUCTION of POPg to N solutions 

Return non-dominated solutions 
Figure 1. Outline of IWODEMO algorithm 

Two types of offspring can be produced from a solution : the trial vectors  according to the DE 
algorithm and the seeds  according to the IWO algorithm. In the first case, a target vector  produces a 
trial vector  according to the adaptive mutation DE/rand/1/bin borrowed from the DE algorithm. It should 
be noted that the CR parameter is modified over the iterations allowing exploration at the beginning of the 
resolution and then to make more exploitation. The selection is then carried out with the two considered 
vectors . This consists of comparing the trial vector to the target vector. If he dominates the target 
vector, he replaces it. If no dominance is identified between the two solutions, the trial vector is added to the 
population as in DEMO algorithm [4]. If the trial vector is dominated, it is deleted. In the second case, 
IWODEMO produces a seed   from the plant according to Eq. (1) in Figure 1 where j corresponds to 
the decision variables and   corresponds to a random value derived from a normal distribution of 
mean zero and of variance equal to the standard deviation squared. This offspring creation corresponds to 
the principle of plant proliferation borrowed from the IWO algorithm except that a mutation probability is 
added to the equation: the disturbance is done on decision variables under mutation criterion. The two 
considered vectors,  then move to the selection. However if the seed is dominated by the target 
vector, it is removed and the algorithm continues without weed colonization. 

The solution  continues the creation of its NDi,g offspring. However, it is possible that the solution 
is replaced by a descendant and in this case, the offspring also produces other descendant. In total, a 
maximum of N offspring are produced during an iteration, including trial vectors and seeds. We can remark 
that IWODEMO allows the immediate replacement of a solution which encourages a faster convergence. 
Following the creation of the offspring, identical solutions are deleted in POPg. The population is sorted 
again and a progressive reduction ensures the maintenance of the N best solutions. 

3 Numerical experiments and results 
The performance of IWODEMO is evaluated using a comparative study with the main hybrid 

algorithms involving the DE algorithm for solving MO problems from the literature. More specifically, these 
algorithms are NSDE [11], DEMO [4] and ADE-MOIA [5]. To carry out numerical experimentations, the 
well-known ZDT test instances introduced by Zitzler, Deb and Thiele [12] are used. This benchmark is
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probably one of the most widely used references in the continuous MO optimization literature. ZDT 
instances contain two objective functions. The feasible solutions are in real encoding and have 30 (ZDT1, 
ZDT2, ZDT3) or 10 (ZDT4, ZDT6) decision variables. Pareto-optimal fronts contain an infinite bounded set 
of solutions. These instances also offer diversity in the solution space. Indeed, the Pareto-optimal fronts 
present particular forms thus leading to the complexity in solving of these instances.  

In order to measure both the quality of the solutions as well as their diversity, the performance 
evaluation of the algorithms is realized using two metrics: the convergence metric γ and the diversity metric 
∆. The Pareto-optimal front of each instance must be known for the computation of these metrics. Pareto-
optimal fronts composed of 500 uniformly spaced solutions made available online by S. Huband are used 
(http://www.scis.ecu.edu.au/research/wfg/datafiles.html). The performance comparison with these different 
algorithms is not easy to achieve. Indeed, the original papers presenting these algorithms generally use a 
diversified implementation and a performance evaluation that can hardly be compared. In order to propose a 
reliable and fair comparative study, the algorithms NSDE, DEMO and ADE-MOIA from the literature were 
recoded and tested under the same experimental conditions. 

The extended version of this paper will detail the experimental conditions as well as the obtained 
results. According to these results, it will be demonstrated that IWODEMO effectively combines the forces 
of ED and IWO that have been hybridized. Indeed, IWODEMO generally obtains better results than the 
other algorithms from the literature used in comparison in terms of convergence, dispersion of solutions on 
the Pareto-optimal front and computation time. 

4 Conclusion 
IWODEMO is an effective alternative for solving MO problems with continuous variables. In 

particular, these results highlight the importance of diversification and intensification mechanisms on the 
overall performance of an MO algorithm. The weed colonization phase borrowed from IWO algorithm and 
the adaptive parameters of IWODEMO seem to be a hybridization scheme complementary to the DE which 
is recognized to have a global search capability. It is also important to note that IWODEMO is a generic 
Pareto algorithm, so it can be extended and adapted to solve other MO problems. In the next steps of the 
research, it is therefore planned to test IWODEMO by increasing the number of objective functions. In
addition, it would be interesting to test the effectiveness of the algorithm on problems from the industry. 
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Abstract. The rising popularity of metaheuristics has placed their parameter tuning in the
center of research in the past decades. It is an important issue with significant implica-
tions on their overall performance, especially in demanding problems of high complexity.
On the one hand, inappropriate parameters may render the algorithm incapable of detecting
good quality solutions. On the other hand, parameter tuning through trial-and-error pro-
cedures expands the necessary experimentation time and consumes valuable computational
resources. Recently, a general-purpose parameter adaptation method based on grid search
in the parameter domain was proposed. The method was successfully demonstrated on two
metaheuristics, namely Differential Evolution and Particle Swarm Optimization, attaining
competitive performance against other methods. Similarly to other methods, the grid-based
search has also a few user-defined parameters. The present work offers a first study of its
sensitivity on these parameters. For this purpose, Differential Evolution is the tuned algo-
rithm and the analysis is conducted on the established CEC 2013 test suite. The results
verify previous evidence of the method’s tolerance on its parameters.

1 Introduction

Metaheuristics have served as efficient solvers for many decades [1]. Among them, evolutionary
algorithms have been distinguished for their effectiveness in a plethora of contemporary scien-
tific applications [2, 3]. However, proper parametrization is usually the string attached to their
promised success [4]. This deficiency has been tackled through parameter tuning methods, which
are distinguished in offline and online methods.

Offline tuning requires a preprocessing phase where the employed metaheuristic is applied on
a prescribed set of test problems. Appropriate parameter values are detected through a trial-and-
error procedure where a number of different choices are considered and the algorithm’s performance
is assessed for each one on the test problems. Stochastic search algorithms require the iterative
application of this procedure in order to extract statistically sound conclusions. Despite the obvious
drawback of the high computational needs, offline approaches offer parameter values that can be
reusable in similar problems. On the other hand, failing to select diverse test problems may results
in over-specialization of the algorithm. Design of Experiments [5], F-Race [6], and ParamILS [7]
are among the state-of-the-art in offline tuning methods.

Contrary to offline tuning, online approaches adapt the parameter setting of the algorithm
during its execution, based on its performance during the specific experiment. Although they
alleviate the over-specialization problem, they do not offer a single parameter set that can be used
in different problem instances or algorithms. On the other hand, their clear advantage is less user
intervention in the whole procedure. Concise reviews of online adaptation approaches can be found
in [7, 8].

Recently, a general-purpose online parameter adaptation method was proposed in [9]. This
method conducts grid search in the parameters’ domain during the execution of the algorithm.
The search is driven by estimations of the algorithm’s neighboring parameter vectors and can be
used both for categorical, integer, or real-valued parameters. The method was validated on the
Differential Evolution algorithm, which is widely known for its sensitivity on its parameters, as
well as on Particle Swarm Optimization [9–11]. The large-scale test problems of the test suite
in [12] served as the corresponding testbed. Similarly to other approaches, the method involves a
small number of parameters that offer tunability.

The present work constitutes a first study on the sensitivity of the grid-based parameter tuning
method on its user-defined parameters. For this purpose, the Differential Evolution algorithm that
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offered interesting conclusions in previous works is adopted in the present study. Moreover, the
established CEC 2013 test suite is considered as the corresponding testbed. Several levels of the
basic parameters are considered and their influence on the algorithm’s performance is statistically
analyzed, offering interesting conclusions.

The rest of the paper is organized as follows: Section 2 briefly presents Differential Evolution,
and the grid-based parameter adaptation method is described in Section 3. The experimental
configuration for the sensitivity analysis along with the analysis of the results is offered in Section 4.
Finally, the paper concludes in Section 5.

2 Differential Evolution

Differential Evolution (DE) [13] is a population-based metaheuristic. After two decades of ongoing
development, it is currently considered among the state-of-the-art in evolutionary computation [14].
Given the unconstrained n-dimensional optimization problem

min
x∈X⊂Rn

f (x),

DE utilizes a population of N search points,

P = {x1,x2, . . . ,xN}.

Each population member is a candidate solution vector

xi = (xi1,xi2, . . . ,xin)
⊤ ∈ X , i = 1,2, . . . ,N,

and it is randomly and uniformly initialized in the search space X .
The population is evolved through the iterative application of mutation, crossover, and selection

procedures. Mutation consists of the generation of a new vector ui for each member xi of the
population. The new vector is generated by adding a weighted difference of randomly selected
members of the population on a base vector that varies from one mutation operator to another.
The baseline mutation operators for xi are as follows:

DE/best/1: ui = xg +F (xr1 − xr2) , (1)

DE/rand/1: ui = xr1 +F
(
xr2 − xr3

)
, (2)

DE/current-to-best: ui = xi +F (xg− xi + xr1 − xr2) , (3)

DE/best/2: ui = xg +F
(
xr1 − xr2 + xr3 − xr4

)
, (4)

DE/rand/2: ui = xr1 +F
(
xr2 − xr3 + xr4 − xr5

)
, (5)

where the index g denotes the best member of the population P in terms of function value, i.e.,

g = arg min
i=1,...,N

{ f (xi)} ,

and r1,r2, . . . ,r5, are mutually different, randomly selected numbers between 1 and N that differ
also from i. The scale factor F is a user-defined parameter that is crucial for the algorithm since it
controls the magnitude of the mutations.

Mutation is followed by crossover, where a trial vector vi is produced for each xi by randomly
selecting components from the original and the mutated vector. Binomial crossover is defined as
follows:

vi j =

{
ui j, if rand() ⩽CR or j = Ri,

xi j, otherwise,
(6)
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where j ∈ {1,2, . . . ,n}; rand() is a uniform random number generator in the range [0,1]; CR ∈ (0,1]
is another user-defined parameter of the algorithm called the crossover rate; and Ri ∈ {1,2, . . . ,n}
is a randomly selected index (different for each xi at each iteration). The crossover procedure is
responsible for the amount of information inherited from the original and the mutated vector,
while it ensures that at least one component of vi comes from the mutated vector. An alternative
is the exponential crossover, where xi is initially copied into vi. Then, a random component of vi
is selected and all subsequent components are replaced by those of the mutated vector ui until a
stochastic condition is satisfied.

The iteration of the algorithm is completed by selection, where each xi is replaced by the
produced trial vector vi if it achieves better objective function value.The population iteratively
evolves until a termination condition is satisfied and the best detected solution xg is reported.

3 Grid-Based Parameter Adaptation Method

The grid-based parameter adaptation method was initially proposed in [9] and used for the online
control of the scalar parameters F and CR of the Differential Evolution algorithm. The method
was expanded in [10] for the online adaptation of the mutation operator. The method was further
demonstrated for the Particle Swarm Optimization algorithm in [11]. The central idea is the dis-
cretization of the parameters’ domain and the adaptation of the algorithm’s parameter values to
neighboring values in the corresponding grid, based on short-run estimations of its performance.

Let us make our description more concrete by considering the Differential Evolution algorithm
and its two scalar parameters F and CR, along with two discretization steps λCR and λF for their
domains, respectively. Also, let SCR, SF , be the corresponding discretized sets. Then, the grid is
formed as follows:

G = {(CR,F); CR ∈ SCR,F ∈ SF} .

The algorithm starts from a parameter vector in G (the central point is a reasonable choice), and
the population is randomly initialized in the search space of the problem at hand. This population
is also called the primary population and it is denoted as Pp. Similarly, its parameter pair is called
the primary parameter pair and denoted as (CRp,Fp). According to the suggestion in [9], Pp is
evolved for a number of iterations,

tp = α×n,

where α > 1 is an integer and n stands for the problem dimension. In the original work [9], both
parameters were considered in the domain [0,1] with λCR = λF = 0.1, and α = 10. After the tp
iterations, the primary population stops and the following three phases take place.

Phase I: Cloning

The primary parameter pair (CRp,Fp) has eight neighboring parameter pairs in G that are defined
as follows [9]:

CR′ = CRp + iλCR, F ′ = Fp + j λF , i, j ∈ {−1,0,1}, (7)

where the case i = j = 0 corresponds to the primary parameter pair itself. For each one of these
parameter vectors, a secondary population is defined by cloning the primary population. In [10],
the method included also the adaptation of the mutation operator. In this case, four additional
secondary populations, also called bridging populations, where defined by cloning the primary
population with the primary parameter pair but different mutation operator from the ones defined
in Eqs. (1)-(5).

Thus, after the cloning phase we obtain 13 secondary populations denoted as Ps j , j = 1,2, . . . ,13,
which are identical with the primary one, but 9 of them have the parameter pairs defined in Eq. (7)
and same mutation operator with the primary population, while the remaining 4 populations have
the primary parameter pair but a different mutation operator each.
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Phase II: Performance Estimation

Each one of the 13 secondary populations is individually evolved for ts iterations in order to reveal
its dynamic with the new parameters. Typically, ts shall be significantly smaller than tp to spare
computational resources (function evaluations). The performance of the secondary populations can
be measured using various performance measures. In [9] the average objective value (AOV) of the
population was used, which is defined as follows:

AOV j =
1
N

N

∑
i=1

f (xi) , xi ∈ Ps j , i = 1,2, . . . ,N, j = 1,2, . . . ,13. (8)

This measure reveals the average improvement of the corresponding secondary population with its
new parameters. In addition, the objective value standard deviation (OVSD) was also considered
in [10], which is defined as follows:

OVSD j =

√
1
N

N

∑
i=1

( f (xi)−AOV j)
2, xi ∈ Ps j , i = 1,2, . . . ,N, j = 1,2, . . . ,13. (9)

This performance measure determines the diversity of the population’s values, which is desirable
to alleviate rapid convergence in local minima.

The secondary populations compete using either AOV or both AOV and OVSD (in terms of
Pareto dominance when more than one measure is used) and the best one is distinguished. If there
are more than one dominant secondary populations, one is selected at random among them.

Phase III: Dynamic’s Deployment

The selected secondary population is evolved for tp iterations to fully reveal its dynamic with
the selected parameters. Then, if its AOV improves the AOV of the primary population for at
least ε ⩾ 0, the evolved population along with its parameters replaces the primary population.
Otherwise, the primary population remains unaltered.

This step completes a full cycle of the method, and the whole procedure is repeated anew from
the cloning phase. The maximum number of cycles can be predefined according to the available
computational budget [9]. Pseudocode of the method, which is called Differential Evolution with
Grid-based Parameter and Operator Adaptation (DEGPOA) is provided in Algorithm 1.

4 Performance Analysis

The DEGPOA algorithm was validated on high- and low-dimensional test suites in [9, 10] with
promising results. Without any parameter tuning, the algorithm was capable to compete against
other algorithm, controlling its parameters throughout the search procedure. Regarding the grid
search parameters, the following values were proposed as default choices [9]:

ts = 5, tp = 10×n, λ = λF = λCR = 0.1, (10)

while the initial parameter vector was placed at the center of the grid, i.e., (CRp,Fp) = (0.5,0.5),
and the initial primary operator was randomly selected from the ones in Eqs. (1)-(5). Thus, the
main effect of DEGPOA’s parameters remains to be studied.

In the present work we considered three sets of parameter values for ts, tp, and λ :

Sts = {5,10,15,20}, Stp = {5×n,10×n,15×n,20×n}, Sλ = {0.01,0.05,0.1,0.2}.

The previously used version with the parameters of Eq. (10) was considered as the baseline for
assessing the new grid search settings. DEGPOA was validated by changing one of its parameters
to a different level from the sets above, while keeping the rest of the parameters fixed to the baseline
values. This results in 12 new DEGPOA instances.

All experiments were conducted on the established CEC 2013 test suite [15]. This suite consists
of 28 unimodal, multimodal, and composite functions, henceforth denoted as f1- f28. The search
space for all test problems is [−100,100]n, where n stands for the dimension. We considered the
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Algorithm 1 DEGPOA: Differential Evolution with Grid-based Parameter and Operator Adapta-
tion
1: INITIALIZE(P,Fp,CRp,Op)

2: EVOLVE(P,Fp,CRp,Op, tp)

3: m← 13

4: while (NOT TERMINATION) do
5: /* Phase I: Cloning */
6: for (i = 1 : m) do
7: if (i ⩽ 9) then
8: /* Secondary population: same operator, different parameters (use Eq. (7)) */
9: (Psi ,Fi,CRi,Oi)← (P,F ′,CR′,Op)

10: else
11: /* Bridging secondary population: different operator, same parameters */
12: (Psi ,Fi,CRi,Oi)← (P,F,CR,O′i)

13: end if
14: end for
15: /* Phase II: Performance Estimation */
16: for (i = 1 : m) do
17: EVOLVE(Psi ,Fi,CRi,Oi, ts)

18: end for
19: /* Phase III: Dynamic’s Deployment */
20: (Pbest,Fbest,CRbest,Obest)← SELECT_BEST(Psi ,Fi,CRi,Oi,AOV,OVSD)

21: EVOLVE(Pbest,Fbest,CRbest,Obest, tp)

22: /* Update primary population */
23: if

(
AOVP−AOVPbest ⩾ ε

)
then

24: (P,Fp,CRp,Op)← (Pbest,Fbest,CRbest,Obest)

25: end if
26: end while

most common cases n = 10 and n = 30 in our study. Also, the guidelines of the test suite dictate
that the maximum computational budget is

Tmax = 104×n,

while the performance is measured by using the error gap between the known optimal solution of
the problem, xopt, and the solution x∗ achieved by the algorithm,

ε∗ = f (x∗)− f
(
xopt

)
.

In order to avoid any bias imposed by the initial parameter set, the central parameter (CRp,Fp) =
(0.5,0.5) was used in all cases. Note that according to the CEC 2013 requirements, a fixed popu-
lation size N = 60 was used and 51 independent experiments were conducted per problem.

Henceforth, we denote as DEGPOAbase the baseline version of the algorithm, and the rest
are denoted with corresponding subscripts. For example, the instance with ts = 5, tp = 5× n, and
λ = 0.01, is denoted as DEGPOA5s_5p_0.01λ .
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Table 1. Comparisons of new DEGPOA instances with DEGPOAbase.

n W L D W-L I NI

ts modified
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA10s_10p_0.1λ 10 1 5 22 -4 24 0.86
DEGPOA10s_10p_0.1λ 30 1 2 25 -1 27 0.96
DEGPOA15s_10p_0.1λ 10 0 11 17 -11 17 0.61
DEGPOA15s_10p_0.1λ 30 2 3 23 -1 27 0.96
DEGPOA20s_10p_0.1λ 10 1 12 15 -11 17 0.61
DEGPOA20s_10p_0.1λ 30 4 7 17 -3 25 0.89

absolute sum: 31
tp modified
DEGPOA5s_5p_0.1λ 10 0 4 24 -4 24 0.86
DEGPOA5s_5p_0.1λ 30 0 2 26 -2 26 0.93
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA5s_15p_0.1λ 10 1 1 26 0 28 1.00
DEGPOA5s_15p_0.1λ 30 1 0 27 1 29 1.04
DEGPOA5s_20p_0.1λ 10 2 1 25 1 29 1.04
DEGPOA5s_20p_0.1λ 30 3 1 24 2 30 1.07

absolute sum: 10
λ modified
DEGPOA5s_10p_0.05λ 10 1 3 24 -2 26 0.93
DEGPOA5s_10p_0.05λ 30 1 2 25 -1 27 0.96
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA5s_10p_0.15λ 10 0 2 26 -2 26 0.93
DEGPOA5s_10p_0.15λ 30 2 0 26 2 30 1.07
DEGPOA5s_10p_0.2λ 10 0 6 22 -6 22 0.79
DEGPOA5s_10p_0.2λ 30 4 7 17 -3 25 0.89

absolute sum: 16

The twelve new DEGPOA instances were tested on the CEC 2013 test suite according to the
settings above, and their results were recorded and statistically analyzed in order to facilitate
comparisons with DEGPOAbase. For this purpose, Wilcoxon significance tests at confidence level
95% were used to compare the achieved solution errors. For each comparison of a new instance
with the baseline variant, a win was counted if it achieved statistically superior performance than
the baseline approach. In the opposite case, a loss was counted, while statistically insignificant
differences between algorithms were considered as ties.

Table 1 report the number of wins (denoted as “+”), losses (denoted as “−”), and ties (denoted
as “=”) of the new DEGPOA instances against DEGPOAbase. The fourth column denoted as “W-
L” stands for the difference between the number of wins and loses, which provides the general
performance trend of the corresponding new instance against the baseline. High positive values
correspond to an instance that has far better performance than the baseline, while negative values
imply inferior performance of the new instance. The next column denoted as I reports the index
value

I = 28+(W −L),

which characterizes the relevant performance of the corresponding DEGPOA instance against the
baseline over all the 28 test problems. The last column of the table denoted as NI is the normalized
index,

NI =
Index

28
,
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Values of the normalized index NI per dimension for the parameters ts (cases (a) and (b)),
tp (cases (c) and (d)), and λ (cases (e) and (f)).

which offers a straightforward comparison measure between the competing algorithms (rounded
to 2 decimal digits). Obviously, NI = 1.00 when the two compared algorithms have statistically
equivalent performance (only ties in statistical tests), while it becomes NI > 1.00 whenever the
new DEGPOA instance is superior than the baseline, and NI < 1.00 when it is inferior. Since
0 ⩽ I ⩽ 56, the normalized index is bounded in 0 ⩽ NI ⩽ 2.

In order to facilitate comparisons, Fig. 1 illustrates NI for the different parameter level and
dimension. The gray bar stands for the performance of DEGPOAbase while the blue bars refer to
the corresponding new instances. The figures offer some interesting conclusions. Firstly, we can
observe that ts can have significant impact on the algorithm’s performance in lower dimension
(n = 10) as we can see in Fig. 1(a). Specifically, smaller values of ts offer better overall performance,
which implies that the estimations of the secondary populations are adequately accurate, sparing
computational budget for the dynamic’s deployment phase. On the other hand, in the higher-
dimensional case (n = 30) depicted in Fig. 1(b) this effect becomes milder as a direct consequence
of the increased complexity of the problems, which requires longer estimation runs. Nevertheless,
the value ts = 5 that was used in previous works [9] verifies its superiority for the specific dimensions.

Regarding the parameter tp, we can observe in Figs 1(c) and 1(d) that values lower than
10×n produce inferior performance, implying that the number is inadequate to reveal the primary
population and parameters’ dynamic. Instead, higher values are beneficial especially for the high-
dimensional case. However, the effect remains bounded within 10% of the corresponding baseline
value even after doubling the value of tp. This indicates that the effect of tp is not highly for the
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Fig. 2. Overall Parameters impact on algorithm’s performance

algorithm’s performance if the estimation evaluations ts retain a proper value. Recall that in all
experiments for different tp values, the default (sub-optimal) ts = 5 value was used.

For both ts and tp, the main performance pattern (improving or worsening) was observed for
both dimensions. However, this is not the case for the third parameter λ . Changing the dis-
cretization step from 0.1 to either lower or higher values produces inferior performance in the
10-dimensional case as illustrated in Fig. 1(e). This motif changes in the higher-dimensional case
as illustrated in Fig. 1(f), where slightly increasing λ to 0.15 improves performance for 7%, while
different values produce inferior performance of comparable magnitude. Notice that λ determines
the search accuracy in the parameter space and has actual dependence both on the algorithm as
well as the problem at hand. Thus, there is no clear explanation for this behavior, which is probably
the outcome of the interplay between the algorithm’s dynamic with the specific parameters and
the complexity of the problem itself.

The results show that DEGPOA can achieve stable performance under mild perturbations of
the proposed default parameters. In order to identify the overall most influential parameter for all
DEGPOA instances, we considered the sum of the absolute differences W −L for each parameter as
they are reported in Table 1. Then, we normalized these three values by dividing with their sum,
and we received the percentages that are graphically represented in Fig 2. Each normalized value
shows the participation of the corresponding parameter in the observed differences. The blue color
refers to the ts parameter, which proves to be the most influential one, followed by λ and tp.

5 Conclusions

The rising popularity of metaheuristics has placed their parameter tuning in the center of research
in the past decades. It is an important issue with significant implications on their overall per-
formance, especially in demanding problems of high complexity. On the one hand, inappropriate
parameters may render the algorithm incapable of detecting good quality solutions. On the other
hand, parameter tuning through trial-and-error procedures expands the necessary experimenta-
tion time and consumes valuable computational resources. Recently, a general-purpose parameter
adaptation method based on grid search in the parameter domain was proposed. The method
was successfully demonstrated on two metaheuristics, namely Differential Evolution and Particle
Swarm Optimization, attaining competitive performance against other methods. Similarly to other
methods, the grid-based search has also a few user-defined parameters. The present work offers
a first study of its sensitivity on these parameters. For this purpose, Differential Evolution is the
tuned algorithm and the analysis is conducted on the established CEC 2013 test suite. The results
verify previous evidence of the method’s tolerance on its parameters.

Metaheuristics are part of the state-of-the-art in optimization literature for solving demanding
problems. However, their performance is strongly dependent on their parameters. This deficiency
has resulted in a variety of parameter adaptation methods. Most of them constitute ad-hoc proce-
dures designed for a specific algorithm.

The present work offered a first study of the sensitivity of the recently proposed grid-based
parameter adaptation method on the mainstream CEC 2013 test suite. The method was previously
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validated on the Differential Evolution and Particle Swarm Optimization algorithm for the online
control of their parameters. The analysis reveals that the performance estimation phase is the most
sensitive one, while the rest of the parameters have only mild influence on the algorithm’s dynamic.
Also, it reveals that the previously proposed default parameters are very efficient.

Future work will expand the analysis in order to reveal possible interactions between the pa-
rameters by using methodologies such as the analysis of variance.
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1 Introduction 

In portfolio optimization problem, when modelling the joint cumulative distribution function, it is 

important to choose the accurate approach for dependence modelling. The most flexible tool for dependence 

modelling are copula functions, which can be, with some simplifications, divided into the following groups: 

elliptical copula functions based on chosen elliptical probability distributions and Archimedean copula 

functions based on chosen generators. The choice of concrete Elliptical or Archimedean copulas requires the 

knowledge about the type of dependence structure. There exist also empirical copula function, introduced by 

Deheuvels (1981), and kernel-based approach applicable to a copula setup. 

In our paper, we propose to apply smoothing filter based on discrete fuzzy transform in order to smooth 

the empirical copula function. The smoothing of empirical copula function consists of applying discrete direct 

fuzzy transform followed by inverse fuzzy transform. 

2 Discrete fuzzy transforms 

In this section will focus on the technique of fuzzy transform originally proposed by Perfilieva (2004, 

2006) as a tool for image processing. Recently, in Holčapek and Tichý (2010, 2011) it was suggested to use 

this method for financial time series smoothing. 

Following Perfilieva (2006), when we apply fuzzy transform approach, as we can guess from the term 

fuzzy, the independent variables are fuzzyfied according to the proximity to a given point, which can be 

compared to the concept of weights obtained via probability distribution function in kernel regression 

approach. Next, the observations of the dependent variable are averaged, which forms a functional relation for 

a given point. This step of fuzzy transform is called direct fuzzy transform. Obviously, the second step is 

inverse fuzzy transform, within which we return back to the original crisp space and obtain a smoothed 

function describing the relation of both variables. 

Assuming that R is a real interval, g is a finite real function given at the nodes x1 < · · · < xn with

Dom(g) ⊆ R and 𝐴 = {𝐴𝑖|𝑖 ∈ 𝐼} is a fuzzy r-partition of R determined by (T, S) such that Dom(g) is sufficiently

dense with respect to A, one can say that a collection of real numbers {𝐹𝑖|𝑖 ∈ 𝐼} is discrete (direct) fuzzy

transform of g with respect to A, if  

𝐹𝑖 =
∑ 𝑔(𝑥𝑗)𝐴𝑖(𝑥𝑗)
𝑛
𝑗=1

∑ 𝐴𝑖(𝑥𝑗)
𝑛
𝑗=1 ℎ

. (1)

The numbers Fi are called components of the discrete F-transform. The F-transform of an original 

function serves as its discrete representation, which can be e.g. successfully used in numerical computations. 

To bring the F-transform back we use the inverse F-transform, 

𝑔(𝑥𝑗) = ∑ 𝐹𝑖𝐴𝑖(𝑥𝑗)
𝑛
𝑖=1 . (2) 
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The above mentioned functions and the whole concept can be easily generalized to higher dimensions, 

see e.g. Martino et al. (2011). This can be helpful when smoothing the empirical cumulative density function

(cdf) or empirical copula function, which represents only the dependence structure in cdf. 

3 Copula functions 

Copula function is in the fact a real function, which maps the dependency among particular 

distribution functions into [0,1],  

C:[0,1]n → [0,1] on Rn, (3)

Every copula function has to satisfy these three conditions: (i) C(u)=0 whenever u=[0,1]n has at least one 

component equal 0, (ii) C(u)=ui  whenever u=[0,1]n has all the components equal to 1 except the i-th, which 

is equal to ui and finally (iii) C(u) is n-increasing.  

Actually, any copula function can be regarded as a multidimensional distribution function with marginals in 

the form of standardized uniform distribution. Assume potentially dependent random variables with marginal 

distribution functions F1, …, Fn and joint distribution function F1,…,n. Then following the Sklar's theorem 

(Sklar, 1959):  

F1,…,n(x1, …, xn)=C(F1(x1), …, Fn(xn)). (4)

If all distribution functions are continuous, a copula function C is unique. Sklar's theorem implies also 

an inverse relation, 

C(u1, …, un)= F1,…,n(F1
-1(u1), …, Fn

-1(un)). (5)

When we have m empirical observations  1 ,...,
m m

nx x , the empirical copula function can be defined 

as follows, 

   1 1 11

1
,...., 1 ,...,

m

n n ni
C u u U u U u

m 
   . (6) 

However, the above function is not smooth and less data we observe (m) or higher is the dimension (n) of the 

problem the more choppy the function is. In this problem the fuzzy smoothing filter can be applied. 

4 Real data application 

In the real world application, we assume daily returns of two important American stock market indices, 

DJIA and S&P 500 over the last year (19.6.2017 – 18.6.2018), see Figure 1. In Figure 2 we show the contour 

plot of empirical copula function (left) and copula function obtained by applying fuzzy smoothing filter (right). 

Figure 1: Daily returns (left) transformed to uniform distributions (right) 

96 sciencesconf.org:meta2018:206616



3 

The advantage of the smoothed copula is also that it is specified by less parameters. In our application, we 

assumed 121 nodes (11 for each dimension). From these data (i.e. 121 values) we can obtain function value 

 1 2,C u u  for every u ∈ [0,1]n. On the other hand, the empirical copula function is specified by 252 daily 

returns. As we can see, by smoothing the empirical copula function there is less parameters. 

Figure 2: Contour plot of empirical copula function (left) smoothed by FS filter (right) 

Moreover, we compare the fitness of smoothed copula function to the fitness of well-known 

parametrical copulas. In Table 1, we depict the mean absolute difference between empirical copula and 

smoothed copula, the benchmark is the mean absolute difference between empirical copula and estimated 

parametrical copulas. As it is apparent from the table, the smoothed copula has the lowest mean absolute error 

(approximately the half of the mean absolute error of the parametrical copulas). However, it must be said that 

the parametrical copulas have only one parameter (all copulas except Student copula) or two parameters 

(Student copula). 

Table 1: Mean absolute error of smoothed empirical copula and parametrical copulas 

Copula FS filter Gaussian Student Clayton Frank Gumbel 

MAE 0,008 0,015 0,015 0,015 0,017 0,015 
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Abstract. In this paper, we investigate the use of machine–learning algorithms in portfolio
selection problems using high–frequency data from S&P 500 index. In particular, we propose
a heuristic method based on neural networks for optimal portfolio selection, which integrates
different forecasts and trading strategies as well as investors preferences. We consider new
performance measures for heavy–tailed distributions, and we discuss the dimensionality re-
duction problems. Ex-Ante and ex-post empirical analyses show that the proposed methods
are fast and efficient to approximate the returns in large-scale portfolio problems. The pro-
posed models are certainly expected to be promising approaches in the portfolio strategies
where data is heavy-tailed and non–linear, whose patterns are difficult to be captured by
traditional models.

1 Introduction

In recent decades, there has been increasing interest in the machine–learning algorithms for stock
prices predictability (see, e.g., Sermpinis et al. (2013), Barak et al. (2017), and Krauss et al.
(2017)). The results are encouraging and suggest that learning methods may be a useful device for
both understanding and building profitable strategies. Therefore, we implement and analyze the
usefulness of dynamic artificial neural network, hybrid neural networks, and several ensembles of
these methods in the context of portfolio strategies; especially in a high–frequency environment.
Accurate forecasting is the key element for better financial decision–making. In financial literature,
many artificial neural network models are evaluated against statistical technique for forecasting
the stock prices (see, e.g., Guresen et al. (2011)). However, there are very few studies that attempt
to consider the following crucial aspects all together: portfolio selection problems, dimensionality
reduction, investors preferences, and neural network algorithms using high–frequency databases.

Portfolio selection problems can be characterized and classified based on the motivations and
intentions of investors (see Ortobelli et al. 2017). Thus, it is important to classify the optimal
choices for any admissible ordering of preferences. In this regard, several classifications of the
reward–risk probability function consistent with different orderings have been proposed in the
financial literature (see, among others, Stoyanov et al. 2007; Ortobelli et al. 2017). We recall that
an investor is risk-averse (risk-seeker) if he/she has concave (convex) utility function. In contrast to
classical results on expected utility theory (von Neumann and Morgenstern (1944)), many empirical
and theoretical studies support dominance rules of behavioral finance (see, among others, Levy and
Levy (2002), Ortobelli et al. (2009) and the references therein) suggesting that investors prefer more
than less and are neither risk averters nor risk seekers.

According to many researchers (e.g., Rachev et al. (2005)), the portfolio dimensional problem is
strongly related to the estimation of the statistical input parameters, which describe the dependence
structure of the returns. In this context, aiming to get a good approximation of the portfolio reward-
risk measures, Papp et al. (2005) and Kondor et al. (2007), among others, have shown that the
number of observations should increase with the number of assets. Therefore, in order to obtain
a sound approximation of portfolio input measures, it is important to find the right trade-off
between the number of historical data observations and the quality of statistical approximation of
the historical observations that depend only on a few parameters. Notwithstanding, many studies
illustrate that the problem of parameter uncertainty increases with the number of assets (see Kan
and Zhou, 2007).

In practice, many methods have been proposed to predict stock trends. Initially, classical re-
gression techniques were used to predict stock trends. Since stock data can be categorized as
non–stationary time series, non-linear machine–learning techniques have also been suggested (see,
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Patel et al. (2015)). Artificial neural network and hybrid neural networks are machine learning
algorithms which are widely used for predicting stock prices (see, e.g., Rather et al. (2015), Gocken
et al. (2016)). These algorithms for pattern recognition emulate functioning of our brain to learn
by creating a network of neurons.

In this paper, we integrate machine–learning algorithms with those of portfolio strategies to
consider heavy tails of the return distributions, dimensionality reduction, and accurate prediction.
An alternative would be to use an approach based on non–parametric techniques that have received
significant interest from academics and the investment management community (see, e.g., Scott
(2015), and Kouaissah et al. (2018)). The next section outlines the crucial aspects of the proposed
methods.

2 Method description

As mentioned above, our aim is to build trading strategies that benefit from the efficient machine–
learning algorithms, account for different investors preferences and use high–frequency data. There-
fore, we define the following crucial aspects that are useful for the proposed methodologies:

– a description of different correlation measures (that represent the dependence structure between
random variables) used to identify the main factors that consider all return variability (through
PCA);

– a description of alternative methodologies to approximate the dependence between returns and
factors;

– a heuristic method based on neural networks, and new performance measures, for optimal
portfolio selection;

– an ex-post and an ex-ante analyses to discuss the impact of using different machine–learning
algorithms, correlation measures and approximation methods.

Thus, we theoretically and empirically compare different methodologies based on approximating
the dependence between returns and factors obtained from a PCA. The main contribution of this
paper is the introduction of machine learning techniques to the portfolio theory. Focused improve-
ments create sound trading strategies that are consistent with investors preferences, benefit from
dimensionality reduction, and implement machine learning algorithms, involving the application
of heuristic methods.

3 Conclusion

Portfolio selection problems often involve unknown parameters that have to be properly approxi-
mated from the data. Therefore, in this paper, we consider the implications of the machine–learning
algorithms within the portfolio theory. We discuss and examine the impact of the correlation ma-
trices, approximation methods, and investor’s preferences in the portfolio theory; especially when
we use high–frequency data. We use new performance measures that account for the heavy-tailed
distribution of the returns and their joint risk. Finally, the proposed empirical analysis support the
significance of the machine–learning algorithms within the portfolio theory.
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Abstract: This paper introduces an innovative heuristic mixed-integer optimization approach for multi-criteria 

optimization based production planning with rolling horizon for a discrete goods manufacturer. The fast 

moving consuming goods industry is characterized by standard and promotion sales volumes with different 

properties. State-of-the-Art multi-objective solution methods [1-3, 8-11] fail to address these properties 

adequately, due to the lack of considered subdimensions within a planning level. Furthermore these techniques 

contain static constraints rendering them unable to adapt the production system to seasonal (off-) peaks and to 

consider resource adjustments. In contrast, the presented approach features dynamic capacity-based 

restrictions and dynamic stock-levels within a given planning horizon. The product volumes per planning 

period (week) are split into two different subdimensions with specific constraints for order shifting and lot 

splitting for each subdimension and product. This approach pursues the optimized capacity utilization for a 

key production unit, featuring integer-based dynamic capacity restrictions. In addition to a smoothed 

production, mid-term stock-levels are simultaneously being optimized. The results show a 40% reduced output 

variation rate of the cost- and labor-intensive key equipment and a 30% reduced capacity requirement for 

downstream production equipment, compared with the initial manually compiled solution. Finally, the authors 

give an outlook on a possible enhancement of the method with statistical learning using periodic feedback 

from the production system. 

Keywords: multi-product multi-period multi-objective production planning problem, heuristic optimization, 

lot splitting, production smoothing, rolling horizon, dynamic capacity constraints, dynamic stock-levels 

1 Introduction 

Modern production planning solutions are key enablers for today’s highly competitive industrial environment. 

They (in-) directly influence the production system performance and profit of a factory. Different problem-

specific heuristic [1, 5] and metaheuristic [2-3, 8-10] approaches characterized in [20] are proposed to meet 

the requirements of a smoother production. The latter ensures low flexibility costs and a good capacity 

utilization. An overview about practical and modelling issues as well as solution approaches concerning  

production smoothing problems presented in various contributions [1-5, 12, 19, 20] is given in section 3. 

Trends in global and flexible markets, in combination with increasing product individualization, necessitate 

more flexible and responsive production systems [5, 7]. According to a Fraunhofer study [6], increasing 

variations in demand require sophisticated solutions concerning capacity flexibility measures, especially in 

the planning dimension week (47%).  

This paper introduces an innovative heuristic optimization approach for a capacitated Multi-Objective Multi-

Product Multi-Period (MOMPMP) production planning problem. The problem of scheduling the final 

production level is known as the Production Smoothing problem (PSP) [5].  

This paper is structured as follows: After an introduction of the case study in section 2 and a literature review 

for the specific problem class at hand (see section 3), the developed heuristic optimization method is presented 

within section 4. A summary and discussion of the results in section 5 and an outlook on future research in 

section 6 conclude the paper. 
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2 Case-study introduction and solution approach: An overview 

This paper is centred on a case-study featuring an industrial European food producer aiming to introduce a 

smoother production flow to optimize the utilization of key production equipment/machines (see figure 1, 

production step 1). The key equipment represents a cost- and labor-intensive bottleneck unit within a soon-to-

be-built factory. This production step influences other downstream production equipment within the total 

production system. The main task is the creation of an optimal, long-term (78 weeks in this use-case) dynamic

capacitive-restricted production plan with a rolling horizon and the following optimization criteria: 

goal (1) Reduced production volume peaks per planning period within the capacitive-restricted 

production system for all product types within a given planning horizon 

goal (2) Optimized capacity utilization of a key production unit and downstream equipment 

goal (3) Optimized stock levels for all product types and periods achieved and applied within a certain 

customer defined time frame 

This specific optimization task should satisfy all relevant constraints concerning capacity, production process 

and product-type. In addition to reduced peaks in capacity demand through production smoothing, this 

heuristic optimization method enables a better capacity utilization resulting in a more energy-efficient 

production. It also prolongs the period until an investment in new capacity (i.e. machines) is necessary. Figure 

1 provides a simplified process overview. An additional process step (‘Extended maturing’) was included as

a buffer into the original process sequence to enable the operation of the production smoothing heuristic. 

Figure 1: Production process system overview 

The new factory has been planned using reliable forecasts for sales volume development to generate an initial 

production plan ( initial solution). The heuristic has been originally applied with goal (1) and goal (2) to 

create the smoothed production volumes per period followed by a comprehensive discrete simulation study 

[17] to determine and validate the required capacities ( production units) within the new production facility. 

Approaching the Go-Live of the plant in combination with the introduction of the rolling horizon the target 

function has been enhanced by goal (3) to further increase system productivity and process stability. 

3 Literature review 

Multi-objective multi-product multi-period (MOMPMP) production planning problems are NP-hard [1] and 

thus necessitate tailor-made, problem-specific (meta-) heuristics [20] to approximately solve problems of this 

complexity class within a reasonable time. The authors of [15, 19] give an overview of published literature 

dealing with MPMP models. Different multi-objective solution methods, including diverse mathematical 

models, are applied to deal with the complexity of purposeful search in the given solution space, namely: 

 (MOGA) Multi-objective genetic algorithms [2, 8, 9, 12, 15]

 (Hybrid) Metaheuristics for (Mixed) Integer linear programming (MILP, ILP) models [3, 15, 16, 21]

 (MOPSO) Multi-objective particle swarm optimization [10], (MOBA) multi-obj. bat algorithm [18]

 Dynamic programming (DP) algorithms [5] and memory-based algorithms [11]

 Problem-specific heuristics [1, 5, 13] and rule-based algorithms [14]
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In [5] the authors first present a dynamic programming algorithm for the exact solution of the corresponding 

production smoothing problem requiring significant computational effort, rendering its use impractical in a 

given real world environment. Thus, a 2-phase-metaheuristic approach is proposed – the problem is split into 

a constrained batching problem (BP) and sequencing problem. This approach offers some similarities with the 

proposed method in this paper, because jobs are split into smaller batches that can be consolidated with batches 

in other periods of the same product type. The main difference and shortcoming of existing (meta-) heuristics 

is the missing utilization of subdimensions within a certain planning dimension. Furthermore, the proposed 

rolling horizon approach considers dynamic capacity and dynamic target stock-level bounds, thus enabling 

the consideration of seasonal effects and resource (labor, production equipment) adjustments. The result 

evaluation is performed with an index (1) performing a weighted comparison of each part-goal result value. 

4 Developed heuristic optimization method 

The presented heuristic mixed-integer approach is modular and consists of five sequential optimization phases. 

The target function 𝑓(x) including its three defined part-goals calculates a weighted and normalized fitness-

value, the « multi-criteria smoothing index » (MCSMI). This target function includes an evaluation function 

for a smoothed production planning horizon (𝑓1), next to an evaluation for optimized stock-levels (𝑓2) and an

evaluation function to measure the smoothed capacity utilization (𝑓3):

𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑓(𝑥) =  𝜔1 ∑ 𝑓1(𝑘_𝑝𝑟𝑜𝑑𝑖𝑗) 

𝑗=𝑚
𝑖=𝑛

𝑖=1
𝑗=1

+ 𝜔2 ∑ 𝑓2(𝑘_𝑠𝑡𝑜𝑐𝑘𝑖𝑗) 

𝑗=𝑚
𝑖=𝑛

𝑖=1
𝑗=1

+ 𝜔3 ∑ 𝑓3(𝑘_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑐) 

𝑐=𝑜
𝑖=𝑛

𝑖=1
𝑐=1

+ 𝜔4 ∑ 𝑓4(𝑘_𝑝𝑙𝑎𝑛𝑡𝑖)

𝑖=𝑛

𝑖=1

 ,  

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 ∑  𝑞𝑖𝑗 ≤ 𝑞𝑚𝑎𝑥𝑖

𝑚

𝑗=1

, ∀𝑖, 

𝑞𝑖𝑗  𝜖 𝐴𝑖 , 𝑞𝑚𝑎𝑥𝑖
 𝜖 𝐴𝑖 ,

𝑑𝑒𝑙𝑡𝑎_𝑞𝑝𝑟𝑜𝑑𝑖𝑗
≤  𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥 , ∀𝑑𝑒𝑙𝑡𝑎𝑞𝑝𝑟𝑜𝑑 𝑖𝑗

, 

 𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥 𝜖 𝐴𝑖

Legend: 

𝜔1 - 𝜔4 … 𝑝𝑎𝑟𝑡 − 𝑔𝑜𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
𝑚 … 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒𝑠  

𝑛 … 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 

𝑜 … 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 

𝑓1 … 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑎𝑛𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑)  
𝑓2 … 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑡𝑜𝑐𝑘 − 𝑙𝑒𝑣𝑒𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑎𝑛𝑑 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑)  
𝑓3 … 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑢𝑛𝑖𝑡, 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 𝑎𝑛𝑑 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛)
𝑓4 … 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑)  
𝑘_𝑝𝑟𝑜𝑑𝑖𝑗 … 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖

𝑘_𝑠𝑡𝑜𝑐𝑘𝑖𝑗 … 𝑠𝑡𝑜𝑐𝑘 − 𝑙𝑒𝑣𝑒𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑡𝑦𝑝𝑒 𝑗 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖

𝑘_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑐 … 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑙𝑒𝑣𝑒𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖 𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐
𝑘_𝑝𝑙𝑎𝑛𝑡𝑖 … 𝑝𝑙𝑎𝑛𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑖
𝑞𝑖𝑗… production (share) quantity of product type 𝑗 in period 𝑖  
𝑠𝑙𝑞𝑖𝑗… stock-level quantity of product type 𝑗 in period 𝑖  
𝑡𝑎𝑟𝑔𝑒𝑡𝑠𝑙𝑞𝑖𝑗

…dynamic target stock-level quantity of product type 𝑗 in period 𝑖 

𝑐𝑢𝑙𝑖𝑐… capacity-unit level in period 𝑖 𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐  
𝑞𝑚𝑎𝑥𝑖

… capacity constraint: max. allowed production quantity in period 𝑖

𝑑𝑒𝑙𝑡𝑎_𝑞𝑝𝑟𝑜𝑑𝑖𝑗
… offset quantity of product type 𝑗 in period i 

𝑑𝑒𝑙𝑡𝑎𝑚𝑎𝑥 … integer constraint for max. allowed offset [in periods] 
𝐴𝑖 … 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑞𝑖𝑗, 𝑞𝑚𝑎𝑥𝑖

, 𝑑𝑒𝑙𝑡𝑎_𝑞𝑝𝑟𝑜𝑑𝑖𝑗
, 𝑑𝑒𝑙𝑡𝑎𝑀𝑎𝑥

The defined part-goal functions 𝑓1 − 𝑓4 are represented by gradients provided in the following format:

𝑓1(𝑘_𝑝𝑟𝑜𝑑𝑖𝑗) = 𝐴𝑏𝑠|𝑞𝑖+1,𝑗 − 𝑞𝑖𝑗|

𝑓2(𝑘_𝑠𝑡𝑜𝑐𝑘𝑖𝑗) = 𝐴𝑏𝑠|𝑠𝑙𝑞𝑖𝑗 − 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑙𝑞𝑖𝑗|

𝑓3(𝑘_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖𝑐) = 𝐴𝑏𝑠|𝑐𝑢𝑙𝑖+1,𝑐 − 𝑐𝑢𝑙𝑖𝑐|

𝑓4(𝑘_𝑝𝑙𝑎𝑛𝑡𝑖) = ∑ 𝐴𝑏𝑠|𝑞𝑖+1,𝑗 − 𝑞𝑖𝑗|

𝑗=𝑚

𝑗=1

 

(1) 

(2) 

(3) 

(4) 

(5) 

(8) 

(9) 

(7) 

(6) 
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A gradient function, 𝑓1 for instance, is calculated from (absolute) changes in production volumes between

adjacent time periods. When compared with relative gradients, absolute gradients are preferred for evaluation 

because they penalize large deviations much stronger, and relative gradients could distract the algorithm from 

its goal. The decision maker’s preferences are represented by the weights (equally set to 1 by default). 

The given periodic-dynamic production capacity constraint (2) is a hard constraint and must strictly be fulfilled 

in each period to generate a valid convertible solution. Constraint (3) specifies that 𝐴𝑖, a set of specific

multiples of certain integer values, according to an A/B/C categorization, is allowed for production only (see 

table 1, with « 1 » as the smallest possible batch unit of a product type). 

Table 1 : Acceptable multiples for (𝒒𝒊𝒋, 𝒒𝒎𝒂𝒙𝒊
) according their article specific ABC value

Parameters / Multiples of ABC value A B C 

𝑞𝑖𝑗 , 𝑞𝑚𝑎𝑥 𝑖
6 3 || 6 1 

Constraints (4) and (5) specify that the applied article-specific offsets for shifted production volumes must be 

lower than the maximum allowed offset values from the master data ( technological requirement). There 

are two given maximum integer (→ planning periods) offset values per product type, one for standard sales 

volumes and one for promotion sales volumes. Table 2 lists the core functional requirements and constraints. 

Table 2: Functional requirements for the optimization modules 

Module, title and evaluation function Description and constraints 

Module 1: Production smoothing of 

promotion sales volumes (𝑓1)

This module reduces peak volumes of promotion-sales for each product and 

period according to flexible restrictions determined by product type, 

planning period, capacity and A/B/C (→ formulas (6) & (9)) category. 

Module 2: Production smoothing of 

standard sales volumes (𝑓1)

This module reduces standard peak volumes for each product and period, 

according to flexible restrictions determined by product type, planning 

period, capacity and A/B/C (→ formulas (6) & (9)) category. 

Module 3: Stock-Level smoothing (𝑓2) This module optimizes defined mid-term stock-levels (see figure 3) in order 

to comply with target stock-levels according to formula (7). 

Module 4: Capacity utilization forecast 

calculation (𝑓3)

This module calculates the capacity utilization forecast. This forecast is 

evaluated according to formula (8). 

The multi-objective MPMP algorithm (see Algorithm 1), consists of five phases, which manipulate the 

production program towards different part-goals that are summed up in cost function 𝑓(𝑥).  

Phase 1: Processing of master data, current production and demand plan (rolling horizon → each period) 

Phase 2a: Minimization of promotion sales volumes peaks in the production plan. This phase of the algorithm 

calculates an average weekly production load (→ calculated from cumulated (→ C-articles) or article-specific 

(→ A/B articles) standard production volumes) and tries to shift shares of specific promotion volumes, which 

are above the average production load, into weeks that are below the average production load (gaps), as

visualized in figure 2. These gaps are filled up according to the following heuristic: 

(1) The gaps in periods closest to the current period are filled up first, until the current «average production 

load» (APL) per period is achieved (see Algorithm 1, rows 15 – 29) 

(2) The remaining quantities are shared between all offset-periods, resulting in a higher APL 

Figure 2: Promotion sales volumes smoothing (example) 
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The shifting of production volumes (promotion, standard) takes into account maximum offset intervals (4). In 

addition shifting is only possible into earlier production weeks (due to the structure of the input data) in order 

to still meet the production deadlines. Within the preparation phase, the input sales volumes have to be checked 

and accumulated to calculate product-specific gradients for production, capacity and stock-levels. 

Phase 2b: Standard volume smoothing uses the same approach as phase 2a. An average production load (→ 

calculated from both standard and smoothed promotion volumes after phase 2a) is determined and standard 

production volumes that are above this derived average production load are preferably shifted to weeks that 

are below the considered average according to the heuristic in phase 2a. 

Phase 2a and 2b feature some tweaks, e.g. a floating re-calculation of the average production load value. 

Another performance gain results from using smoothing indices for each phase, ensuring that an over-control 

is avoided by allowing a small percentage value to remain above the average production load value. This 

tweak further reduces the amount of production volume that needs to be shifted significantly.  Optimization 

tests have shown this factor to be around 7-10%, depending on the specific dataset received.  

Phase 3 - 4: Within these phases the filling level of each carrier-unit (rack) for the products, is evaluated and 

optimized according to its specific capacity utilisation and under the production restrictions (2) – (5). 

According to these restrictions, production volumes have to be a multiple of the minimum production volume 

of a product and are rounded tactically to half or full racks for each product in each period, according to the 

corresponding A/B/C-category of each product (see table 1). Depending on the stock level, rounding attempts 

to reach the optimal stock level, either by rounding up or down (or commercial) to increase, decrease or keep 

a certain stock level.  

Phase 5: Smoothing via stock-level strategies is used (in addition to the stock level optimization of phase 3 - 

4) to keep stock levels from a certain (shorter than in phase 3 - 4) ) time frame close to the defined target stock

level. This is done by calculating an average expected stock level over a certain number of weeks (adjustable, 

an example for this is « lead time 2 » in figure 3) and adding/removing the difference between the calculated 

stock level and the preferred stock level to/from the production plan (see the green dashed line in figure 3). 

Adding or removing production volumes is performed considering the average production volume while trying 

to maintain a smoothed production plan. Figure 3 shows a typical stock-level trend of a product (lead time = 

12 weeks; given Smin , Smax). The goal is to improve the stock-level of the the influenceable time-period only, 

and not of the full planning horizon, since this would not be beneficial. This results in a short phase 5 with 

steep improvements of the objective function value realized within a longer time-span (see figures 3 – 4). 

Figure 3: Stock-level strategies based on the specific stock-levels in the mid-term future 

The final result is a multi-objective smoothed production plan for all products and the full planning horizon. 

It considers the planning dimensions «production volumes», split into the promotion and standard sales

volumes dimension, next to the planning dimensions «stock-levels» and «capacity utilization». 
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Algorithm 1: The Multi-Objective MPMP Production Smoothing Heuristic

1 : Begin // process current master data, production and demand plan (rolling horizon  each period) 

2 : Calculate production plan solution matrix ppsm(m,n) // matrix with m (products) rows and n (periods) columns  

3 : Calculate stock-level gradient matrix slgm(m,n) // matrix with m rows and n columns     

4 : Calculate capacity utilization forecast matrix cufm(m,o) // matrix with m rows and o (capacity types) columns 

5 : 𝑓(𝑥) ⟵ 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 (𝑝𝑝𝑠𝑚, 𝑠𝑙𝑔𝑚, 𝑐𝑢𝑓𝑚) 

6 : 𝑚′ ⟵ 𝑚 (derive prio-list 𝑚′)    // priorisation by ABC analysis based on yearly average volumes and marginal returns 

7 : Update 𝑝𝑝𝑠𝑚′ ⟵ 𝑝𝑝𝑠𝑚;  𝑠𝑔𝑙𝑚′ ⟵ 𝑠𝑔𝑙𝑚  // update production and stock-level matrices  

8 : (𝑝𝑝𝑠𝑚0′
, 𝑝𝑝𝑠𝑚1′) ⟵ 𝑠𝑝𝑙𝑖𝑡 𝑝𝑝𝑠𝑚′ // performs split into two matrices : for standard (0) and promotion (1) sales volumes

9 : For j = 1 to m  

10 : For i = n to 1  // starting with the last period iterating to the first 

11 : Calculate 𝑚𝑗 ⟵ mean(j, n/3)  // floating mean value valid for product j for n/3)periods  

12 : 𝐈𝐟 (i = n) 𝐓𝐡𝐞𝐧 𝑦 ⟵ 𝑝𝑝𝑠𝑚1′(𝑖, 𝑗) // derive production promotion amount for product j in period 𝑖 
13 : Else 𝑦 ⟵ 𝑝𝑝𝑠𝑚1′′(𝑖, 𝑗) 

14 : End If 

15 : 𝑑𝑒𝑙𝑡𝑎 ⟵ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒 (𝑦 − 𝑚𝑗) 

16 : If (delta > 0) Then 

17 : If (𝑗 𝜖(𝐴||𝐵)) Then  // if product type equals (A || B), stores week indices/quantities 

18 :  // in bwl HashMap, considering capacity and article constraints 

19 : 𝑏𝑤𝑙 ⟵ search best local weeks including their quantities 

20 : checkCapacityAndArticleConstraints (𝑝𝑝𝑠𝑚′, 𝑏𝑤𝑙) 
21 : Update 𝑝𝑝𝑠𝑚1′′ ⟵ 𝑝𝑝𝑠𝑚1′(𝑏𝑤𝑙) // update ppsm1’ by using bwl 

22 : Else  // stores week indices/quantities in bwg HashMap incl. capacity/art. constraints 

23 :  bwg ⟵ search best global weeks including their quantities 

24 :  checkCapacityAndArticleConstraints(𝑝𝑝𝑠𝑚′, 𝑏𝑤𝑔) 

25 :  Update 𝑝𝑝𝑠𝑚1′′ ⟵ 𝑝𝑝𝑠𝑚1′(𝑏𝑤𝑔) // update ppsm1’ by using bwg 

26 : End If 

27 : Update 𝑐𝑢𝑓𝑚′ ⟵ 𝑐𝑢𝑓𝑚 // capacity-utilization forecast update  

28 : Update 𝑝𝑝𝑠𝑚′′ ⟵ (𝑝𝑝𝑠𝑚0′, 𝑝𝑝𝑠𝑚1′′);  𝑓(𝑥) ⟵ 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 (𝑝𝑝𝑠𝑚′′, 𝑠𝑙𝑔𝑚, 𝑐𝑢𝑓𝑚′) 
29 :  End If  

30 :  End For // next period for this article 

31 : End for // next article from prio-list 𝑚′ 

33 : Repeat 2b ⟵ (2a) : Update 𝑝𝑝𝑠𝑚0′′   ⟵ 𝑝𝑝𝑠𝑚0′ // repeat steps of (2a) for (2b) with 𝑝𝑝𝑠𝑚0′ instead of 𝑝𝑝𝑠𝑚1′ 

34 : If (Update ( 𝑝𝑝𝑠𝑚0′′ ⟵ 𝑝𝑝𝑠𝑚0′(𝑏𝑤𝑔 ||𝑏𝑤𝑙) 𝐓𝐡𝐞𝐧       

35 : Update 𝑠𝑔𝑙𝑚′′ ⟵ 𝑠𝑔𝑙𝑚′  // actualise stock-level matrix (standard volumes!) each iteration 

36 : // Update 𝑝𝑝𝑠𝑚′′′ ⟵ (𝑝𝑝𝑠𝑚0′′, 𝑝𝑝𝑠𝑚1′′) instead of 𝑝𝑝𝑠𝑚′′ ⟵ (𝑝𝑝𝑠𝑚0′, 𝑝𝑝𝑠𝑚1′′);  

// Update 𝑐𝑢𝑓𝑚′′ ⟵ 𝑐𝑢𝑓𝑚′; instead of 𝑐𝑢𝑓𝑚′ ⟵ 𝑐𝑢𝑓𝑚; → 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 (𝑝𝑝𝑠𝑚′′′, 𝑠𝑙𝑔𝑚′′, 𝑐𝑢𝑓𝑚′′) 
37 : End if  

38 : // capacity utilization forecast finished  start rack-optimization 

39 : For j = 1 to m  

40 : For i = 1 to n 

41 : Round (𝑝𝑝𝑠𝑚′′′ ⟵ 𝑝𝑝𝑠𝑚(𝑖, 𝑗)′′′) // round tactically to half ||full racks for each product in 

42 :      // each period according to // A/B/C depending on stock levels 

43 : // → according to target function part 𝑓2(𝑥) : roundings support to better achieve optimal stock-levels 

44 : Update (𝑠𝑔𝑙𝑚′′′ ⟵ 𝑠𝑔𝑙𝑚(𝑖, 𝑗)′′);  𝐔𝐩𝐝𝐚𝐭𝐞 (𝑐𝑢𝑓𝑚′′′ ⟵ 𝑐𝑢𝑓𝑚′′);  𝑓(𝑥) ⟵ 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 (𝑝𝑝𝑠𝑚′′′)  
45 : End For 

46 : End For 

47 : // Phase 3 – 4 finished  → perform mid-term stock-level strategies for all products and certain time frames 

48 : For j = 1 to m 

49 : Derive 𝑜𝑝𝑡𝑆𝑡𝑜𝑐𝑘𝐿𝑒𝑣𝑒𝑙 (𝑜𝑠𝑙);  𝑚𝑖𝑛𝑆𝑡𝑜𝑐𝑘𝐿𝑒𝑣𝑒𝑙 (𝑚𝑠𝑙);  𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 (𝑙𝑇) ⟵ master data matrix (mdm) 

50 : Initialize 𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑜𝑐𝑘 ⟵ 0 

51 : For i = 𝑙𝑇 to 2 ∗ 𝑙𝑇 // definition to perform changes in leadTime «1 » based on stockLevel in leadTime « 2 »

52 : Calculate/Update 𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑜𝑐𝑘 ⟵ 𝐂𝐨𝐦𝐩𝐚𝐫𝐞 𝐀𝐛𝐬(𝑜𝑠𝑙 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑡𝑜𝑐𝑘𝐿𝑒𝑣𝑒𝑙(𝑖, 𝑗))
53 : End For 

54 : If (𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑜𝑐𝑘< msl) Then 

55 : 𝑏𝑤𝑙 ⟵ search best local weeks including their quantities to fill 1st local / 2 nd global stock-level gaps 

56 : checkCapacityAndArticleConstraints(𝑝𝑝𝑠𝑚′′′, 𝑏𝑤𝑙) 
57 : Else If (𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑜𝑐𝑘  > 𝑜𝑠𝑙 ∗ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝐹𝑎𝑐𝑡𝑜𝑟) Then

58 : 𝑏𝑤𝑙 ⟵ search best (a) local/ (b) global weeks incl. their quantities to downlevel current stock-level 

59 : End If 

60 : For i = 1 to 𝑙𝑇  // perform production changes «fast » within 1st lead time 

61 : While (bwl !isEmpty()) Do 

62 : Update 𝑝𝑝𝑠𝑚′′′′ ⟵ 𝑝𝑝𝑠𝑚0(i, j)′′′(𝑏𝑤𝑙) // update ppsm by using bwl on 𝑖𝑝𝑝𝑠𝑚0′′′

63 : Update (𝑠𝑔𝑙𝑚′′′′ ⟵ 𝑠𝑔𝑙𝑚(𝑖, 𝑗)′′′) ;  𝐔𝐩𝐝𝐚𝐭𝐞 (𝑐𝑢𝑓𝑚′′′′ ⟵ 𝑐𝑢𝑓𝑚′′′) ; 
64 :  𝑓(𝑥) ⟵ 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐞 (𝑝𝑝𝑠𝑚′′′′) 

65 : End While 

66 :  End For 

67 : End For 

68 : Return (𝑖𝑝𝑝𝑠𝑚′′′′;  𝑖𝑠𝑔𝑙𝑚′′′′; 𝑖𝑐𝑢𝑓𝑚′′′′) // print final optimized multi-criteria solution; End 
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5 Optimization results 

The optimization results presented were obtained by a given real-life scenario with a specific dataset (78 

planning weeks: 13/2018 – 38/2019) and the default settings of the algorithm. 

The 2nd optimization phase, representing the core-unit (three of four part-goals are improved) of the proposed 

multi-phase heuristic approach, includes the production smoothing steps for promotion and standard volumes 

and accounts for 25% of global goal optimization. The third step is mandatory for the final rack preparation. 

However, it does not improve the global goal. The fourth optimization step raises or reduces stock-levels in 

order to create full racks and to simultaneously pursue the target stock level for each product in each period 

(fig. 5). Achieving filled racks maximizes the capacity utilization of the racks. The 5th  optimization phase tries 

to shift production volumes in the near future to achieve optimal stock-values in the mid-term figure (fig. 2). 

Figure 4 features the global goal optimization results (represented as trend), while figure 5 shows the 

individual part goal results. Figure 5 shows that the total capacity gradient (aggregated by 5 sub-capacity 

gradients itself) is affected by the optimization of the production gradient in phase 2. The production and 

capacity gradient optimization within phase 2 is derived at the cost of a worse stock-level gradient. 

These results are achieved by shifting only ~ 8 – 10% of the annual production volume. However, the 

smoothing requires (1) lots to be split into part lots (→ shifting of part lots into existing other lots physically 

only leads in total to 5 – 7% more lots) and (2) additional (simple conditioning) storage capacity (fig. 1). These 

conditions result in additional – compared with the savings considerably lower – investment and setup costs. 

Figure 4: Global goal optimization 

Figure 5: Individual part-goal optimization 
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6 Outlook and conclusion 

The global goal optimization results release – compared with the initial production plan – a production 

smoothing potential of approximately 30%. Despite the fact that the absolute stock-level gradient cannot be 

measured explicitly in terms of minimized costs, the total cost saving potential from the production and 

capacity gradient is around 30%. This results in significantly lower investments for the new factory (fewer 

production units necessary) and 40% reduced operation costs on the key equipment (→ reduced labour costs 

achieved with balanced operation times) compared with – in comparison – very low additional costs for the 

additional process step. The actual optimization potential varies slightly with the specific planning scenario. 

Additionally, the method promises to be scalable as it becomes more effective with increasing appearance of 

peaks – and according to forecasts, more peaks are indeed to be expected in the future. Furthermore, this 

method enables an around 30% more uniform capacity utilization, resulting in a more energy-efficient 

production (because fewer units are in operation at a certain moment) and a longer lasting production facility 

configuration before the next expansion stage becomes necessary. 

Future work on this method include a dedicated optimization of the capacity utilization – that is currently only 

implicitly optimized (see fig. 5), and an additional smoothing of packaging processes downstream of the 

hitherto considered production steps. Another important issue is – besides the comparison of this heuristic 

optimization method with a metaheuristic approach – to evaluate the influence of production as well as 

environmental conditions on the production plants’ energy consumption. Therefore, after the collection of 

energy and production data, which is currently under way, the collected data will be analysed in order to find 

feasible opportunities - e.g. correlations between the production plan and the energy consumption. Thus, 

energy consumption will be integrated as an explicit optimization feature into the algorithm.  

Another line of follow-up research is the algorithm-based analysis of collected production data, in order to 

better and automatically adjust the article specific constraints and stock-level strategies in the future. This 

learning from historic production data will lead to the algorithm becoming adaptive, thus unlocking further 

optimization potential currently inaccessible due to the fixed parameters, constraints and strategies. 
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Abstract:In this paper, we propose a new optimization algorithm inspired by image processing methods. Indeed, our 

algorithm of Optimization by Morphological Filters (OMF) uses the morphological transformations, more precisely the 

erosion, for the search of the global optimum in a multidimensional space. 

We tested our OMF algorithm on a set of benchmark functions. The results obtained are very convincing, which shows 

that OMF is a very competitive algorithm for the resolution of optimization problems. 

Keywords: optimization, stochastic search, metaheuristics, numerical erosion, mathematical morphology. 

1. Introduction

Metaheuristic algorithms are generally stochastic search with iterative behavior for solving complicated optimization 
problems.Many of them imitates natural phenomena such as Genetic Algorithm [1] which is inspired from evolutionary 
process. Others are based on swarm behavior such as Ant Colony [2],Bee Colony [3],ParticleSwarm Optimization 
[4],Cuckoo Search [5], Bat-inspired Algorithm [6]and Grey Wolf Optimizer [7]. Another metaheuristic that imitates the 
physical annealing process isSimulated Annealing[8], while Harmony Search Algorithm conceptualizes the musical 
process of searching for a perfect state of harmony[9]. 

In this paper,we describe a brief overview of existing metaheuristic algorithms. We outline the proposed OMF algorithm 
and to demonstrate the effectiveness and robustness of the OMF algorithmwe present the results and discussions of the
application of OMF on benchmark functions from literature. 

2. A brief overview of existing metaheuristic algorithm

Metaheuristics are often employed to solve hard optimization problemdue totheir simplicity, they are mostly inspired by 
very simple concepts. They are classifiedinto three main classes: Evolutionary algorithms (EA), inspired by the concept 
of evolution in nature, among them the Genetic Algorithm (GA) proposed by Holland on 1975 and developed by De jong 
and Golberg.GA simulates Darwinian evolution.Deferential Evolution[10], Evolution Strategy (ES) [11] and 
Evolutionary Programming[12] are also a type of EA. The second main branch of metaheuristics is swarm intelligence 
(SI). These algorithms imitate the social intelligence of creatures in swarms, flocks and herds. The particle swarm 
optimizer (PSO) algorithm proposed by Kennedy and Eberhant is the most popular algorithm of this branch; it is inspired 
by social behavior of birds flocking or fish schooling. Cuckoo Search algorithm,Grey Wolf Optimizer and Ant Colony 
optimizer are also a kind of SI algorithms. The third subclass of metaheuristics is physics-based algorithm such as 
Gravitational SearchAlgorithm [13]which emulates newton’s law of universal gravitation, Big-Bang Big-Crunch (BBBC) 
[14], Charged System Search (CSS) [15], Central Force Optimization (CFO) [16], Artificial Chemical Reaction 
Optimization Algorithm (ACROA) [17], Black Hole (BH) [18], Curved Space Optimization[19]… 

Besidethese three mains classes, there are some algorithms inspired from different phenomena such asHarmony Search 
optimization and its derivative forms(Global Harmony Search Algorithm GHS[20],Improved Harmony Search Algorithm 
IHS[21]). They are music-based metaheuristic algorithms inspired by the observation that the aim of music is to search
for a perfect state of harmony. 

3. Optimization by morphological filter:

In this paper, we propose a new stochastic optimization algorithm inspired by morphological transformations.OFM 
algorithm uses the erosionprocess which consists to find the minimum combination of pixel values in the neighborhood of 
morphological filter(structuring element in image processing). 
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Inspiration: 

Mathematical morphology wasdeveloped from set theory. It was introduced by G. Matheron [22] in order to analyze 
geometric structure of metallic samples, than J.Serraextended it to image processing[23].It was initially developed to 
process binary images(mathematical morphology set) than extended to grayscale images. In this last case, mathematical 
morphology became functional mathematical morphology which is the object of our inspiration.  

The basic idea of the mathematical morphology is to compare the analyzed image with structuring element (a set or 
function describing some shape namely Morphological Filter),its application allowsto obtain many information from the 
original image.The two fundamental operations of mathematical morphology are dilation and erosion; they are employed 
in order to enlarge (dilate) or reduce (erode) the size of features in images. They also may be combined to produce 
opening (erosion operation followed by a dilation) and closing (dilation operation followed by an erosion). The main
morphological operation that inspired our algorithm is the functional erosion. 

The functional erosion: 

The functional erosion is applied to grayscale (multilevel) images in order to erode/shrink/reduce the regionsboundaries 
of foreground pixels. It corresponds to find minimum of pixel combinations and the Kernel function (structuring
element), it can be defined as: 

εB f = f ⊖𝐵𝑡 𝑥 = 𝑖𝑛𝑓 f y , y €BX (1) 

This transformation has the properties to reduce the “peaks” of gray levels and widen “the valley”;it tends to homogenize 
the image to darken it and to spread the edges of darkest objects. The figure1 below shows the result of erosion 
transformation by a flat structuring element(7*7). 

   (a) initial image             (b)eroded image     

Figure 1.Results of Erosion with a flat structuring element 

To adapt the functional erosion to the proposed approach, the structuring element in erosion is replaced by a star where 

the center (C1: diamond) is the actual solution and N1, N2, N3 and N4 are randomly generated neighbors 

(morphological filter). 

    Origin of structuring element

Figure 2.Structuring element Vs OFM filter

As previously mentioned, OFM is a stochastic approach which starts with random generation, all variables generated 
must be ranged in the interval [0, R] in order to have the hypercube with length R(search space). This procedure is 
assured by normalization process[24] defined as follow: 

𝑥 ′ =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛
∗ 𝑅   (2) 
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The algorithm usesmany filters operating in parallel.A filter applied to the objective function solution explores the 
neighborhood of its center and return the neighbor with the best fitness. The number of filtersand the number of neighbors 
are fixed at the initialization step. During the search process, if a better neighbor is found, the centre of the structuring 
element (filter) is moved on it.Otherwise, the size of the filter is reduced in order to check a closer neighborhood.This 
procedure is executed by all filters and our stop criterion is the exhaustion ofneighborhood search. The algorithm stops 
when the sizes of all the filters become too small (less than ε). The OMF steps can be summarized as follow: 

Initialize: Min, Max, filter size, search space size; 

Begin 

REPEAT 

For each filter do 

Neighborhood calculation Procedure (); 

Movement Procedure (); 

Until the size of all filters ≤ ɛ; 

Return the best solution found 

End. 

Figure 3.Pseudo code of the OMF algorithm 

Where Neighborhood calculationand Movement Procedures are detailing the neighborhood calculation and movement 
applied to each filter, they are described down below:  

 Neighborhood calculation Procedure (); 

Begin 

For all neighbors of all filter_center (X) do  

 X j,f+a*filter_size 

X `j,f
randomlyOr 

 X j,f=random*R; 

End. 

Figure 4.Pseudo code of the Neighborhood calculation Procedure 

The j-th coordinate of each neighbor is calculated by taking one of the following options:do not change, shift left, shift 
right or take a random position. The first three possibilities are realized with the following equation:     

X ` j,f = X j,f+a*filter_size(3) 

Where filter_size denotes the size of the f-thfilter and a is a parameter randomly chosen from the set {1, -1,0}. 

To explore unvisited regions of the search space and to diversify the search, the j-thcoordinate can be calculated using to
the following formula: 

X j,f=random*R       (4) 

Movement Procedure (); 

Begin 

For all filters do  

If any neighbor is better than the filter_centerthen Move to bestone 

Else reduce the size of the filter; 

Endif, 

End. 

Figure 5.Pseudo code of Movement Procedure 

The figure 5 shows the movement procedure which explains the displacementin the filter. The neighbor which presentsthe 
best fitness becomes the new center of the actual filter.Otherwise the size of this filter will be reduced using equation 
(6).It is necessary to note that the initial size of all the filters can be taken equal to R. 
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Filter_size =R/c
k
 (6) 

Where: 

R is therange of search space,K denotes the number of reductions of the size of the actual filter andC is a constant 
which is fixed in our case at 1.001. 

Figures 6-8 illustrate the neighborhood calculation and movement procedures with fitness function f(x, y) = x²+y². In 
iteration 1, the center C1 has fitness=2 and neighbors coordinates are calculated using neighborhood calculation 
procedure (figure 4) ,where N1(-5,0), N2(0,1.25),N3(5,2.25), N4(0,-5) with f(N1)=25, f(N2)=1.56, f(N3)=6.25, f(N4)=25. 
The movement procedure, shown in figure 5, compares the fitness’s of the actual solution (C1) and its neighbors and 
performs a movement or a reduction of the parameter filter_size. Since f(N2) in iteration 1 is better than f(C1),N2 
becomes the new center of the filter in iteration 2. contrariwise to iteration 1, no neighbor presents a better solution in 
iteration 2 so the algorithm will perform a reduction of the size of the filter. We note thatneighbors’coordinates are always 
generated by the neighborhood calculation procedure. 

   Figure 6.Iteration 1  Figure 7.Iteration 2  Figure 8.Iteration 3 

In order to explain our approach, we choose to show the OMF behavior when the objective function is a two dimensional 
Rosenbrock function in the range [-2, 2]. For this example, we apply OMF using three filters with four neighbors and an 
initial filter_size=10.The stop criterion is epsilon=10

-5
. The centers of the filters (Solutions) C1, C2 and C3 are represented 

by small black rhombus and the neighbors are represented by circles. The four neighbors of the f-th solution are Nf.1 to 
Nf.4. 

Figures 9 and 10 show the solutions connected with their neighbors by a straight line. Figures 11-14 show only the 
position of the new solutions (centers of the filters) at the actual iteration. 

The global optimum is marked at (x1=1, x2=1) where the function returns 0. 

Figure 9.Iteration 1  Figure 10.Movement 
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    Figure 11.Iteration4722(25%)  Figure 12.Iteration9445(50%) 

     Figure 13.Iteration 14167(75%)   Figure 14. Iteration 18889(100%) 

Figure 9 shows the results of the first iteration. Here, the positions of the centers of the filters are generated randomly and 

the calculation of the neighbors is performed using Neighborhood calculation Procedure.For example, the first coordinate 

of N1.1 is calculated by expression1 (equation 4) with a=0 (randomly chosen)while the first coordinate of N2.4 in

iteration 2 is calculated with expression 2 (equation 5). 

Iteration1: 

 The first filter C1 (-2,-2) with fitness=90.04482,its neighbors are:

N1.1 (-0.10835,1.52559) with fitness=230.40353, 

N1.2 (-0.67978, 1.52559) with fitness=115.92217, 

N1.3 (0.46307, 0.95416)with fitness=55.00818,    

N1.4 (-0.67978, 0.95416) with fitness=27.03384; 

 The second filter center C2 (-0.10835, 0.95416)with fitness=1229.06620, its neighbors are:

N2.1 (1.96606, 0.932362) with fitness=861.20809, 

N2.2 (2, 0.932362) with fitness=942.04000,  

N2.3 (1.39463, 0.36093) with fitness=251.08458, 

N2.4 (1.96606, 0.93236) with fitness=861.20809; 

 The third filter center C3 (1.96606, 0.36093) with fitness=259.53315, its neighbors are:

N3.1(-1.59565, 0.38471) with fitness=473.89537, 

N3.2(-1.02422, 1.52757) with fitness=26.99790, 

N3.3(-2, 0. 38471)with fitness=1316.02620, 

N3.4(-1.59565, 0.38471) with fitness=473.89537; 
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 The fourth filter center C4(-1.59565, 0.95614) with fitness=229.82200,  its neighbors are:

N4.1(0.37332, 1.55049) with fitness=199.51868 

N4.2(0.37332,2) with fitness=346.58657, 

N4.3(0.37332, 1.55049) with fitness=199.51868, 

N4.4(-0.19810, 0.97906) with fitness=89.76120. 

The movement procedure, shown in figure 5, compares the fitness’s of each solution and its neighbors and performs a 

movement or a reduction of the parameter filter_size. Here, N1.4 becomes the new C1, N2.3 becomes the new C2, N3.2 

becomes the new C3 and N4.4 becomes the new C4. In this example and at this iteration all the centers are moved 

however for the next iterations if no neighbor is performing better than the center than this one remain unchanged and the 

parameter filter_sizeis reduced using equation 6. 

The results after 25%, 50%, 75% and 100% of the iterations are shown in Figure 11, figure 12, figure 13 and figure 14 

respectively. We can see clearly the movement of all the centers toward the global optimum. 

The final results of the algorithm are: 

C1(0.999999429112051,0.999998278876708) and fitness=4.07653E-10; 

C2(1.00000200647046, 1.00000602199272) and fitness=1.58660E-10; 

C3 (0.999998892129236, 0.999999038982221) and fitness=1.10218E-10; 

C4(0.999998988222136,0.999996931480444) and fitness=3.38902E-11. 

4. Results and discussion:

In this section,OMF algorithm is tested using 13benchmark functions classically used by many researchers. The results 
are compared with those of other optimization algorithms. Thebenchmark functions are listed in table 1 where Fct 
indicates nouns of used functions, D indicates dimension of the function, Range Space (RS) is the boundary of the 
function’s search space, and Fmin is the theoretical global optimum.  

TABLE I. BENCHMARK FUNCTIONS 

Fct Formulation D RS Fmin 

Sphere f x = xi
2

N

i=1

30 [-100,100] 0 

Schwefel 

problem 
𝐟 𝐱 =  𝐱𝐢 

𝐍

𝐢=𝟏

+   𝐱𝐢 

𝐍

𝐢=𝟏

30 [-10,10] 0 

Rotated hyper 

ellipsoid 
𝐟 𝐱 =  ( 𝐱𝐣

𝐢

𝐣=𝟏

)

𝐍

𝐢=𝟏

² 30 [-100,100] 0 

Rosenbrock 
f x = (100 ∗  xi − xi−1

2  2 + (xi−1 − 1)²n
i=1 ) 

30 [-30,30] 0 

Step 𝐟 𝐱 =  (𝐱𝐢 + 𝟎,𝟓)²

𝐍

𝐢=𝟏

 30 [-100,100] 
0 

Schwefel 

function 
𝐟 𝐱 =  (𝐱𝐢

𝐍

𝐢=𝟏

𝐬𝐢𝐧(  𝐱𝐢 )) 30 [-500,500] -𝟏𝟐𝟓𝟔𝟗.𝟓 

Rastrigin 𝐟 𝐱 = (𝐱𝐢
𝟐 − 𝟏𝟎𝐜𝐨𝐬 𝟐𝛑𝐱𝐢 + 𝟏𝟎)

𝐍

𝐢=𝟏

30 
[-5.12,5.12] 

0 

Ackley 
f x = −20 exp −0.2 

1

30
xi

2

N

i=1

− exp(
1

30
cos 2πxi + 20

+ e1) 

30 
[-32,32] 

0 
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Griewangk 
Df x =

1

4000
xi

2N
i=1 − cos(

xi

 i

N
i=1 ) + 1 

30 [-600,600] 0 

Michalewicz 𝐟 𝐱 = − 𝐬𝐢𝐧(𝐱𝐢)

𝐍

𝐢=𝟏

∗ 𝐬𝐢𝐧
𝐢 ∗ 𝐱𝐢

𝟐

𝛑

𝟐𝟎

30 [0,π] -4.687 

Six-Hump 

Camel 

F f x = 4x² − 2.1x1
4 +

1

3
x1

6 + x1x2 − 4x2
2 + 4x2

4

2 [-5,5] -1.0316 

Braninrcos 
f(x)= X2 −

5.1

4π2
X1

2 +
5

π
X1 − 6 

2

+ 10  1 −
1

8π
 cos X1 + 10 

2 [-5,5] 0.398 

Golden-Price 

f x =  1 +  x1 + x2 + 1 2

∗   19 − 14x1 + 3x1
2 − 14x2 + 6x  1x2

+ 3x2
2  ∗ (30 +  2x1 − 3x2 

2

∗  18 − 32x1 + 12x1
2 + 48x2 − 36x1x2

+ 27x2
2 ) 

2 [-2,2] 3 

The OMF algorithm was run 30 times on each benchmark function with number of filters NB-filters= 30, number of 
neighbors=10 and a minimum size of the filters (stop criterion: Size of each filter less than ɛ= 10

-24
) 

The statistical results (average and standard deviation) are reported in Table 2.The results of OMFare compared to those 
of PSO[25]as an SI-based technique, GSA [13] as a physics-based algorithmin addition toGWOresults [7]and GHS 
results [20]. 

TABLE II.  RESULTSFOR BENCHMARK FUNCTIONS OPTIMIZATION 

Fct GWO PSO GSA GHS OMF 

Sphere 
6.59E-28 (6.34E-

5) 

0.000136 

(0.000202) 

2.53E-16 

(9.6E-17) 

1.0 E-5 

(2.2 E-5) 
3,32E-33 

(2,7E-48) 

Schwefel problem 
7.18E-17 

(0.029014) 

0.042144 

(0.04542) 

0.055655 

(0.194074) 

0.0728 

(0.1144) 

0,02058 

(0) 

Rotated hyper 

ellipsoid 
3.29E-06 

(79.14958) 

70.12562 

(22.11924) 

896.5347 

(318.9559) 

5146.2 

(6348.7) 

0,050921 

(7,05E-17) 

Rosenbrock 
26.81258 

(69.90499) 

96.71832 

(60.11559) 

67.54309 

(62.22534) 

49.669 

(6348.8) 
0,145492 

(5,64E-17) 

Step 
0.816579 

(0.000126) 

0.000102 

(8.28E-05) 

2.5E-16 

(1.74E-16) 
0 

(0) 

3,755E-33 

(4,701E-33) 

Six-Hump Camel 
-1.0316/ 

(-1.03163) 

-1.03163 

(6.25E-16) 

-1.03163 

(4.88E-16) 

-1.0316 

(0.000018) 

-1,0316 

(0) 

Braninrcos 
0.397889 

(0.397887) 

0.397887 

(0) 

0.397887 

(0) 
*** 

0,398 

(0) 

Golden-Price 
3.000028 

(3) 

3 

(1.33E-15) 

3 

(4.17E-15) 
*** 

3 

(0) 

Schwefel function 

-6123.1 

(-4087.44) 
-4841.29 

(1152.814) 

-2821.07 

(493.0375) 

-12569.46 

(0.050) 
-12569,5 

(1,85E-12) 

Rastrigin 
0.310521 

(47.35612) 

46.70423 

(11.62938) 

25.96841 

(7.470068) 
0.0086 

(29) 

0,031064 

(5,646E-17) 
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Ackley 
1.06E-13 

(0.077835) 

0.276015 

(0.50901) 

0.062087 

(0.23628) 

0.0209 

(0.0216) 

2,378E-7 

(1,129E-16) 

Griewangk 
0.004485 

(0.006659) 

0.009215 

(0.007724) 

27.70154 

(5.040343) 

0.1024 

(0.1756) 
0,00021 

(0) 

Michalewicz 
4.042493 

(4.252799) 

3.627168 

(2.560828) 

5.859838 

(3.831299) 
NA 

-4,687 

(1,80E-15) 

According to Table II, OMF is able to provide very competitive results. OMF algorithm outperforms all others in 
optimization of Sphere function, Rosenbrock, Griewangk, Six-Hump Camel back, Braninrcos, Golden-Price, Schwefel 
function and Michalewicz function.  

For many functions (Six-Hump Camel back, Braninrcos, Golden-Price and Griewangk)OMFis able to return exactly the 
global optimum. 

Scalability study: 

When the dimension of the functions increases from 30 to 100, the performance of the different methods degraded. As 
shown in TableIII, The comparison results of the OMF with HS and its variants show that the OMF is performing better 
in 4 cases. 

TABLE III.  RESULTS OF BENCHMARK FUNCTIONS DIM=100 

Fct HS IHS GHS OMF 

De Jong 
8.683062 

(0.775134) 

8.840449 

(0.762496) 
2.230721 

(0.565271) 

3449,978461 

(1,3875E-12) 

Schwefel’s 

Problem 

82.926284 

(6.717904) 

82.548978 

(6.341707) 
19.020813 

(5.093733) 

43,136096 

(1,445E-14) 

Rosenbrock 
16675172.1 

(3182464.488466) 

17277654.0 

(2945544.275052) 

2598652.617 

(915937.797217) 
524266,4048 

(6,36811E-10) 

Rotated hyper-

ellipsoid 

215052.904398 

(28276.375538) 

213812.584732 

(28305.249583) 

321780.353575 

(39589.041160) 

1,49E+05 

(2,96014E-11) 

Schwefel's

function 

-33937.364 

(572.3904) 
-33596.899 

(731.1918) 

-40627.3455 

(395.457330) 

-36851,61011 

(2,2214E-11) 

Rastrigin 
343.49779 

(27.24538) 

343.23204 

(25.14946) 
80.657677 

(30.368471) 

192,0721007 

(1,1563E-13) 

Ackley's Path 
13.857189 

(0.284945) 

13.801383 

(0.530388) 
8.767846 (0.880066) 

8,75E+00 

(3,61345E-15) 

Griewank 
195.59257 

(24.80835) 

204.29151 

(19.15717) 

54.252289 

(18.600195) 
32,04980615 

2,89076E-14 

Effect of stop criterion 

The stop criterion is the smallest valueof the filter_sizeparameter; translated hereby ɛ. Table IV shows the effect of this 

parameteron the results of OMF algorithm.The algorithm is applied for the optimization of the benchmark functions of 

Table I with four different values of ɛ. We go from a larger size ɛ=10
-9

 to the smallest one ɛ=10
-24

. We note That OMF 

gives the best results for the greater precision. That can be explained by the fact that the small precision makes the 

sweeping of the regions not visited before possible. However, some optimum found don’t change significantly which 

shows a stability of the optimization process of OMF.  
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TABLE IV.  THE EFFECT OF STOP CRITERION 

Fct ɛ=10
-9

ɛ=10
-12

 ɛ=10
-16

 ɛ=10
-24

 

Sphere 
2,26E-16 

(1,5E-31) 

1,07E-22 

(7,1E-38) 

4,70E-31 

(1,7E-46) 
3,32E-33 

(2,7E-48) 

Schwefel problem 
0,09435 

(0) 

0,090409 

(2,8E-17) 

0,046469 

(1,4E-17) 
0,02058 

(0) 

Rotated hyper ellipsoid 
1,22E-01 

(7,0E-17) 

0,114811 

(4,2E-17) 

0,114811 

(2,8E-17) 

0,050921 

(7,05E-17) 

Rosen brock 
0,145492 

(5,64E-17) 

0,145492 

(2,82144E-17) 
0,145424 

(0) 
0,145492 

(5,64E-17) 

Step 
1,15E-17 

(4,701E-33) 

5,72E-23 

(1,19493E-38) 

5,36E-31 

(2,67235E-46) 
3,755E-33 

(4,701E-33) 

Schwefel function 
-12569,4 

(1,8E-12) 

-12569,4 

(1,8E-12) 

-12569,4 

(1,8E-12) 
-12569,5 

(1,85E-12) 

Rastrigin 
0,100070 

(5,6E-17) 

0,098044 

(2,8E-17) 

0,096518 

(1,4E-17) 

0,031064 

(5,646E-17) 

Ackley 
4,25E-01 

(1,1E-16) 

0,192977 

(5,6E-17) 

0,102348 

(4,2E-17) 

2,378E-7 

(1,129E-16) 

Griewangk 
0,00021 

(0) 

0,000219 

(1,1E-19) 

0,000219 

(1,6E-19) 
0,00021 

(0) 

Michalewicz 
-4,68765 

(1,8E-15) 

-4,68765 

(1,8E-15) 

-4,68765 

(1,8E-15) 
-4,687 

(1,80E-15) 

Six-Hump Camel 
-1,0316 

(0) 

-1,03164 

(0) 

-1,03162 

(0) 
-1,0316 

(0) 

Braninrcos 
0,397887 

(0) 

0,397887 

(0) 

0,397887 

(0) 
0,398 

(0) 

Golden-Price 
3 

(0) 

3 

(0) 

3 

(0) 
3 

(0) 

Integer programming problem 

Many real-world applications require the variables to be integers. These problems are called Integer Programming 
problems. We choose six common integer programming benchmark problems (see Table V) to investigate the 
performance of OMF. 

TABLE V.  INTEGER PROBLEM BENCHMARK  

No Formulation D RS Fmin 

F1 f(x)= ∑i=1..n |xi| 

5 

15 

30 

[-100,100] 0 

F2 f(x)=(9x2
2
+2 x2

2
-11)² +(3x1

2
+4 x2

2
-7)² 2 [-100,100] 0 

F3 
f(x)=(x1+10x2)

2
+5(x3+x4)

2
+(x2+2x3)

4
+1

0 (x1+x4)
4 4 [-100,100] 0 

F4 f(x)=2x1
2
+3x2

2
+4(x1 x2)-6x1-3x2 2 [-100,100] 0 
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The OMF algorithm was applied to the above test problems and the results are shown in Table VI. The results of OMF are 
compared to those of GHS[20]. We can clearly see that the two approaches performed comparably. They can find the 
global optimum solution for all the benchmark problems except for F4. However, when OMF is more precise (for a 
smaller ɛ), the algorithm can find the global optimum. 

TABLE VI.  RESULTS FORINTEGERPROGRAMMING PROBLEMS 

Fct GHS OMF 

F1(5) 

F1(15) 

F1(30) 

0(0) 

0(0) 

0(0) 

0(0) 

0(0) 

0(0) 

F2 0(0) 0(0) 

F3 0(0) 0(0) 

F4 -5(1) -6(0) 

F5 - 3833.12(0) -3833,12(0) 

F6 0(0) 0(0) 

5. Conclusion:

This work proposed a novel optimization algorithm inspired by image processing tools. Indeed, our algorithm of 
Optimization by Morphological Filters (OMF) is inspired by the morphological transformations more precisely of the 
erosion for the search of the global optimum in a multidimensional space. Thirteen test functions were employed in order 
to benchmark the performance of the proposed algorithm in continuous case. The results showed that OMF was able to 
provide highly competitive results compared to well-known heuristics such as PSO, GSA,GHS and GWO. For the integer 
programming problem, OMF was benchmarked with six functions and it showed that it was able to reach the global 
optimum of the used functions. 

We do not pretend having a universal solution for optimization problems because such a solution doesn’t exist but we can 
say that we developed a new optimization algorithm based on a new approach. We actually are testing the OMF algorithm 
for the resolution of constrained problems and engineering problems, the results should be communicated in the near 
future.  

F5 
f(x)=-3803.4-138.08 x1-232.92 

x2+123.08 x1
2
+203.64 x2+182025 x1 x2

2 [-100,100] -3833.12 

F6 f(x)=xTx 2 [-100,100] 0 

119 sciencesconf.org:meta2018:206719



References 

[1] J.H. Holland(1973).Genetic Algorithms and the optimal allocation of trials, SIAM Journal of Computing. Vol. 2, N° 
2, pp. 88-105. 

[2] A. Colorni, M. Dorigo, V. Maniezzo. Distributed Optimization by Ant Colonies,Proceedings of the 1rst European
Conference on Artificial Life,pp 134-142. 

[3] D. Karaboga(2005), An idea based on honeybee swarm for numerical optimization,Technical Report TR06, Erciyes 
University, Engineering Faculty, Computer Engineering Department. 

[4] J. Kennedy and R. Eberhart(1995), Particle swarm optimization, in Neural Networks 1995 Proceedings, IEEE
International Conference, pp. 1942-1948. 

[5] Yang and SuashDeb(2009), Cuckoo Search via Levy flight, Proceeding Of World Congress on Nature & Biologically 
Inspired Computing . IEEE Publications, pp. 210 – 214. 

[6] X.-S. Yang(2010), A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for 
optimization, ed: Springer, pp. 65-74. 

[7] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey Wolf Optimizer, Advances in Engineering Software , Vol. 69, pp. 46-61, 
2014. 

[8] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi(1983), Optimization by simulated annealing, Journal of Science, Vol. 220, 
N° 4598, pp. 671-680,. 

[9] Z. W. Geem, J. H. Kim and G. V. Loganathan(2001). A New Heuristic Optimization Algorithm: Harmony Search. 
Simulation. Vol. 76, N° 2, pp. 60-68,. 

[10] E. Alba and B. Dorronsoro(2005),The exploration/exploitation tradeoff in dynamic cellular genetic 
algorithms,Evolutionary Computation, IEEE Transactions on, vol. 9, pp. 126-142. 

[11] R. Storn and K. Price(1997), Differential evolution–a simple and efficient heuristic for global optimization over 
continuous spaces, Journal of global optimization, vol. 11, pp. 341-359. 

[12] X. Yao, Y. Liu and G. Lin(1999), Evolutionary programming made faster,Evolutionary Computation, IEEE 
Transactions, Vol. 3, pp. 82-102. 

[13] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi(2009), GSA: a gravitational search algorithm, Information 
sciences, Vol. 179, pp. 2232-2248. 

[14] O. K. Erol and I. Eksin( 2006), A new optimization method: big bang–big crunch,Advances in Engineering Software, 
vol. 37, pp. 106-111. 

[15] A. Kaveh and S. Talatahari(2010), A novel heuristic optimization method: charged system search,Acta Mechanica, 
vol. 213, pp. 267-289. 

[16] R. A. Formato(2007), Central force optimization: A new metaheuristic with applications in applied 
electromagnetics,Progress In Electromagnetics Research, Vol. 77, pp. 425-491. 

[17] B. Alatas(2011), ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization,Expert 
Systems with Applications, vol. 38, pp. 13170-13180. 

[18] A. Hatamlou(2012), Black hole: A new heuristic optimization approach for data clustering, Information sciences. 

[19] F. Farrahi-Moghaddam(2007), Curved Space Optimization (CSO): A novel approach to heuristic optimization,
Proceeding of 12th CSICC2007, Iran. 

[20] M.G.H. Omran and M. Mahdavi(2008), Global-best harmony search, Appl. Math. Comput.Vol. 198, Issue 2, pp 643-
656. 

[21] M. Mahdavi, M. Fesanghary, E. Damangir(2007), An improved harmony search algorithm for solving optimization
problems, Applied Mathematics and Computation,pp. 1567–1579. 

[22] G. Matheron (1967), Elements Pour une Theorie des Milieux Poreux. Paris, France: Masson. 

[23] J. Serra(1982), Image Analysis and Mathematical Morphology, Academic Press, New-York. 

[24] J.G. Postaire and C.P.A. Vasseur (1981), An Approximate Solution to Normal Mixture Identification with 
Application to Unsupervised Pattern Classification, IEEE Trans. Patt. Anal. & Machine intel. Vol. PAMI-3, n°2, pp. 
163-179. 

[25] Q. He and L. Wang(2007), An effective co-evolutionary particle swarm optimization for constrained engineering 
design problems,Engineering Applications of Artificial Intelligence, vol. 20, pp. 89-99. 

120 sciencesconf.org:meta2018:206719



A Combined Data Mining and Multi-Objective Tabu Search
approach for Single Customer Dial-a-Ride Problem

A. C. Morais1, L. Torres1, T. Galvão Dias1,2, P. J. S. Cardoso3 and H. C. L. Fernandes4

1 FEUP - Faculty of Engineering of University of Porto
up201302845@fe.up.pt, up201304426@fe.up.pt, tgalvao@fe.up.pt

2 INESC TEC - INESC Technology and Science
3 LARSyS, University of the Algarve

pcardoso@ualg.pt
4 Yellowfish Travel, Lda

hortensio@yellowfishtransfers.com

Keywords: Dial-a-Ride Problem, Tabu Search Tourism Forecasting, Airport Transfers

Abstract. The Dial-a-Ride problem has been one of most studied routing problems since its
appearance in the 70’s. The current paper compares a Tabu Search and a parallel insertion
algorithm for a Single Customer Dial-a-Ride problem with heterogeneous fleet and drivers,
using data mining techniques that enable the prediction of input parameters. Being a single
customer problem, the satisfaction of one request at a time is an implied condition. The prob-
lem is also characterized by the different capacities of the fleet and the drivers’ commission,
being the last one based on the number and distance of served requests. These conditions
lead to a multi-objective function minimizing the total traveled distance and empty seats
in the trips and maximizing the drivers’ salaries homogeneity. In addition, the seasonality
implied by the fact that the considered data regards a beach tourism destination and the
reservations antecedences, which is subject to a high variance, lead to the need of predicting
the demand. The proposed approaches are applied to a real world airport private transfer
company.

1 Introduction

The Dial-a-Ride problem has been studied for several years mainly concerning the transportation of
elderly and disabled people [2]. This research approaches a different type of problem that emerges
in the touristic sector, more specifically in airport transfer companies that transport tourists with
previous booking to and from the airport. As the case study deals with a beach destination, it is
subject to a high seasonality, with a large variance in the number of departure and arrival services
throughout one day, as sketched in Figure 1. Additionally, the number of daily requests is also
subject to an increasing variability as shown in Figure 2.

Fig. 1. Map depicting the number of records by type of
request and month vs. hour of day. Fig. 2. Boxplots depicting the number of daily re-

quests by year.
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2 Problem Formulation

The problem is formulated in a directed gragh G = (V,A). Each request i ∈ R = {1, 2, ..., n} has
a pickup p+i ∈ P+ = {1, 2, ..., n}, a drop-off p−i ∈ P− = {n + 1, ..., 2n}, a load

∑
qi,l where l is

the type of passenger (baby, child or adult) and either an arrival time ei or a departure time di.
The time specified in the request is related with the type of request (arrival or departure) which is
given by the binary parameter Ti. Moreover, V = P+

⋃
P−

⋃
D, where D = {2n+1, ..., 2n+m} is

the set of depot points. In this model there are as many depots as drivers since a vehicle starts and
ends at a driver’s home. Each vehicle k ∈ K of capacity Ck is allocated at least to one driver, this
information is given by the binary parameter ωj,k, where j ∈ M = {1, 2, ...m}. Drivers’ working
time window [stj , edj ] and maximum workload Maxj are also parameters of the model.

The model uses two binary three-index variables xkg,h (equal to 1 if arc (g, h), of distance δg,h,

is performed by the vehicle k ∈ K, 0 otherwise) and yki,j (equal to 1 if request i immediately

precedes request j in vehicle k ∈ K, 0 otherwise). Regarding scheduling issues, νkg indicates at

what time vehicle k starts serving vertex g ∈ V . In addiction, the model calculates ∆k
i , number of

seats unused on vehicle k while serving request i (∆k
i equal to 0 when i is not served by k)and sj

the cumulative salary of the driver j. In order to calculate sj the set of services for the vehicle k is
needed (Ak). The goal of the problem is expressed by a multi-objective function which comprises
the minimization of total distance made by the vehicles (f1), the maximization of the drivers’
wages homogeneity (f2) and the minimization of the total number of empty seats while satisfying
all requests (f3). Although f1 and f3 are linear functions, f2 is non-linear.

min f1 =
∑

k∈K

∑

g∈V

∑

h∈V
δg,hx

k
g,h min f2 =

∑

j∈M
(sj − sj)2 min f3 =

∑

i∈R

∑

k∈K
∆k

i (1)

∑

k∈K
xk
p+
i ,p−

i

= 1 ,∀i ∈ R (2)

xk
p−
i ,p+

j

= yki,j ,∀k ∈ K, i, j ∈ R (3)
∑

h∈P+

xk
d+
k ,h

= 1 ,∀k ∈ K, d+k ∈ D (4)

∑

g∈P−

xk
g,d−

k

= 1 ,∀k ∈ K, d−k ∈ D (5)

xk
p+
i ,p−

i

∑

l∈J
qi,j +∆k

i = Ckx
k
p+
i ,p−

i

,

∀k ∈ K, i ∈ R
(6)

yki,j(ν
k
p+
i

+ tp+
i ,p−

i
+ tp−

i ,p+
j

) ≤ νk
p+
j

,

∀k ∈ K, i, j ∈ R
(7)

νk
p+
i

+ tp+
i ,p−

i
≤ di × Ti,∀k ∈ K, i ∈ R (8)

νk
p+
i

≥ ei × (1− Ti),∀k ∈ K,
i ∈ R (9)

ωj,k(νk
d−
k

− νk
d+
k

) ≤Maxj ,∀j ∈M,k ∈ K,
d−k , d

+
k ∈ D

(10)

ωj,k min(νkg ) ≥ stj ,∀k ∈ K, g ∈ V,
j ∈M (11)

ωj,k max(νkg ) ≤ edj ,∀k ∈ K, g ∈ V,
j ∈M (12)

ωm,k × sm =
∑

i∈Ak

revi,∀k ∈ K,

m ∈M
(13)

Constraints (2) and (3) ensure that all requests are satisfied by one vehicle and that the vehicle
which picks-up the costumer is the same that drops him off. Equations (4) and (5) ensure that a
vehicle starts and ends its daily service at a depot. Regarding vehicles’ capacity restrictions, those
are verified through constraint (6). Another important group of constraints in a DARP problem
concerns the time specifications. Constraint (7) ensures that none of the requests of a vehicle
overlap in time. Equations (8) and (9) address costumer’s impositions. More precisely a customer
either define at what time wants to be picked-up from a place (p+i ) or dropped-off (p−i ) and the
trip time (tp+

i ,p−
i

) is calculated. Therefore, (8) satisfies requirements of the first type and (9) those

of the second. The last group of constraints cover drivers’ issues, namely, equations (10), (11) and
(12) ensure that a driver only works within a previously defined time window. Equation (13) is
related with the salaries of drivers being, revi the drivers’ revenue associated to each request.

3 Algorithm Approach

Typically, an airport transfer company solves the allocation problem manually, in a daily basis.
In order to find a faster and more efficient solution for the proposed model, a multi-objective
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Tabu Search meta-heuristic is proposed. Since it was proposed by Glover in 1986, Tabu Search
has been applied multiple times in routing and Dial-a-Ride problems[1] [3]. Parallel insertion, a
simpler heuristic, is also used to solve the problem [3]. Being the beach tourism sector subject
to high seasonality, the instances’ size range is large. In this particular case study, the size varies
between around 30 and 350 requests. This may have an impact in the algorithm running time, so
the comparison between the two heuristics proposed may show interesting results or even lead to
an hybrid method using both techniques depending on the instance size.

To run the algorithm it is necessary to know in advance both drivers’ and vehicles’ availability
and some additional attributes that characterize the services to be performed, as the day and hour,
the pickup and drop off places and the number of passengers. To enable the optimal allocation
of the vehicles and drivers to the services to be performed, it is crucial to previously ensure an
adequate quantity of available resources. Therefore, predicting the demand to which the company
will be subject in the future is of utmost importance.

4 Data Mining Techniques

Forecasting tourists arrivals has been studied for the past decades with increasing importance for
destination management companies. A review of works published between 1980-2011 partitions the
quantitative tourism forecasting methods in basic and advanced time-series, static and dynamic
econometric models and artificial intelligence methods [4]. More recently, artificial intelligence
methods have been gaining reputation. When predicting tourists arrivals, the use of data mining
techniques, as k-nearest-neighbour, instead of statistical approaches like linear regression, have
proved to be advantageous to the prediction’s accuracy and to the identification of non-linear
relationships [5]. However, the strength of a model is dependent on factors such as the destination
being forecasted, data frequency, number of explanatory variables and forecasting horizon [4].

In this specific case, after data cleaning and an overall exploratory analysis, models to forecast
the number of requests according to the data frequency are applied. The company at study pro-
vided a rich dataset with detailed information concerning six years of operation, which resulted in
thousands of records that have been subject to an yearly increase of about 20%.

5 Conclusions

This research addresses the use of computational methods to solve a multi-objective allocation
problem with the objectives that include the optimization of the operation procedure and of the
homogeneity of collaborators’ incomes.

Moreover, the results of the demand prediction combined with the proposed algorithm allow
the airport transfer company to continuously compare the orders that have already been booked
with the prediction, ensuring that the resources that they possess are adequate. This comparison
increases the awareness on how demand is being fulfilled and the capacity of efficiently planning
future needs.
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1 Introduction

The design and calibration of epidemiological models that fit the observed behaviour of the diseases
are of major interest due to its doubtless applications in real-life situations [4]. One of the most
valuable information that these models can provide is about the future evolution of the outbreaks
allowing to predict the spread and the impact of diseases. Based on these predictions, the authorities
can organise the control measures and the medical resources to prevent some critical situations.
Consequently, guaranteeing the accuracy of the model is crucial. However, many epidemiological
parameters are usually time and country dependent, such that finding their suitable values is a
non-trivial task.

In this work, we propose a multi-objective methodology for determining the parameters of an
epidemiological model using some real data about the evolution of the disease in the country.
More precisely, we consider two objective functions to minimize: (i) the relative error committed
in the detected cases, and (ii) the relative error in the death cases. Those functions measure the
difference between the number of cases (resp., deaths) predicted by the epidemiological model and
the number of cases (resp., deaths) observed in the reality.

2 Epidemiological model

The epidemiological model considered in this work to illustrate our methodology is the so-called
Between-Countries Disease Spread (Be-CoDiS) [3]. It is a compartmental model based on SEIRHD
model [2], in which six disjoint states are defined for classifying the individuals in a country:

– Susceptible: The person is not infected by the disease pathogen.

– Infected: The person is infected by the disease pathogen but he/she cannot infect other people
since he/she has no visible clinical signs.

– Infectious: The person can infect other people and he/she starts developing clinical signs.

– Hospitalized: The person is hospitalized but he/she can still infect other people.

– Recovered: The person has survived the disease, is no longer infectious and develop a natural
immunity to the disease pathogen.

– Dead: The person has not survived the disease. The cadavers of infected people can infect other
people until they are buried.

Since we focus on modelling the behaviour of one single country, we have considered a simplified
version of the Be-CoDiS model, where the notations S(t), E(t), I(t), H(t), R(t) and D(t) refer to
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the ratio of people in each state: susceptible, infected, infectious, hospitalized, recovered and dead,
respectively; and the population size NP in the considered country is assumed to be constant [3].

In this simplified version, the evolution of the disease in the country has been described by the
following system of ordinary differential equations:

dS(t)

dt
=− S(t)

(
mI(t)βII(t) +mH(t)βHH(t) +mD(t)βDD(t)

)
+ τE(t)

+ µm

(
E(t) + I(t) +H(t) +R(t)

)
+ γD(t)D(t),

dE(t)

dt
=S(t)

(
mI(t)βII(t) +mH(t)βHH(t) +mD(t)βDD(t)

)

− (µm + γE(t) + τ)E(t),

dI(t)

dt
=γE(t)E(t)−

(
µm + γI(t)

)
I(t),

dH(t)

dt
=γI(t)I(t)−

(
µm + ωγHD(t) + (1− ω)γHR(t)

)
H(t),

dR(t)

dt
=(1− ω)γHR(t)H(t)− µmR(t),

dD(t)

dt
=ωγHD(t)H(t)− γD(t)D(t),

(1)

where µm(i) is the mortality rate (day−1) of the country meaning the number of deaths per day
and per capita, ω is the disease fatality rate (%) defined as the percentage of people in the country
who do not survive the disease, τ is the daily rate (%) of the movement of people leaving country,
and βI , βH , βD are the disease effective contact rates of people in states I, H, and D, respectively.
These disease contact rates are constant parameters depending on the country and representing
the mean number of contacts transmitting the disease of a person in the considered state per day
before applying the control measures. The functions γE(t), γI(t), γHD(t), and γHR(t) also involved
in the model are the transition rates from states E to I, I to H, H to D and H to R, respectively.
They refer to the number of people moving for one state to another per day and per capita and
not only depend on the country but also on time, because the application of the control measures
produces variations in the durations of the people in each state. Finally, the functions mI(t),mH(t),
and mD(t) describe the efficiency of the control measures.

3 Multi-objective methodology for fitting the epidemiological
parameters

Given a set φ of values for those epidemiological parameters, as the fatality rate and disease contact
rates, the efficiency of the control measures, etc., and given the initial ratios of people in each state
S(0), E(0), I(0), H(0), R(0) and D(0) in a country, then, we can obtain the ratios Sφ(t), Eφ(t),
Iφ(t), Hφ(t), Rφ(t) and Dφ(t) at each time step by solving numerically the previous System (1).
Moreover, we can compute the cumulative number of cases and the cumulative number of deaths,
respectively, as:

CCφ(t) = CC(0) +

∫ t

0

γI(t) · Iφ(t)dt, CDφ(t) = CD(0) + ω

∫ t

0

γHD(t) ·Hφ(t)dt, (2)

where CC(0) and CD(0) are the initial number of cases and of deaths available in the disease
reports.

Since our goal is finding a set of values for the parameters of the model that results in a
quite accurate description of the disease evolution, we compare to the real data available through
the whole evolution of those cumulative numbers in the disease reports: {CCreal(tj)}j=Hj=0 and

{CDreal(tj)}j=Hj=0 , where H is the number of available historical data. Thus, the considered multi-
objective optimization problem is formulated as follows:





min f1(φ),
min f2(φ),
s.t. φ ∈ Φ,

(3)
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where φ denotes the set of parameters of the model to be estimated, Φ is the feasible set or
search space given by the ranges of those parameters, and f1(φ), f2(φ) are the objective functions
representing the relative errors committed in the cumulative number of detected cases and in the
cumulative number of reported deaths, respectively, i.e.:

f1(φ) =

∥∥CCreal(tf)− CCφ(tf)
∥∥
L2

‖CCreal(tf)‖L2

, f2(φ) =

∥∥CDreal(tf)− CDφ(tf)
∥∥
L2

‖CDreal(tf)‖L2

. (4)

Notice that both errors have been computed with the L2 norm: ‖g(T )‖L2 =
( ∫ T

0
(g(t))

2
dt
)1/2

.

As part of our proposed fitting methodology, we use the multi-objective algorithm called Weight-
ing Achievement Scalarizing Function Genetic Algorithm (WASF-GA) [5] for obtaining a set of
compromise solutions for Problem 3. Broadly speaking, WASF-GA is an algorithm based on pref-
erences which uses an achievement scalarizing function and a set of weight vectors to lead the
evolution of feasible solutions toward a region of interest meaning a zone of the search space whose
points are preferred by the persons who solve the problem. More precisely, we employ the parallel
version of WASF-GA described in [1].

4 Preliminary results and conclusions

This fitting methodology has been applied to obtain the parameters of the epidemiological model
described in Section 2 for the Ebola virus in those countries where it had more magnitude: Guinea,
Liberia and Sierra Leone. In all the cases, the proposed methodology allows finding a set of values
for the model that provide a evolution of the disease which is very close to the real one.
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financed by the European Regional Development Fund (ERDF). Juana López Redondo is a fel-
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Abstract. This work deals with the iterated greedy based metaheuristic with tabu search
and simulated annealing for solving permutation flow shop problem. In our work, we will
consider a flow shop problem with several jobs and machines and we will calculate the
minimum completion time for all the jobs through the all machines (i.e. the makespan). We
implement three variant of metaheuristics; the first is iterated greedy with tabu search, the
second is iterated greedy with simulated annealing while the last is iterated greedy with
both of tabu search and simulated annealing. In addition, we will compare the all with the
classical NEH heuristic. Numerical tests show that the iterated greedy based metaheuristic
with tabu search gives best results than with simulated annealing.

Keywords. Permutation Flow Shop, Iterated Greedy, Tabu Search, Simulated Annealing,
Makespan.

1 Introduction

In the recent decades, the production systems have to face more and more competition in
terms of completion time to accomplish the client commands. The decisions of the companies
have a significant impact on the manufacture, the cost of the product, the delivery time, the
quality, etc. They must optimize the planning and the scheduling of the production which
can be considered amongst the most difficult tasks. One of the most thoroughly studied
scheduling problems is the flow shop problem (FSP). In the FSP, a set J = {J1, J2, ..., Jn} of
n independent jobs to be processed on a set M = {M1,M2, ...,Mm} of m machines. Every
job j ∈ J , requires a given fixed, non-negative processing time pij on every machine i ∈M .
Also, all n jobs are to be processed on the m machines in the same order, that is, the jobs
follow the same machine order in the shop starting from machine 1 and finishing on machine
m. The objective is to find a sequence for processing the jobs in the shop so that a given
criterion is optimized. The criterion that is most commonly studied in the literature is the
minimization of the total completion time, also called makespan (Cmax), of the production
sequence. A common simplification in the flow shop scheduling problem is to keep the se-
quence on the first machine maintained throughout the remaining machines. The resulting
problem is called the permutation flow shop problem (PFSP); with the makespan criterion
it is denoted as Fm|prmu|Cmax [1]. There are many well-known heuristic approaches for
PFSP. For example, Johnsons algorithm[2], CDS’s algorithm [3] and Dannenbrings Rapid
access (RA) procedure [4] are good examples of constructive methods. NEH heuristic [5] is
one amongst the preferable ones for PFSP. To obtain best results for PFSP, some meta-
heuristic algorithms have been developped. For instance, the iterated greedy (IG) algorithm
implemented by Ruiz and Stutzle [6]; tabu search (TS) given by Nowicki and Smutnicki [7]
and simulated annealing (SA) by Osman and Potts [8]. In this work, we will implement three
variant of metaheuristics; the first is iterated greedy with tabu search, the second is iterated
greedy with simulated annealing while the last is iterated greedy with both of tabu search
and simulated annealing. Moreover, we will compare the all with the classical NEH heuristic.
Numerical tests show that the iterated greedy based metaheuristic with tabu search gives
best results than with simulated annealing.

The rest of the work is organized as follows. In Section 2, the permutation ow shop schedul-
ing problem is introduced. In Section 3, we give a detailed description of the iterated greedy
with simulated annealing and tabu search algorithm (IGSATS). Computational tests are
given and discussed in Section 4. Finally, some conclusions are given in Section 5.
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2 Problem statement

In the permutation flow shop scheduling problem, all jobs follow the same order of pro-
cessing. Our goal is to find a set of compromise solutions so that the makespan is minimized.
Flow shop scheduling is a typical assembly line problem where n different jobs have to be
handled on different machines. All jobs are processed on all machines in the same order.
The processing time of the jobs on the machines is fixed regardless of the order in which the
processing is performed. The problem is to sequence n independent jobs {J1, J2, ..., Jn} on
m diffeerent machines {M1,M2, ...,Mm}. Following the same notations proposed by Reeves
[9], pij is the processing time for job j on machine i and a job permutation is represented
by the sequence π = {π1, π2, ...πn}. When there are n jobs and m machines, the completion
time C(πi, j) is calculated as follows :

C(π1, 1) = p(π1, 1), (1)

C(πi, 1) = C(πi−1, 1)+p(πi, 1), i = 2, ...n (2)

C(π1, j) = C(π1, j− 1) + p(π1, j), j = 2, ...m (3)

C(πi, j) = max{C(πi−1, j), C(πi, j− 1)}+ p(πi, j), (4)

i = 2,...n; j = 2,...m

The makespan is finally defined as:

Cmax(π) = C(πn,m) (5)

Subsequently, the objective is to find a permutation π* in the set of all permutations Π
so that

Cmax(π∗) ≤ Cmax(π) ∀π ∈ Π (6)

3 Iterated greedy with simulated annealing and tabu search

In this section, we present different steps of the approximate resolution algorithm IGSATS
to solve the flow shop permutation problem (see Algorithm 1). The IGSATS algorithm starts
with giving an initial solution (π) generated by the NEH heuristic; after as a second step
called a destruction step in which a given number of jobs is randomly selected and removed
from the solution without repetition, giving two partial solutions. The first, with the size of
tasks, is designated by πR, including deleted tasks in the order in which they were deleted.
The second, with the size n-d jobs, is the original solution without the jobs deleted, which
is noted πD. The third step concerns the construction using the local search criterion, the
NEH insertion heuristic is used to complete the solution. The first work πR(1) is inserted
into all possible n − d + 1 positions in the destroyed solution πD, thus generating partial
solutions n− d+ 1. Among these partial solutions n− d+ 1, the best partial solution with
the minimum test or the total flow time is chosen and kept for the next iteration. Then, the
second job πR(2) is considered and the process continues until πR is empty or a final solution
is obtained. Therefore, πD is again of size n. The fourth step is the simulated annealing
one which is applied as the acceptance criterion because of its excellent performance. The
criterion uses a constant temperature that depends on the T0 parameter of the algorithm:

Temperature = T0 ×
m
Σ

i=1

n
Σ

j=1
pij

n×m×10
(7)

The fifth step deals with introducing a tabu list that evolves as the mechanism of meta-
heuristic tabu search. We consider here a circular tabu list containing sequences of tasks
selected in the neighborhood generation process. Before choosing the sequence that will pass
the acceptance criterion, we check that it does not appear in the tabu list. The tabu list
keeps track of the latest solutions already visited. In the last step, each iteration with the a
new tabu list will be updated.
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Algorithm 1 Iterated greedy with simulated annealing and tabu search IGSATS

π := πNEH
πbest := πNEH
TL := ∅ (TL: Tabu List)

While (termination criterion not satisfied)
πD := Destruction(π)
π′ := Reconstruction(πD, πR)
π′′ := Local Search(π′)
β := exp(−(Cmax(π′′)−Cmax(π))/Temperature)

If ((TL 6= ∅) and (π′′ /∈ LT )) then
If ((Cmax(π′′)≤Cmax(π)) then

Insert π in TL
π := π′′

If ((Cmax(π)≤Cmax(πbest)) then
Insert πbest in TL
πbest := π

Endif
Elseif (random≤β)) then

Insert π in TL
π := π′′

Else
Insert π′′ in TL

Endif
Elseif ((Cmax(π′′)≤Cmax(π)) then

Insert π in TL
π := π′′

If ((Cmax(π)≤Cmax(πbest)) then
Insert πbest in TL
πbest := π

Endif
Elseif (random≤β)) then

Insert π in TL
π := π′′

Else
Insert π′′ in TL

Endif
Endif

Endwhile
Return πbest

4 Computational results

In this section, we provide a comprehensive experimental evaluation and comparison of
the proposed IGSATS algorithm with other powerful methods NEH, IGSA[10] and IGTS[11].
For the comparisons we use randomly generated instances where the processing time of the
jobs are uniformly distributed between 1 and 99 ranging. The number of jobs is from 20 jobs
to 160 and the number of machines is from 5 to 30. In the simulations, we use the same
computational conditions including the same computer, the same programming language
and the same stopping criteria. All considered algorithms are coded in MATLAB and run on
a PC with Intel(R) Core(TM) i5-7200U CPU and 4G RAM. For the computational tests, we
set the parameters d ∈{3,4,5,6,7,8} and T0 = 0.4. For all algorithms, the run time is limited
to 3600s or until the iterated number equal to 100. The performance of all algorithms is
evaluated by a percentage deviation (PD) which is calculated as follows :

PD = Cmax−Best
Best

× 100 (8)

To evaluate the performance of our suggested IGSATS algorithm. We will implement three
variant of metaheuristics; the first is iterated greedy with tabu search, the second is iterated
greedy with simulated annealing while the last is iterated greedy with both of tabu search and
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simulated annealing. In addition, we will compare the all with the classical NEH heuristic.
Computational results are summarized in Table 1 for the number of jobs less than 100 and
Table 2 for the number of jobs less more than 100; where Cmax, CPU and PD represent
makespan, percentage deviations and computational time in seconds, respectively.

Table 1. Computational results for random instances.

n×m
NEH IGSATS IGTS IGSA

Cmax Cmax CPU PD Cmax CPU PD Cmax CPU PD

20×5 1230 1218 0.11 0.99 1218 0.11 0.99 1218 10.26 0.99

20×10 1567 1530 0.17 2.42 1533 0.17 2.22 1547 11.72 1.29

20×15 1938 1817 0.21 6.66 1831 0.21 5.84 1855 15.17 4.47

40×5 2134 2131 0.31 0.14 2131 0.31 0.14 2133 40.08 0.05

40×10 2689 2657 0.51 1.20 2657 0.52 1.20 2675 156.61 0.52

40×15 3113 3003 0,71 3.66 3014 0.70 3.28 3036 421.87 2.54

60×5 3411 3403 1.26 0.24 3403 1.09 0.24 3403 64.91 0.24

60×10 3681 3546 1.29 3.81 3551 1.27 3.66 3619 101.16 1.71

60×15 4017 3940 2.19 1.95 3941 2.42 1.93 4012 138.51 0.12

80×5 4664 4660 2.55 0.09 4660 2.62 0.09 4660 2.76 0.09

80×10 5626 5512 8.49 2.07 5532 4.46 1.70 5609 287.44 0.30

80×15 4992 4855 6.52 2.82 4855 6.67 2.82 4986 46.11 0.12
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Fig. 1. Plots of the Makespan vs number of iterations for 5 machines and 20 jobs (left) and percentage
deviation vs the number of jobs for 10 machines (right).
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Table 2. Computational results for random instances.

n×m
NEH IGSATS IGTS IGSA

Cmax Cmax CPU PD Cmax CPU PD Cmax CPU PD

100×10 5657 5603 4.71 0.96 5610 4.56 0.84 5649 362.41 0.14

100×20 6528 6503 9.22 0.38 6504 8.63 0.37 6512 253.19 0.25

100×30 7492 7393 15.95 1.34 7426 16.71 0.89 7448 302.07 0.59

120×10 6852 6764 9.99 1.3 6765 10.23 1.29 6818 198.23 0.50

120×20 7757 7629 19.29 1.68 7666 10.68 1.19 7740 200.93 0.22

120×30 8610 8477 28.98 1.57 8531 28.88 0.93 8610 3600 0.00

140×10 7673 7599 13.45 0.97 7644 13.48 0.38 7661 166.29 0.16

140×20 8579 8440 25.79 1.65 8499 26.01 0.94 8553 357.21 0.30

140×30 9773 9538 39.40 2.46 9625 39.81 1.54 9765 144.14 0.08

160×10 8816 8769 18.07 0.54 8769 18.79 0.54 8802 167.02 0.08

160×20 9966 9831 35.68 1.37 9876 34.39 0.91 9965 483.77 0.01

160×30 10703 10621 51.05 0.77 10672 52.56 0.29 10703 3600 0.00
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Fig. 2. Plots of the Makespan vs number of iterations for 20 machines and 100 jobs (left) and percentage
deviation vs the number of jobs for 30 machines (right).
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To show convergence performance, convergence graphs in Figures 1,2. It can be obviously
seen that IGSATS algorithm can converge faster than IGTS and IGSA. To evaluate the
robustness of three algorithms, changes of percentage deviations are depicted in Figure 1
and 2. It can be seen that IGSA and IGTS algorithms has smaller percentage deviations
than IGSATS. Numerical tests show that the iterated greedy based metaheuristic with tabu
search gives best results than with simulated annealing.

5 Conclusion

We have studied in this work, the iterated greedy based metaheuristic with tabu search
and simulated annealing for solving permutation flow shop problem. We have considered a
typical flow shop problem with n jobs and m machines. Our goal is to compute the makespan.
We have implemented three variant of metaheuristics; the first is iterated greedy with tabu
search, the second is iterated greedy with simulated annealing while the last is iterated
greedy with both of tabu search and simulated annealing. In addition, we will compare the
all with the classical NEH heuristic. Numerical tests shown that the iterated greedy based
metaheuristic with tabu search gives best results than with simulated annealing.
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Abstract. In this paper, we present some effective metaheuristics for solving hybrid flow
shop scheduling problem with uniform parallel machines and sequence independent setup
time. In this case, we implement three metaheuristics, the variable neighborhood search al-
gorithm, the greedy random adaptive search procedure and the iterative greedy algorithm.
Our problem requires a preparation time of each machine for the processing of a new job. In
fact, this time represents the setting or maintenance time specific to the machine independent
of the job being processed, this constraint is often encountered in modern production work-
shops. Our problem is inspired by a real case of paint production workshop in three stages,
whose objective function is the minimization of the total flow time taking into account the
washing and cleaning constraints as well as the adjustment of the parameters of the machines
course of use. For each metaheuristic we choose the appropriate parameters to obtain the
optimal solution by exploring the space of the neighborhood of the current solution for the
different permutations. We conducted a simulation study on a set of randomly generated
instances in order to test the effectivenes of different metaheuristics. We found that the it-
erative greedy algorithm gives good results compared to the other two metaheuristics.

Keywords: hybrid flow shop, uniform machines, heuristics, meta heuristics, variable neigh-
borhood search, iterative greedy algorithm, greedy random adaptive search procedure, total
flow time.

1 Introduction

The tough competition in the industrial market between the company is pushing decision mak-
ers to improve their production processes by implementing the new tools of modern technology.
The workshops are equipped with machines whose performance can fall over time, to meet the
demands of customers on time, the production managers are brought to equip the workshops of
new machines with good performance compared to the old machines. The new machine parks
therefore require careful organization by optimizing the use of all the functional machines to meet
the requirements of the customers. In this context, we propose a simulation study of a flexible
flow shop with machine-dependent preparation times also called sequence-independent setup time.
Flexible flow shop scheduling problems also known as hybrid flow shop (HF) is widely studied in
[1] scheduling literature. The first study concerning this type of problem is presented by [2] by
modeling a two-stage flow shop with two identical parallel machines per stage. The problem is
qualified as NP hard in the strong sense as soon as the number of machines exceeds two per stage.

The search for the optimal solution by the exact methods is limited for small problems. In the
real industrial case the number of jobs is often much higher which pushes the researchers to propose
approaches of resolutions based on the heuristics and metaheuristics which give good results in a
reasonable time given the complexity of the problem. The first proposed studies generally concern
flow shop with identical parallel machines. A notation composed of three fields α|β|γ is proposed
in [3] as presentation of HF problems state art until 1999. We note that a review of the work done
in the field of workshop scheduling is presented in [4].
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We found that few studies have addressed HF problems with uniform parallel machines, the first
works dealing with this type of problem are cited in [5,6]. However, parallel shop flow problems
with identical machines [7,8] or unrelated parallel machines [9,10] are largely studied by making
the constraints and the criteria to be optimized more diversified. The introduction of sequence
independent or sequence-independent setup time in simulation models is of great importance in
optimizing flow management. The most recent works [11,12,13] have shown the usefulness of taking
this constraint into account in decision-making in the industrial field. This time is considered an
unproductive time which generally influences the scheduling of production batches. The mastery
and optimal management of this factor allows the company to gain in terms of time and costs gen-
erated during the production process. This type of problem is attracting more and more attention
from researchers in recent years. They propose models of resolution based essentially on the exact
methods for the small problems or meta heuristics for the problems of big size. In the majority
of cases, researchers develop models based on meta heuristics for its efficiency and speed to find
a good solution to the problem. Many metaheuristics find their application in the resolution of
the HF problems we quote in particular the simulated annealing [14,15], the tabu search [16,17],
the genetic algorithm [18,19], new algorithms inspired by nature, such as the bee colony algorithm
[20,21], the ant colony algorithm [22,23] and the migratory bird algorithm [24,25].

We were inspired by a real case study of production of a paint shop composed of three stages
of machines: mixers, grinders and mixers, the machines are uniform parallel after each operation
treated on a machine a preparation time sequence independent is needed to process a new job. This
type of workshop will be modeled by a hybrid flow shop with uniform machine sequence indepen-
dent setup time, the objective of which is to minimize the total flow time under the permutation
constraint, the problem will be designated by HF3((QM)k)3k=1|SIST |

∑n
j=1 Cj,3. As a result we

propose a set of heuristics based essentially on Johnson’s rule [26] and the NEH algorithm [27]
initially applied to the flow shop problem.

Then the improvement of the solutions is made by three metaheuristics in this case the vari-
able neighborhood loical search algorithm, the iterative greedy algorithm and the greedy random
adaptive search procedure. We note that we have chosen these heuristics and its metaheuristics for
simplicity and ease in their implementations. The peculiarity of the industrial problem studied in
the presence of parallel machines in flow shop with such a constraint allowed us to appreciate the
application of the proposed model. The description of the chosen model of the studied workshop
is given by the following figure

J1

J2

M11

M21

Mm11

M12

M22

Mm22Jn

stage 1 stage 2 stage 3

M13

M23

Mm33

J1

J2

Jn

Fig. 1. Three stages hybrid flow shop.

Our paper is organized in the following way, in section 2 we present a description of the proposed
model, in section 3 we develop the algorithms of resolution, in section 4 a comparative study is
presented between the different algorithms, in section 5 a conclusion completes this work.
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2 Description of the hybrid flow shop problem

in the hybrid flow shop workshop scheduling problem a set J = {J1, ..., Jn} of jobs is started in
the shop, all jobs follow the same sequence through a set of K stages. On each satge k a machine
set M (k) = {M1k, ...,Mmkk} is available to handle the same job. A job sequence π = {π1, ..., πn}
is generated in the permutation space of the neighborhood of the current solution is started in the
production run of the shop. We note that vik ∈ N represents the speed of the machine i on the stage
k and pijk =

pjk
vik

, the duration of execution of a job j on a machine i of the stage k. The end date of
the job j on a machine i of the stage k is Ci,πj ,k. When the machine is not specified the output date
of the jobs of the stage k is noted Cπj ,k. The jobs will be sorted in ascending order of their date
Cπj ,k−1 to be processed by the stage k machines obeying the first-come-first-served rule. Either sik
the preparation time independent of the sequence of the machine at stage k before the processing
of any job. This time is necessary to prepare the machine for the processing of a new job on the
machine i of the stage k. In the proposed model, we note that the sequence-independent setup
time is much more important for high-speed machines compared to the lower-speed ones. In fact,
the adjustment of uniform machines of high speed usually requires highly skilled managers with
low speed skills, which represents the most frequently used industrial cases. In our case the goal
is the minimization of the total flow time of all jobs,i.e

∑n
j=1 Cj,3 in the last stage. The objective

function is determined by a set of equations highlighting the end dates of the jobs, the operating
times, the preparation times and the speeds of the machines.

On each stage k a job πj is assigned to a single machine, when a machine has not processed any
job before the completion date is given by the following expression:

Ci,πj ,k = max{sik, Ci,πj ,k−1}+
pjk
vik

(1)

If a machine i has already processed a job, the completion date is given by:

Ci,πj ,k = max{Ch,πσ,k + sik, Ci,πj ,k−1}+
pjk
vik

(2)

Where h denotes the machine that has just processed the job πσ the predecessor of the job on the
machine i in the k-stage scheduling. The job is assigned to the machine i∗ which completes it as
soon as possible and its end date on stage k is given by:

Ci∗,πj ,k = min
1≤i≤mk

{Ci,πj ,k} (3)

the objective is the minimization of the sum of the end dates of all the jobs on the last stage named
the total flow time(TFT) knowing that:

TFT =
n∑

j=1

Cj,3 (4)

In the problem the objective is to find an optimal permutation π∗ which minimizes the total flow
time of all the permutations in the search space.

TFT (π∗) 6 TFT (π), π ∈ Π (5)

3 Resolution

Hybrid flow shop problems with setup time is classified NP hard in the strong sense in the
scheduling literary. The resolution by heuristics and metaheuristics is often favored by researchers if
the size of the problem is too large compared to the exact methods. Here we propose heuristic-based
resolution approaches enhanced by highly metaheuristic responses in the optimization domain in
this case, the variable neighborhood search algorithm, the iterative greedy algorithm, and the
greedy random adaptive search procedure.
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3.1 Initialization heuristics

3.1.1 Heuristics Based on Johnson’s Rule

To determine an initial solution we apply the Johnson rule used initially for a two-machine
flow shop problem that we adopt for a three-stage HF problem. The following algorithm gives the
steps for determining the Johnson sequence.

Algorithm 1 Johnson’s Rule

Input:Two machines : M1,M2 and the set J = J1, ..., Jn
The processing time for each job in two machines are p1j , p

2
j

Step 1: Build the job set U as p1j < p2j and sort the jobs in ascending order their processing time on M1.
Step 2: Build the job set V as p1j > p2j and sort jobs by descending order their processing time on M2.
Step 3: Form the Johnson sequence by the following concatenation πJ = UV .
Output: πJ

We have implemented two heuristics based on the Johnson rule that we adopt for the three-
stage HF problem taking into account machine setup time constraints.

– H1: Calculate the processing times of each job on two virtual machines M1,M2 by the following
two expressions:

p1j =
2∑

k=1

min
1≤i≤mk

[
sik +

pjk
vik

]
, p2j =

3∑

k=2

min
1≤i≤mk

[
sik +

pjk
vik

]
(6)

Construct the sequence by Johnson’s rule considering the duration p1j , p
2
j .

– H2: Calculate the processing times of each job on two virtual machines M1,M2 by the following
two expressions:

p̃1j =

2∑

k=1



∑mk
i=1

[
si,k +

pjk
vik

]

mk


 , p̃2j =

3∑

k=2



∑mk
i=1

[
sik +

pjk
vik

]

mk


 (7)

Construct the sequence by Johnson’s rule considering the durations p̃1j , p̃
2
j .

3.1.2 Heuristics based on the NEH algorithm

We rely on the NEH algorithm to determine a good starting solution. Indeed, this heuristic
is considered among the most important heuristics in the scheduling of the flow shop workshops at
K machines. We adopt it to solve the parallel machines in flow shop with setup time independent
of the sequence. The fundamental stages of this algorithm are described by algorithm 2.

Algorithm 2 NEH algorithm

Input: A K machines flow shop and a setJ = J1, ..., Jn and each job j have the processing time pj,1,..., pjK
in K machines.

Step 1: Calculate the total processing time of each job by: T (j) =
∑K
k=1 pjk

Construct the sequence π = {π1, ..., πn} by sorting the jobs in descending order of T (j)
Step 2: Schedule the first two jobs π1,π2 and choose the best sequence π of the first two jobs
Step 3: Schedule other jobs

for j = 3 to n do
Test πj in the different positions of the current sequence built and choose the best sequence with
the minimum total flow time in all machines and update πNEH of the optimal sequence.

end for
Output: πNEH
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– H3: Determine the smallest total processing time of each job j on the three stages by the
following expression:

T (j) =
3∑

k=1

min
1≤i≤mk

[
sik +

pjk
vik

]
(8)

Rank the jobs in descending order to T (j) build an optimal sequence according to the NEH
algorithm.

– H4: Determine the smallest total average processing time of each job j on the three stages by
the following expression:

T̃ (j) =
3∑

k=1



∑mk
i=1

[
sik +

pjk
vik

]

mk


 (9)

Rank the jobs in descending order T̃ (j) build an optimal sequence according to the NEH
algorithm.

Illustration Example: We consider a problem consisting of 5 jobs to be processed on stages, the
processing time of jobs are in Table 1. In Table 2 we give the number of machines per stage and
the speed and setup time of preparation of each machine on each stage.

Table 1. Job Processing Time in Three Stages.

job stage 1 stage 2 stage 3
J1 8 9 10
J2 9 12 6
J3 8 6 8
J4 8 9 4
J5 8 6 4

Table 2. Setup Time and Machine Speed per Stage.

stage 1 stage 2 stage 3
M11 M21 M12 M22 M13 M23

Speed : vik 1 2 3 1 1 2
SIST : sik 2 3 3 2 3 4

We give here the numerical application for the computation of the parameters of the heuristic
H1 and H3.
H1: To clarify the proposed heuristic, the processing time of each job are calculated on the two
virtual machines M1 and M2.
p11 = min(2+ 8

1 , 3+ 8
2 )+min(3+ 9

3 , 2+ 9
1 ) = 13, p21 = min(3+ 9

3 , 2+ 9
1 )+min(3+ 10

1 , 4+ 10
2 ) = 15

p12 = min(2+ 9
1 , 3+ 9

2 )+min(3+ 12
3 , 2+ 12

1 ) = 14.5, p22 = min(3+ 12
3 , 2+ 12

1 )+min(3+ 6
1 , 4+ 6

2 ) = 14

p13 = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 6
3 , 2 + 6

1 ) = 12, p23 = min(3 + 6
3 , 2 + 6

1 ) +min(3 + 8
1 , 4 + 8

2 ) = 13

p14 = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 9
3 , 2 + 9

1 ) = 13, p24 = min(3 + 9
3 , 2 + 9

1 ) +min(3 + 4
1 , 4 + 4

2 ) = 12

p15 = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 6
3 , 2 + 6

1 ) = 12, p25 = min(3 + 6
3 , 2 + 6

1 ) +min(3 + 4
1 , 4 + 4

2 ) = 11

So we have determined the duration of each job: p1j = [13, 14.5, 12, 13, 12], p2j = [15, 14, 13, 12, 11].
According to Johnson’s while classifying the jobs of U by ascending order on the first machine and
the jobs of V in descending order on the second machine on the higher sets is U = {3, 1} and
V = {2, 4, 5} the sequence of Johnson is πJ = {3, 1, 2, 4, 5}.
H3: In the same way to illustrate this heuristic we calculate the total duration of each job in the
three stages, so we have:
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T (1) = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 9
3 , 2 + 9

1 ) +min(3 + 10
1 , 4 + 10

2 ) = 22

T (2) = min(2 + 9
1 , 3 + 9

2 ) +min(3 + 12
3 , 2 + 12

1 ) +min(3 + 6
1 , 4 + 6

2 ) = 21.5

T (3) = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 6
3 , 2 + 6

1 ) +min(3 + 8
1 , 4 + 8

2 ) = 20

T (4) = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 9
3 , 2 + 9

1 ) +min(3 + 4
1 , 4 + 4

2 ) = 19

T (5) = min(2 + 8
1 , 3 + 8

2 ) +min(3 + 6
3 , 2 + 6

1 ) +min(3 + 4
1 , 4 + 4

2 ) = 19

And so on until you determine all the total duration of all jobs so you get: T (j) = [22, 21.5, 20, 19, 19].
The ranking in descending order of T (j) makes it possible to write the sequence to be sequenced
by the algorithm of NEH, πNEH = {1, 2, 3, 4, 5}.

In order to visualize the processing of all jobs in the three-stage hybrid flow shop with the
constraint of machine sequence independant setup timeHF3((QM)k)3k=1|SIST |

∑n
j=1 Cj,3. We

consider the Johnson sequence πJ = {3, 1, 2, 4, 5} that we launch in the production cycle in our
workshop. So we visualize in the Gantt chart following the start and end dates of each job on each
machine on each stage.

Fig. 2. The Gantt chart for five jobs and two machines per stage.

We can see that (C2,3,3 = 13, C2,1,3 = 22, C1,2,3 = 28, C2,5,3 = 29.5, C1,4,3 = 35). The total end
dates of all job in the last stage represent the total flow time of jobs in the sequence πJ that is
TFT (πJ) = 13 + 22 + 28 + 29.5 + 35 = 127.5 unit time.

3.2 Metaheuristics

To improve the solutions obtained in the initialization phase by heuristics based on the Jonson’s
rule and the NEH algorithm. We apply three metaheuristics, the variable neighborhood search
algorithm, the greedy iterative algorithm, and the greedy random adaptive search procedure. In
each metaheuristic, we choose the necessary parameters to adapt it to the problem to be solved.
The implementation of this metaheuristic consists in defining a set of neighborhoods based on the
methods of permutation and the insertions procedures we describe as follows

N1 : Randomly select two differents positions of two jobs in the sequence, for example in the
sequence {2, 4, 5, 6, 1, 3}, the positions 2 and 5 jobs swap their positions to obtain the new
sequence {2, 1, 5, 6, 4, 3}.

N2 : In the insertion neighborhood a position job πp is drawn at random and a position q is drawn
at random. If the position q is to the right of πp then insert the job at the q position and shift
the other jobs to the left. If not, insert the job in the q position and shift the other jobs to the
right. For example, in the sequence {2, 4, 5, 6, 1, 3} the job π2 is inserted at position 6, and the
other jobs are shifted to the left {2, 5, 6, 1, 3, 4}.
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N3 : The neighborhood defined by inversion, a block of jobs in an inverse sequence of positions. For
example in the sequence {2, 4, 5, 6, 1, 3} the block between positions 2 and 5 reverse position
giving the new sequence {2, 1, 6, 5, 4, 3}.

3.2.1 Variable neighborhood search

The variable neighborhood search (VNS) algorithm [28] differs from the local search iterative
algorithm by searching in several neighborhoods. Therefore this allows a good exploration in the
vicinity of the current solution to reach the right solution. This metaheuristic is one of the most
used in the optimization field, applied in this case to the HF scheduling problem [29], we apply it
here to solve our problem. The steps of the variable neighborhood search metaheuristic is given by
the following algorithm

Algorithm 3 VNS Algorithm

Input: π0 = {π1, .., πn} The initial sequence
π∗ ← π0

TFT (π∗)← TFT (π0)
π ← π∗

Define the entire neighborhood Nh(h = 1, ..., hmax)
while {the stopping criterion not satisfied} do
h← 1
while h 6 hmax do

Disturbance the current solution and define π′ in the neighborhood Nh(π′)
Choose π” from the neighborhood of Nh(π)
if TFT (π”) 6 TFT (π∗) then
π∗ ← π”

else
h← h+ 1

end if
end while

end while
Output: π∗, TFT (π∗)

3.2.2 Greedy random adaptive search procedure

The second metaheuristic that we apply in the resolution of this problem is the greedy random
adaptive search procedure (GRASP) [30,31]. This metaheuristic proves its effectiveness in solving
shop scheduling problems. It is based on two main phases, the construction phase, at the beginning
of this phase and starting from an empty initial solution, at each iteration we select candidate jobs
from a restricted list of candidates defined in the interval given by the following expression

Cπj ,3 ∈ [Cmini, Cmini + α× (Cmaxi − Cmini)] (10)

Where Cmini, Cmaxi respectively denotes the minimum and maximum end dates in the current
sequence build in the third stage. This condition allows to build the short list of candidate jobs.
The chosen job from this list will be scheduled in the built-in solution. The second phase consists
of looking in the vicinity of the current solution, considering the three neighborhood types cited
in the VNS metaheuristic. We reinforce this phase by introducing the model defined by simulated
annealing to better explore the studied neighborhood. In the relation defining the restricted con-
didates of list (RCL), we choose the evaluation function defined by the end date of the jobs on
last stage . This function reflects our criterion to be optimized which is the total flow time of in
the three stages. The implementation of this metaheuristics requires first of all to choose the type
of neighborhood N(π) and two settings parameters in this case α and T . The parameter α is the
fundamental parameter in the construction phase, it allows to widen or reduce the interval of choice
of the list of retained jobs in RCL.
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We make the implementation considering several values of α knowing that α ∈ {0.2, 0.4, 0.5, 0.6, 0.8}.
The T parameter is also a determining factor in the local search phase, the chosen model is given
by the following expression

T = λ×
∑n
j=1

∑K
k=1 min1≤i≤mk

[
sik +

pjk
vik

]

10×K × n (11)

This formula is inspired by the model defined in [32] initially planned for the K machine flow
shop that we adopt for our three-stages HF problem. We chose to vary the coefficient λ such as:
λ ∈ {0.9, 0.92, 0.94, 0.96, 0.98}
In Algorithm 4 we present the steps of unfolding the metaheuristic (GRASP) with the local search.

Algorithm 4 Greedy Randomized Adaptive Search Procedure with Local Search

Input: π = {π1, .., πn} the initial sequence
π∗ ← π
TFT (π∗)← TFT (π)
while {the stopping criterion not satisfied} do

% construction phase %
Γ ← π
π ← ∅
makespan evaluation of the job πj ∈ Γ
while Γ 6= ∅ do
Cmini ← min{Cπj , πj ∈ Γ}
Cmaxi ← max{Cπj , πj ∈ Γ}
Build the restricted candidates list:
RCL = {πj , Cπj ∈ [Cmini, Cmini + α× (Cmaxi − Cmini)]}
Select a random element πr from the RCL and choose the best position giving the minimum total
flow time in the constructed solution.
π ← π ∪ πr
Update from Γ

end while
% local search phase %
Choose π′ from the neighborhood of Nh(π)
if TFT (π′) < TFT (π) then
π ← π′

if TFT (π) < TFT (π∗) then
π∗ ← π

end if
else

if random 6 exp{−(TFT (π′)− TFT (π))/T} then
π ← π′

end if
end if

end while
Output: π∗, TFT (π∗)

3.2.3 Iterative greedy algorithm with local search

The metaheuristic based on the iterative greedy (IG) algorithm mixed with the local search method
also consists of two main phases, the phase of obtaining the current solution which is even built of
two sub-phases, destruction and construction. The local search phase of exploring the neighborhood
of the current solution. We retain the same model presented in the local search phase of the Greedy
Random Adaptive Search Procedure. This metaheuristic is frequently used in several scheduling
problems [33,34]. We apply it to solve our problem and we adopt its parameters for our case study.

A starting solution is given by one of the heuristics proposed before the objective is to improve it
in an iterative way. We varied the starting solution for the different heuristics proposed. This allows
us to better check the effectiveness of this metaheuristic. The implementation of this metaheuristic
requires two basic settings parameters.
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T : It is a parameter that makes it possible to better explore the neighborhood, we adopt the
same model retained by the metaheuristic of GRASP.

d : This parameter represents the number of jobs to extract in the destruction phase. We pro-
pose a simulation study by varying the number of jobs extracted in the destruction phase by
considering d ∈ [2, 16] depending on the number of jobs started in the production run.

We present in the Algorithm 5 following the detailed steps of determination of the solution
obtained by the iterative greedy.

Algorithm 5 Iterated Greedy Algorithm with Local Search

Input: π sequence obtained by an initialization heuristic.
π∗ ← π
TFT (π∗)← TFT (π)
while {unsatisfied stopping criterion} do

% Destruction phase%
π′ ← π
for h = 1 to d do

Extract a job πh at random from the sequence π′ and add the job πh to the Ω subset.
end for
% Construction phase%
for h = 1 to d do

Extract the π′h job from Ω subset.
Test the job on the different positions in the current sequence π′ and choose the best position giving
the smallest total flow time in the last stage.

end for
% local search phase%
Choose π

′′
from the neighborhood of Nk(π′)

if TFT (π
′′

) < TFT (π) then
π ← π′′

if TFT (π) < TFT (π∗) then
π∗ ← π

end if
else

if random 6 exp{−(TFT (π
′′

)− TFT (π))/T} then
π ← π

′′

end if
end if

end while
Output: π∗, TFT (π∗)

4 Numerical simulation

4.1 Simulation instances

In order to validate the proposed metaheuristics, we implement a simulation study based on a
set of test problems by varying the number of jobs, the number of machines per stage as well as
the parameters of each metaheuristics. These test problems are classified into two broad categories,
the first category includes small and medium size problems, the second category concerns larger
size problems. This ranking is based on the number of jobs and the number of machines per stage.
For the first category, it is characterized by the number of jobs n ∈ {10, ..., 90}, the number of
machines per stage is mk ∈ {2, ..., 6}; the number of jobs to extract in the metaheuristic of the
iterative greedy glutton is d ∈ {2, ..., 6}. The processing times pjk are generated according to a
uniform law such that pjk ∈ [20, 60], the setup times are also generated according to a uniform
law, knowing that sik ∈ [1, 10]. For the second category of problems, we consider the number of
jobs is defined by n ∈ {100, 120, 140, 160, 180, 200, 220, 240, 260}, the number of machines per stage
is variable knowing that mk ∈ {6, ..., 12}, the number of jobs to extract is d ∈ {6, ..., 16} for the
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iterative greedy (IG)algorithm. The processing times are generated according to a uniform law
such that pjk ∈ [40, 100], . We note that the α ∈ {0.4, 0.5, ...0.9} parameter of the greedy random
adaptive search procedure (GRASP) will be identical for both categories during the simulation.
Speeds of the uniform machines are defined in the set of integers such that vik ∈ {1, 2, 3, 4, 5} and
the setup time is define by sik ∈ [10, 20], taking into account the constraints of machine preparation,
knowing that when the machine has a high speed it requires a more time of preparation than others.

4.2 Experimental results

Objective of the simulated instances is to propose a comparative study between the different
algorithms. The variability of the parameters of each metaheuristic has led us to choose cases high-
lighting the significant difference between them. The experimental results are very important and
promising to verify the effectiveness of the metaheuristics of resolutions our problem. In order to
better study their efficiency, we perform two types of analysis.

First analysis consists of comparing the three metaheuristics by calculating the Relative Percent-
age Deviation (RPD) by the expression following

RPD =

[
TFT − TFT ∗

TFT ∗

]
× 100 (12)

Where TFT designates the value found by a metaheuristic and TFT * the minimum value.
For a calibration of the RPD parameter we consider the results for an average of 10 instances for
each type of test problem. In this analysis we make the comparison while considering the initial
solutions given by the four heuristics (H1, H2, H3, H4).

Table 3. Experimental results of the performance analysis for all algorithms of the category 1.
(the best RPD value is in bold)

Instance VNS GRSAP IG

n×m1 ×m2 ×m3 TFT* T ime1(s) H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4

10× 4× 2× 3 632 40 5.34 4.25 2.33 4.66 4.24 3.55 3.21 3.53 4.88 4.72 3.57 2.56
10× 3× 3× 3 745 40 2.45 5.44 2.35 3.55 2.78 5.33 2.33 3.22 2.33 5.22 2.22 3.21
10× 2× 4× 4 625 40 6.13 4.55 2.33 4.66 5.24 4.55 5.21 4.53 4.88 2.72 2.57 3.56
20× 2× 4× 4 2885 80 3.23 4.45 6.25 4.78 3.25 3.25 4.21 3.34 4.55 5.21 3.35 4.21
20× 3× 4× 4 2634 80 3.45 6.22 3.45 4.55 3.48 6.11 3.14 4.78 3.25 6.25 3.11 4.34
20× 3× 5× 4 2478 100 3.45 5.65 6.71 4.41 6.23 4.98 4.65 3.31 2.78 4.45 6.15 5.25
30× 2× 4× 5 5986 150 4.52 3.31 4.79 5.56 3.27 4.41 5.26 6.12 3.34 2.52 4.42 5.21
30× 3× 4× 5 5358 150 4.66 5.66 3.28 5.25 4.81 5.55 4.23 5.55 4.55 5.51 3.67 5.21
30× 5× 3× 4 4358 150 6.11 5.21 3.33 4.25 3.25 2.88 2.68 3.65 4.52 2.57 3.34 4.45
40× 5× 4× 3 8025 200 5.43 3.56 4.78 2.89 3.65 4.45 3.33 2.89 5.23 3.79 4.11 3.25
40× 3× 4× 5 8557 200 4.65 4.33 4.81 4.25 4.22 4.55 5.21 5.56 4.68 4.41 4.67 4.44
40× 5× 4× 4 7854 200 2.23 4.56 6.2 3.58 4.34 5.21 4.45 3.78 3.34 3.35 4.23 2.11
50× 3× 6× 4 13886 300 4.11 3.44 2.45 6.14 4.78 3.54 2.21 3.55 5.22 3.56 2.78 3.45
50× 6× 5× 5 12555 300 4.71 5.71 3.33 3.11 4.22 5.55 3.66 2.87 4.82 5.71 3.66 3.78
50× 6× 6× 6 11567 300 2.11 3.36 4.25 3.56 4.11 3.11 4.31 2.12 3.21 4.55 3.45 4.23
60× 6× 5× 5 15235 360 4.34 4.67 3.26 2.79 2.66 3.55 4.25 5.34 2.34 2.23 3.22 2.68
60× 6× 5× 6 14567 360 5.25 5.45 3.66 3.11 5.71 5.33 3.88 4.44 5.34 5.22 4.22 2.71
60× 6× 5× 4 13563 360 4.56 3.12 2.83 4.45 5.23 3.21 2.65 2.45 3.21 4.56 3.67 4.23
70× 5× 4× 6 24567 420 5.34 3.45 5.34 2.98 3.45 5.34 2.56 3.24 2.34 2.22 3.31 3.23
70× 6× 6× 5 22432 420 4.55 4.55 3.62 2.55 4.77 4.72 2.99 4.61 4.43 4.43 2.88 2.71
70× 5× 6× 4 24589 420 2.23 3.34 2.56 4.42 3.45 3.56 2.45 3.31 3.66 2.12 2.23 1.63
80× 4× 5× 6 23879 480 2.34 1.84 4.45 3.78 3.67 3.89 2.55 2.67 2.87 3.45 1.62 1.87
80× 5× 6× 5 23789 480 3.88 5.33 3.44 2.22 3.77 3.41 3.11 2.67 3.71 5.22 2.77 1.88
80× 6× 6× 6 20456 480 3.45 2.78 3.78 4.23 2.22 3.12 3.45 3.56 2.24 1.78 3.67 2.45
90× 6× 5× 5 34789 540 1.67 3.55 4.25 2.34 2.56 1.82 3.23 2.45 1.62 1.89 2.23 1.52
90× 5× 5× 6 33543 540 3.88 4.88 3.12 2.11 3.55 4.22 2.88 2.78 3.44 4.14 2.71 1.51
90× 6× 6× 6 30564 540 1.56 4.56 3.23 3.76 4.11 3.86 2.57 3.64 2.53 2.29 1.67 1.54
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Tab.3 and Tab.4 summarize the partial results presented in our paper. In the first column
we specify the size of the studied instance, the second column represents the value of the optimal
solution, the third column represents the limit time of computes not to be desiccated as a stopping
criterion in the three metaheuristics. In the remaining columns, the RPD values for the three meta-
heuristics (V NS,GRASP, IG) are given according to the four heuristics (H1, H2, H3, H4) used in
the initial solutions.

Table 4. Experimental results of the performance analysis for all algorithms of the category 2.
(the best RPD value is in bold)

Instance VNS GRSAP IG

n×m1 ×m2 ×m3 TFT* T ime2(s)H1 H2 H3 H4 H1 H2 H3 H4 H1 H2 H3 H4

100× 10× 7× 10 48645 500 4.34 3.55 2.33 5.66 3.24 3.44 3.11 2.53 3.88 2.12 2.57 1.56
100× 11× 9× 11 44568 550 2.11 2.22 2.65 2.11 2.12 2.13 2.22 2.31 1.88 1.89 2.11 1.71
100× 12× 8× 12 40234 600 3.34 2.65 2.63 3.66 2.24 1.55 2.21 3.53 2.88 3.72 2.77 2.56
120× 11× 9× 10 52347 660 2.56 3.21 1.62 2.56 3.64 2.98 1.88 3.23 2.22 1.66 1.88 2.11
120× 9× 10× 11 51897 660 2.87 2.99 2.88 2.21 2.44 2.66 2.55 2.81 2.21 2.88 2.76 1.86
120× 11× 1× 11 50675 660 3.27 2.23 3.34 2.89 3.43 2.78 2.13 3.67 1.88 1.55 1.64 2.64
140× 8× 11× 10 66345 770 2.78 3.2 32.78 3.56 2.89 2.68 3.21 3.56 3.45 1.88 2.22 1.98
140× 10× 8× 11 65789 770 3.11 3.44 3.11 3.12 2.88 3.22 2.81 3.11 2.99 3.22 3.61 2.61
140× 11× 11× 11 60897 770 2.56 3.34 2.65 2.63 2.12 2.34 2.45 2.54 1.95 1.86 1.68 2.11
160× 12× 8× 10 74678 960 2.89 1.89 2.12 3.11 1.67 2.22 1.88 2.45 1.89 2.12 2.22 1.89
160× 12× 8× 11 71457 960 2.66 2.88 3.83 3.11 2.88 3.11 2.91 2.91 3.11 3.11 3.11 2.81
160× 12× 10× 12 68674 960 3.12 2.24 1.77 2.26 2.89 3.15 3.15 3.21 2.26 1.66 2.23 1.85
180× 9× 12× 10 113456 1080 2.45 2.33 1.67 2.87 2.45 2.55 3.45 2.68 1.85 1.87 1.66 2.11
180× 8× 12× 11 117567 1080 2.88 2.88 2.88 3.11 2.53 2.98 3.35 2.71 2.55 2.55 2.55 2.71
180× 11× 7× 12 123456 1080 2.23 2.45 3.11 3.21 2.25 1.56 2.43 2.62 3.12 3.25 3.24 2.22
200× 10× 12× 10 153876 1200 3.23 3.56 2.86 2.87 2.65 2.75 2.54 2.53 1.88 2.31 2.54 2.11
200× 10× 12× 9 151324 1200 2.53 2.77 2.55 3.11 2.78 2.88 2.71 2.51 2.44 2.44 2.11 2.71
200× 10× 8× 12 157657 1200 3.45 2.25 2.45 2.22 2.11 3.25 3.45 2.66 2.98 3.15 2.56 2.88
220× 11× 11× 12 186987 1320 3.11 3.45 2.65 2.46 2.35 2.74 2.32 2.86 2.21 2.11 2.89 2.25
220× 12× 10× 9 196346 1320 2.11 2.11 2.34 2.55 2.53 2.51 2.34 2.78 1.81 1.88 1.89 2.11
220× 12× 12× 11 192456 1320 3.22 2.67 3.21 2.28 1.83 1.45 2.45 1.85 2.22 2.16 1.97 1.85
240× 11× 10× 8 211786 1440 2.45 2.89 2.15 2.35 2.21 1.87 1.76 2.11 2.25 2.76 2.68 2.56
240× 9× 12× 12 205452 1440 1.71 1.77 1.88 2.22 2.11 1.77 2.46 2.11 1.66 1.55 1.77 1.81
240× 12× 12× 12 200342 1440 3.12 2.78 3.45 2.76 1.87 1.67 1.86 1.69 1.83 2.22 2.35 2.45
260× 11× 8× 12 261234 1560 2.34 2.11 2.89 1.89 2.45 2.22 3.24 2.15 1.77 1.86 2.11 2.34
260× 10× 12× 12 250064 1560 1.76 1.66 1.66 2.11 1.88 1.55 2.12 1.81 1.66 1.35 1.45 1.51
260× 12× 12× 12 245164 1560 2.56 1.76 1.86 1.86 1.95 1.85 1.54 1.44 1.42 1.88 1.68 1.85

Second analysis consists in studying the speed of convergence towards the optimal solution, for
this one will limit the computation time according to the category of the simulated instances. For
the first category, the limit calculation time is defined by Time1 = n × max(m1,m2,m3). This
limits the search for the three metaheuristics in the space of the solutions that are close to the
permutation set defined by the neighborhood.In the same way we will limit the calculation time
for the second category by Time2 = n

2 ×max(m1,m2,m3).
Fig.3 shows a comparative study between the three metaheuristics for the first category based

on the solutions obtained by the four heuristics. We found that for this category the difference
between these three metaheuristics is not significant the maximum difference is of 6.25%for all the
studied instances. We also find that the metaheuristic IG records the lowest RDP for 22 instances
among 36 which represents 61.11%of simulated instances.

In Fig.4, we report the simulation study results of instances of the second category considered
large. We found that the greedy iterative algorithm also gives good results compared to other
metaheuristics by achieving the lowest value of RPD. Indeed on the 36 instances studied in 26 il
achieves the lowest RPD is a rate of 72.22% with the highest RPD values of 1.35%.
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Fig. 3. RPD variation for all algorithms of category 1
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Fig. 4. RPD variation for all algoritms of category 2

The speed of convergence of the heuristics in the search for the optimal solution is one of the
most interesting performances to study in this kind of simulation. The second analysis consists in
making a comparative study between the different heuristics in terms of time of total flow time
of scheduling of all the jobs. This makes it possible to better know the speed of convergence of
each metaheuristic to converge towards the optimal solution. We plot the variation of the objective
function (TFT) as a function of the CPU time by limiting itself by the stop criterion imposed to
no longer explore the whole neighborhood of the current solution.

Our numerical tests are implemented in Matlab 014a on an intel (R) Core (TM) i3 CPU M350
2.27HHz, 2.26GHz computer with a RAM of 6 GB. The interest of the convergence of our meta-
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heuristics in terms of calculation in the search for the optimal solution is a primordial factor in the
analysis of the results. The interest of the convergence of our metaheuristics in terms of calculation
in the search for the optimal solution is a primordial factor in the analysis of the results. We give
the results of two instances representing both categories of problem. We limit ourselves to these two
instances which are more than enough to illustrate the difference between the three metaheuristics
during the process of finding a solution. Fig.5 shows the evolution of the TFT over the time of the
instance 40×3×4×5 representative of category 1 whose time limit Time1 is 200 seconds. In Fig.6
we show the evolution of the TFT of the instance 160× 12× 10× 12 whose time limit is Time2 is
960 seconds.
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Fig. 5. Evolution of TFT value vs CPU Time for all algoritms of category 1
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Fig. 6. Evolution of TFT value vs CPU Time for all algoritms of category 2
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From the plots on both Fig.5 and Fig.6 showing the evolution of TFT during the search for
the optimal solution. We note that for the four initial heuristics the greedy iterative algorithm
gives the best results in terms of the quality of the solution obtained and in terms of the speed
of convergence towards this solution. We also find that the best solution obtained based on the
H3 heuristic recording the largest decrease in the initial solution during the search process for the
iterative greedy algorithm.

5 Conclusion

In this paper, we have presented three metaheuristics to solve the problem of hybrid workshop
flow scheduling with three stages, uniform parallel machine and with sequence-independent setup
time. The goal is to minimize the total flow time of all jobs by taking into account the permutation
constraints of solutions throughout the neighborhood. The used metaheuristics are the variable
neighborhood local search algorithm, the greedy random adaptive search procedure and the it-
erative greedy algorithm. The complexity of the problem encountered led us to implement four
heuristics that will be the basis of three metaheuristics chosen for the resolution of this problem.
In fact, the initial solutions obtained by these heuristics are based on Johnson’s algorithm and
the NEH algorithm that we adopt for our studied problem. Our problem is inspired by a real
industrial case representing the production in a painting workshop. We conducted a simulation
study on a set of instances modeling industrial encountered cases. Our study was successful in
terms of performance recorded by heuristics and metaheuristics applied to solve the problem. The
final analysis of the simulation allows us to conclude that the iterative greedy algorithm gives good
results compared to the other two metaheuristics the other two metaheuristics based on initial
solutions based on the NEH algorithm.
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Abstract

In this paper, we propose an image denoising method based on 2D dual tree discrete wavelet transform with 
genetic algorithm optimization. The VisuShrink method has been selected for thresholding. Particularly in 
this work, the threshold value is corrected and optimized for each subband using a genetic algorithm. After 
the threshold is determined, a nonlinear threshold function is applied which make a good compromise 
between the soft threshold and hard threshold function. Experimental results indicate that the proposed 
method outperforms some of the well known noise removal operators in the literature in terms of PSNR (dB)
and SSIM and obtain clearer image edges. 

Keywords : image denoising; dual tree complex wavelet transform; wavelet thresholding; genetic algorithm.

1 Introduction
The discrete wavelet transform (DWT) has been recognized as an important tool for image denoising 

[1] [2] [3] [8]. This transform tool can effectively separate the noisy signal from the image signal. In wavelet 
domain, large coefficients correspond to the image, and small ones represent mostly noise. By filtering these 
coefficients with a suitable threshold, which is known as wavelet shrinkage, most of the noise power can be
suppressed significantly while preserving main image features. 

It is well known that 2D DWT is constructed using separable filter bank (i.e., rows and columns are 
processed separately) which is not enough effective to capture image features with arbitrary orientation such 
as edges and contours in images that are not aligned with the horizontal or vertical direction. For that reason, 
this transformation tool cannot provide efficient approximation for directional characteristics of images 
which in turn affects the performance of DWT-based denoising schemes. Many multiscale transforms have 
been derived from the DWT in order to improve directional selectivity, namely: curvelets, contourlets, 
wedgelet, complex wavelet transform [4]….  

In this work, a new noise removal method based on DDWT is exposed. In this method, the threshold 
is adaptive to each subband of DDWT decomposition. The thresholding of wavelet coefficients in the 
transformed domain has been done using a weighted universal threshold (i.e., VisuShrink). The proposed 
algorithm searches the optimal weights adapted to each subband using a genetic algorithm. Experimental 
results show that the proposed method outperforms some of the well known noise removal operators in the
literature in terms of PSNR (dB) and SSIM.
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2 Dual-tree discrete wavelet transform 
The dual tree complexe wavelet transform (DT-CWT) is one of many developed tools derived from 

DWT in order to get important additional properties, such as shift invariance and  good directionality in two
and higher dimensions.

DT-CWT is implemented using two real DWT trees; the first tree represents the real part of the 
transform while the second represents the imaginary part. The analysis part of the transform is illustrated in 
figure 1. Specially in this case, the filters used in the two trees of the DWT satisfy perfect reconstruction
(PR) and should be jointly designed so that the overall transform is approximately analytic [4].  

The form of the combined filters used in the DT-CWT 1D is given by: h୶  ݆g୶        (1)

Where ࢞ࢎ and ࢞ࢍ are respectively the sets of real-valued low-pass filters ሼ݄, ݄ଵሽ and high-pass 
filters ሼ݃, ݃ଵሽ, in the direction ݔ. Particularly in DT-CWT, filters applied in the first level of decomposition
are numerically different than their respective at the other levels [4]. 

The 2D DT-CWT structure is an extension of conjugate filtering in 2D case. In this case, the pairs of
filters are applied separately in the two dimensions (ݔ and ݕ), and this is expressed as:ሺh୶  jg୶ሻሺh୷  jg୷ሻ ൌ ൫h୶h୷ െ g୶g୷൯  ݆൫h୶g୷ െ g୶h୷൯        (2) 

This results in four trees as shown in figure 2. Either the real part or the imaginary part of (2) can be 
used as a transform tool since they both satisfy perfect reconstruction and directional characteristic [4]. Real 
part of 2D DT-CWT is denoted DDWT and is used in our work in order to reduce the redundancy from 4:1 
to 2:1. 

 

 

(a)   (b)

Figure 1: Analysis filter bank DT- DWT, (a) 1D, (b) 2D.

3 Wavelet thresholding
Wavelet thresholding is a widely used term for wavelet domain denoising, which means the 

procedure applied on wavelet transformed coefficients of the noisy image for noise suppression. It is applied 
only for wavelet coefficients of the detail subbands, while keeping the low resolution coefficients unaltered.
Here, this procedure of thresholding is achieved with the following steps: 

1. Decompose the noised image using 2D dual discrete wavelet transform (DDWT)
2. Select a given threshold value 
3. Apply the threshold on the wavelet coefficients according to a shrinkage rule. 
4. Get the denoised image by the inverse 2D dual trees discrete wavelet transform (IDDWT)
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The shrinkage process is governed by the threshold value and the thresholding rule. For the latter, 
there are two frequently used methods: hard and soft thresholding. In hard thresholding, the wavelets 
insignificant (less than a predefined threshold) coefficients are set to zero and the significant coefficients 
remain unchanged. In soft thresholding, the absolute value of a significant coefficient is reduced by the 
threshold value. Hard thresholding suffers from abrupt discontinuity which causes artifacts in the denoised
image while soft thresholding causes over smoothing in the denoised image.  

In this work, a compromised thresholding method called Garrote thresholding [2] is employed. For a 
given threshold ܶ, this function thresholding is defined by: 

,ݔሺ݄ݐ     ܶሻ ൌ ቐݔ െ 0.5 ்మ௫ |ݔ|	݂݅			  ܶ		0.5	 ௫య்మ |ݔ|		݂݅  ܶ		 (3) 

The key problem in the thresholding technique is the choice of the threshold. If this latter increase 
excessively, the noise will remain in the restored image. On the other hand, if this value is very small, some 
image details (edges, textures,…) would be lost. Figure 2 illustrates the three functions thresholding
methods.

Thresholding methods can be classified into two categories, global thresholds and level dependent 
thresholds. In first class, a single threshold is applied globally to all subband coefficients, while in the
second class a different threshold is estimated and applied for each subband.  

The most known of global thresholds is the universal threshold (VisuShrink). It is a simple entropy
measure totally dependent on the size of the signal. The threshold value is expressed as: ߣ ൌ  ሻ         (4)ܯሺ	݃ඥ2݈ߪ

Where ܯ is the size of the signal and ߪ the noise standard deviation estimated from the subband by 
the robust median estimator: ߪ ൌ ௗ൫ห௬ೕห൯.ସହ  (5)

Where ݕ are the detail coefficients at the finest level of wavelet decomposition. The reason for this
choice of level is that the corresponding wavelet coefficients are dominated by the noise.

One of subband adaptive thresholding efficient methods is BayesShrink, which is based on Stein’s 
unbiased risk estimator [9]. In this case, the threshold is defined by: ߣ ൌ ఙమට௫൫ఙమିఙమ,൯ (6)

Where ߪ௬ଶ ൌ ଵே∑ ଶேୀଵݕ and ܰ is the number of wavelet coefficients of subband. 

Figure 2: thresholding functions
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3        GA based optimization
GA is a stochastic randomized search algorithm starting with an initial random population of 

problem solutions. It evolves iteratively through genetic operators: selection, crossover and mutation stages 
until obtaining a sufficient solution.

In experimentation, the population size is set to 40 and the initial population is obtained by randomly 
generating threshold correction weights that varies between 0.05 and 2. In order to prevent long 
chromosomes, a real chromosome is encoded to represent the values of these weights.  

In experimentation, four levels of DDWT decomposition are used. In the implementation of DDWT, 
we have chosen the CDF 9/7 filter bank for the first stage and the 6-tap Qshift filters for the three remaining 
stages. The popular natural images Lena and Barbara are used in this work. These images are corrupted with
Gaussian noise with different noise variances.  

Particularly in this work, and in order to prevent long chromosomes and speed up the convergence 
of algorithm, GA is employed to search the optimal weights for each level independently of the other levels 
of DDWT trees (i.e., errors are independents). In this case, a chromosome of length six is employed to 
represent the weights of the subbands in a single level of DDWT structure. The maximum generation is set
to 300 for the first level, 300 for the second, 200 for the third, and 100 for the last.

In genetic algorithm, a simulated binary crossover operator [6] with a distribution index of 20 with a 
probability of 0.98 is used, and a polynomial mutation of distribution index 20 with a probability of 0.05 is 
applied. Binary tournament selection has been used as genetic selection operator. In addition, a crowding 
distance has been employed to preserve population diversity during GA run.

In order to prevent loss of the best solutions obtained during GA run, the four (10% of population 
size) fittest chromosomes in the population of each generation are copied to the next generation created by 
crossover and mutation stages. The obtained population is sorted and truncated at the population size. This 
operation of genetic algorithm is known as Elitism. The flowchart of the proposed genetic algorithm is
shown in Figure 3. 

The objective of the optimization problem is to minimize the MSE (mean squared error) value 
between wavelets coefficients of noised image subbands and their corresponding of reference image
subbands [7].  

 

Figure 3: Flowchart of GA algorithm.
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4       Simulation and results

To investigate the effectiveness of the proposed GA thresholding method, results obtained using the 
proposed based shrinking methods are compared with the DDWT with VisuShrink, DDWT with 
BayesShrink, and DWT with BayesShrink. For all these methods, we have chosen the best thresholding
among those depicted in figure 2. The wavelet filter db4 is employed for the implementation of DWT.

Table 1 shows the PSNR and SSIM results of the denoising methods which we have just mentioned. 
The SSIM (Structural Similarity Index Measure) is a perceptual measure of quality of images [5]. From this 
table, it is clear that the proposed denoising method (DDWT-GA) performs better than the other methods. 
One can notice that PSNR gain of the proposed method with respect the other ones increases significantly
with the variance.

For relatively smooth image Lena, we concluded from figure 5 that both low and high frequency
components are better represented with our optimized thresholds.

Figure 6 shows a portion of Barbara image after noise reduction. From this figure, it is clear that the 
VisuShrink method smoothes out most image details and thus produces a blurred denoised image. It can be 
observed that textures lines are better preserved with the denoising methods based on DDWT (e and f) than 
the denoising with DWT (d). Through visual inspection of all denoised images, it can be observed that the 
proposed method DDWT-GA provides the best image quality. 

In addition, for medical image (“med”) exposed in figure 6, it is clear that this method outperforms
all others methods and is well sufficient to suppress the Gaussian noise.

Table 1: PSNR and SSIM (SSIM values in the right) results
for various denoising methods.

5      Conclusion
In this paper, we have presented a method based on DDWT for image denoising. Particularly in this 
work, denoising method using weighted universal threshold is applied. For a given corrupted image,
the optimal weights adapted for each subband of DDWT are optimized using a genetic algorithm.  
As it was seen in the simulations, results obtained demonstrate that the proposed method efficiently 
suppresses the Gaussian noise with different variances and produces better numerical results and
visual quality.
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Figure 4: Comparing the performance of the various denoising methods on Lena image with σ=20. 
(a) original image, (b) noisy image, (c) DDWT&VisuShrink (d) DWT method, (e) DDWT &
Bayesian thresholding, (f) DDWT-GA based method.
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(a) (b) (c)

(d) (e) (f)
Figure 5: Comparing the performance of the various denoising methods on a portion of Barbara 
image with σ=20. (a) original image, (b) noisy image, (c) DDWT&VisuShrink (d) DWT method, (e)
DDWT & Bayesian, (f) DDWT-GA based method.

Figure 6: Comparing the performance of the various denoising methods on medical image with σ=20. 
(a) original image, (b) noisy image, (c) DDWT&VisuShrink (d) DWT method, (e) DDWT &
Bayesian, (f) DDWT-GA based method.

(a) (b) (c)

(d) (e) (f)
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1 Introduction 

Regularly planned and scheduled maintenance is a critical requirement to reduce the occurrence of 

unforeseen failure and keeping the equipment running at peak efficiency. Maintenance scheduling becomes 

complex when the machines are geographically distributed. In this case, in addition to assigning the 

maintenance operations to technicians, it is needed to find the best set of routes for technicians’ visits. In 

fact, it is necessary to study the maintenance and the routing decisions simultaneously. Such a joint decision 

problem is known as the maintenance-routing problems.  

To the best of our knowledge, few studies attempted to investigate the simultaneously maintenance 

scheduling and vehicle routing problem[1], [2]. For this purpose, in this study a new mathematical model is 

proposed to determine optimized maintenance-routing policy. Moreover, we are working to develop an 

efficient solving approach based on meta-heuristics to obtain the accurate and reliable results in a reasonable 

time. 

2 Problem description 

In this section a bi-objective mathematical model is proposed to determine optimized routing-

maintenance policy, simultaneously. In this model, first objective function minimizes the total costs due to 

traveling, delay in start time of a Preventive Maintenance (PM)/Corrective Maintenance (CM) operation in 

customer while second objective function attempts to minimize the waiting times before beginning of the 

CM operations.  

In this study there is a system with some customers geographically distributed, where each customer 

has one machine that should be visited and repaired by technician in different cycles. The PM operations are 

scheduled with a certain frequency to reduce the occurrence of unforeseen failure in the long term. 

Regarding the previous experiences, the time of unforeseen failure occurrence is known for each machine at 

each customer, but its repairing can be postponed until defined period. The time interval between occurrence 

of unforeseen failure and its repairing named waiting time. The set of technicians, who need to visit the set 

of machines to perform the PM/CM operations to prevent the system failure. The technician are different in 

duration time of doing a PM/CM operation which causes different in salary. A central depot is concerned as 

the point of departure and final destination. Since each technician should travel to perform PM/CM 

operation at the customer location, the distance between each two customer is defined. The main aim of this 

study consist of determining a joint routing-maintenance policy for all machines taking into account making 

a balance between the waiting time and total cost of system. In the optimized maintenance policy will be 

determined in which periods the PM and CM operations should be performed at each customer. Moreover, 

each technician will be assigned to customers and will be determined in which sequence should visit 

customers and perform PM and CM operations at each period.  

The detailed conditions of system are summarized as follows: 

 The technicians are different in skills regarding required time to perform a maintenance

operation. The time required to perform a maintenance operation is depended on skill of

assigned technician.
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 The more skilled technician has more salary.

 All technicians are homogenous and are able to perform any PM/CM operation.

 The technicians start in the central depot in the beginning of each period and should return to

the central depot by the end of the period.

 Each machine should be repaired by only one technician at each period. It means if the

machine should be repaired in the specific period, only one technician should be assigned to

the machine.

 The PM operation should be performed on the all the machines at the first period.

 In the case of no unforeseen failure occurs on the machine at planning horizon, the PM

operations will be performed regarding the defined frequency. The frequency is defined

regarding planning horizon and the duration of the interval between two consecutive PM

operations.

 In the case of unforeseen failure occurrence on the machine, no predictive maintenance can

be scheduled and performed before performing CM operation. In this case, CM operation

should be scheduled to assign a technician on the machine until maximum L period.

Moreover, next PM operation will be scheduled and performed after λ period.

 After performing a CM operation, the machine returns to the good condition and no

unforeseen failure occurs until the next repairing that will be a PM operation in λ period. It

means two unforeseen failure cannot be occurred consequently.

 The time required to perform a CM operation is longer than the time required to perform a

PM operation on each machine.

 The CM cost is larger than the PM cost.

 The machines impose time windows to the system which means the technician should start

maintenance operation before the latest possible start time. In cases where this time

windows is not respected, a delay penalty applies if the technician starts after the latest

allowed time.

 The travel time between two customers is depended to speed of vehicle in the rout at each

period.

3 Mathematical Formulation 

The objective function of the mathematical model associated with the presented framework is 

provided in this section. In the presented equations indexes i and j present the customers, k addresses 

technicians and t presents different periods. The parameters vij, r, pi, ck, pmk and cmk define distance between 

customers, transportation cost per unit distance, penalty cost of one unit time delay due to start time of a 

PM/CM operation at customer, one unit time cost of a PM/CM operation, time required to perform a PM 

operation and time required to perform a CM operation, respectively. Moreover, xijkt, dit, aikt, bikt and yitt are 

decision variables which present customer visiting, amount of delay, performing PM/CM operation and

delay occurred in visiting customer to perform a CM operation.  

1

, , , , , , , , ,

. . . . . . .ijkt ij it i ikt k k ikt k k

i j k t i t i k t i k t t

fMin x v r d p a c pm b c cm


       (1) 

2

,

itt

i t

fMin y (2) 

The first objective function (1) minimizes the total cost which consist of traveling cost between 

customers, penalty cost due to start time out of time windows and the wages of technicians for PM/CM 
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operations. The second objective function (2) optimizes the customer satisfaction level by minimizing the 

waiting times until performing a CM operation in the case where an unforeseen failure occurs. 

4 Resolution approach 

To proof the feasibility of proposed bi-objective mathematical model, we use the “GAMS v22.2” 

optimization software using solver CPLEX v10.1.  

The proposed model is known as a NP-hard problem [3] which causes we cannot solve it in a 

reasonable time for the big sizes. For this purpose, we are working to develop an efficient solving approach 

based on hybridizing two meta-heuristics. Then, we will show the efficiency of proposed approach using the 

defined measurement. 
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Abstract. Superstructure-based optimization models are widely used for the synthesis of heat exchanger 

networks (HEN). Near-optimal sets of heat exchangers and piping configurations may be achieved when 

those models are solved, although this is not a trivial task given the models’ complexity. In this work, a new 

superstructure-based model is presented for HEN synthesis containing new options for the allocation of 

heaters and coolers. Those units are commonly placed at the end of process streams in order to 

provide/remove the required/exceeding heat that was not exchanged among process streams. Such new 

options make the model more complex to solve, with a larger number of possible structural combinations. 

SA-RFO, which stands for Simulated Annealing – Rocket Fireworks Optimization, is the hybrid meta-

heuristic solution approach applied to solve the model. Such method encompasses features of SA, a 

continuous adaptation of SA, and Particle Swarm Optimization (PSO). The methodology is applied to a 

large-scale case study under two different scenarios (single and multiple types of utilities). Results show that 

HEN total annual costs can be reduced by placing some of those devices before other heat exchangers, 

outperforming previously reported HEN synthesis methodologies. 

Keywords : optimization, heat exchanger networks, metaheuristics, mathematical modelling,

process synthesis 

1 Introduction 

Several HEN synthesis methodologies are based on the solution of mathematical programming 

models derived from superstructures for total annual costs (TAC) minimization. A prominent concept on the 

field is the stage-wise superstructure (SWS) proposed by Yee and Grossmann [1]. Relatively simple, that 

model has been taken as basis for the development of several subsequent HEN synthesis works. HEN 

synthesis models for costs optimization are typically mixed-integer nonlinear programming (MINLP) 

problems, which require efficient solution methodologies for attaining near-optimal solutions. Pursuing 

HEN optimality, meta-heuristics are a sort of solution strategy that has reached promising results. These rely 

on random searches and specific heuristic rules when seeking for optima. Some examples of HEN synthesis 

contributions using the SWS under the meta-heuristics scope employed techniques such as Particle Swarm 

Optimization [2], hybrid GA with PSO and parallel processing techniques [3] and Simulated Annealing (SA) 

with Rocket Fireworks Optimization [4]. Moreover, besides costs, other aspects have been considered in 

HEN synthesis, such as environmental performance [5] and financial risks [6]. 

Despite its wide use, the SWS of Yee and Grossmann [1] has some drawbacks. For instance, heaters 

and coolers can be placed only at streams ends. However, solutions with auxiliary heating/cooling in 

intermediate stages (i.e., before heat exchange among process streams) could be promising and lead to better 

objective functions values. This work proposes a new superstructure based on the SWS where utilities can 

be placed at extra stream split branches in all stages. Ending stages are maintained for exhausting/providing

energy for achieving streams’ target temperatures.  

The solution strategy used to solve the proposed model is the SA-RFO method [4], which had to be

re-worked in order to include the routines handling the new variables. 
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2 Mathematical model 

The HEN synthesis mathematical model here used is an extension of the well-used SWS model by 

Yee and Grossmann [1]. The original SWS introduced the “stages” concept. In each stage of the SWS, all 

possible streams pairing for heat exchange were possible. Each heat exchanger was placed at a stream split 

branch in a stage. That configuration implied that no sequential heat exchanger chains were possible at a 

stream in a given stage. Heaters and coolers were placed at streams ends for matching their energetic needs 

not fulfilled by means of heat exchange in stages of the HEN structure. Aiming for a broader search, the 

present proposal is to include extra branches in all stages for enabling the use of utilities not only at streams 

ends. Note that more stream split branches might be required if multiple types of utilities are available. 

Figure 1 presents an illustration of the new SWS with one type of hot utility and one type of cold utility.  

Figure 1. Enhanced stage-wise superstructure 

In the model arisen from the new superstructure, HEN operating costs, i.e., those related to utilities

requirement, are as follows. 
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where m and n indexes represent the utility number (some plants may have more than one type). The 

cu and hu suffixes are for cold and hot utilities, respectively. Ccu and Chu are utility costs, QhuEnd and 

QcuEnd are the required/exceeding heat for a stream which was not provided/exhausted in stages. 

FhQcuEnd and FcQhuEnd are the fraction exhausted/provided by means of a given utility at streams ends 

(note that splits might be present at streams ends as well in case of multiple utilities). QcuInt and QhuInt are 

heat loads of heaters/coolers placed in the stages of the superstructure. 

HEN capital costs are obtained as follows. 
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where B, C and β are cost related parameters. Variables beginning with “A” are related to areas, and 

their suffixes are analogous to those presented in Eq. (1). All “z” variables are binary and represent a unit 

existence/absence.   

Finally, the HEN optimization model is written as follows. 

sconstraintHENts

CCOCTACOPTHEN

..

}{min)_( +=
(3) 

HEN constraints regard thermodynamic feasibility conditions, heat balances, temperatures, 

logarithmic mean temperature differences and area calculations, which lead to the final TAC of a HEN 

solution. It is worth mentioning that in the model derived by Yee and Grossmann [1], an isothermal mixing 

simplification was assumed, avoiding the need for calculating heat balances in the mixers. Such assumption 

is not here made and those balances are always performed. 

3 Metaheuristic solution approach 

The strategy here used for achieving minimal costs solutions is a hybrid meta-heuristic based on 

Simulated Annealing (SA) and the Rocket Fireworks Optimization (RFO) [4]. SA-RFO approach is a two-

level HEN optimization strategy. That is, the method entails an upper level combinatorial optimization 

method (Simulated Annealing [7]) that handles HEN topology, while the lower level method (RFO) handles 

the continuous domain. Considering that the method starts with an “empty” topology (i.e., no units 

exchanging heat between process streams), it can be briefly described as follows:  

i) a random heat exchanger, heater or cooler is added to the topology;

ii) Rocket Fireworks Optimization is applied to the new topology to find heat loads and stream

split fractions that lead to optimal costs;

iii) the optimal solution to that topology is returned to the upper level;

iv) the new topology is accepted or discarded according to Simulated Annealing rules,

according to the costs returned by RFO;

v) if the new solution is the best one found so far, it is recorded;

vi) SA termination rules are checked. If the criteria are met, the procedure is terminated and the

best solution returned. Otherwise, the procedure goes back to (i).

SA rules mentioned in step (iv) accept the new topology if RFO returns a price to that given 

topology lower than that associated to the current topology or, in case that cost is greater, if the following 

equation is satisfied: 








 −


T

TACTAC
rand

CurrentNew

exp)1,0( (4) 

where rand(0,1) is a random number generated from a uniform distribution between zero and one, 

TACNew and TACCurrent are the optimal TACs of new and current topologies and T is the “temperature”, a 

parameter of SA. Note that, for higher values of T, there is a higher probability of acceptance for topologies 

with greater costs than that of the current topology. Such measure aids the method in avoiding local minima

premature stagnation.  

It is worth mentioning that RFO is a combination of two continuous optimization approaches. First, 

a continuous adaptation of SA (CSA) is conducted. The CSA procedure is similar to the common SA, but 

with random continuous moves performed to the continuous variables. The best solution found by CSA is 

included to a swarm of random solutions. This swarm is subsequently evolved by applying Particle Swarm 

Optimization [8]. Figure 2(a) presents an illustration of the method behavior, evidencing the similarity to an 

ascending rocket firework and its explosion. Figure 2 (b) shows the application of RFO to a topology in a 

relatively simple four-stream problem [9]. It is possible to note that CSA quickly evolves towards a
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minimum region (only accepted solutions were plotted), and to observe the generated particles heading 

towards that region. Note also the presence of penalized solutions. Those are thermodynamically infeasible 

(hot stream outlet temperature of the (1,2,1) heat exchanger is lower than the cold stream inlet temperature). 

Their monetary value was capped to $20,000 for better visualization in the plot but were actually higher and 

variable. The penalty function, which is directly summed to the TAC if a constraint is unsatisfied, is defined 

generally as follows: 

2)(21 XXPPpen Bound −+= (5) 

where P1 and P2 are penalty constants, and X and XBound are a generic variable and its violated 

bound, respectively. 

SA-RFO method was adapted to include moves in SA related to the addition of heaters and coolers 

in stages. Alterations were performed in the lower level as well for managing new heat loads and stream 

split fractions associated to the stage new units. 

Figure 2. Illustration of the stages of Rocket Fireworks Optimization and application to a topology: (a) 

illustration of RFO stages; (b) 3-D representation of RFO application to a simple topology;  

4 Case study 

In order to illustrate the presented methodology potentialities, it is here applied to an industrial scale 

case study. This example was introduced by Soršak and Kravanja [10], who considered different types of 

heat exchangers. Here, Escobar and Trierweiler's [11] adaptation is used (problem data can be found 

therein), which considers shell and tube exchangers and was used as a benchmark example in other works in 

the literature. The solution obtained by Escobar and Trierweiler [11] had TAC of 1,461,006 $/y. The authors 

applied the DICOPT solver in GAMS to solve the problem with the SWS model of Yee and Grossmann 

(1990), including the isothermal mixing assumption. However, some inconsistencies in that solution were 

found by Pavão et al. [3], who also revised it, finding TAC of 1,537,086 $/y. In that work, Escobar and 

Trierweiler's [11] solution was used as an initialization solution for their PSO method, which was improved 

to TAC of 1,516,482 $/y. Xiao et al. [12] employed a Random Walk with Compulsive Evolution (RWCE) 

meta-heuristic strategy to a no-splits formulation, and were able to find TAC of 1,509,749 $/yr. Bao et al. 

[13] combined the RWCE to an optimum protection strategy and identified the best solution so far, with 

TAC of 1,462,323 $/y. The present approach was able to outperform previous literature solutions, attaining 
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TAC of 1,433,419 $/y. Table 1 presents a comparison to other solutions reported in the literature regarding,

besides TAC, some of their design aspects. 

Table 1. Case study results comparison 

Ref. TAC ($/y) Units Qhu (MW) Qcu (MW) Area (m2) 

Escobar and 

Trierweiler 

[11] 

1,537,086 21 1938.0 106.9 5551.1 

Pavão et al. [3] 1,516,482 21 1938.0 106.9 5389.0 

Xiao et al. [12] 1,509,749 23 1867.7 36.6 Not reported 

Bao et al. [13] 1,462,323 22 2077.5 250.4 5053.2 

This work 1,433,419 22 2495.2 664.1 4688.8 

Apart from the original case study conditions, this problem was here investigated including multiple 

utility options. Table 2 presents data of the utilities that were included. High and medium pressure steam 

were added as hot utilities (labelled as HU2 and HU3), and air-cooling was included as cold utility (labelled 

as CU2). Figure 3 presents the solutions attained to both Scenarios 1 (as taken from Escobar and Trierweiler, 

[11]) and 2 (with additional utilities). The TAC obtained with the latter has TAC of 1,304,515 $/yr. 

Evidently, this result is not comparable to the literature given that, with the inclusion of new utilities, this 

scenario can be considered as a new problem, whose options were not available to previous authors. 

However, it is interesting to note that the present methodology was able to perform a cost-efficient utility

selection.  

Regarding structural advantages, note, in Scenario 1, that a heater is placed prior to a process stream 

to process stream heat exchanger at cold stream 7. If that heater were placed at that stream’s end, TAC 

would increase by 58,676 $/y (4.1%). 

Table 2. New hypothetical utilities 

Inlet temperature 

(°C) 

Outlet temperature 

(°C) 

Heat transfer coefficient 

(kW/m2 °C) 

Costs ($/kW) 

Hot Utility 2 250 250 3.0 150 

Hot Utility 3 200 200 3.0 100 

Cold Utility 2 20 30 0.7 15 
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Figure 3. Optimal HEN for Scenarios 1 and 2 

In Scenario 2, a heater is placed before another one at cold stream 5. HU3 (200 °C) raises the stream 

temperature to nearly 196 °C before HU2 (250 °C) leads it to 217 °C. In the sequence, that stream receives 

heat from hot stream 4 in a heat exchanger. If a heater was allowed only at the end of the stream, HU1 would 

be the only thermodynamically feasible utility to be used, and, in that case, TAC would raise by 66,099 $/y 

(5.1%). 

5 Conclusions 

A new extended stage-wise superstructure for HEN synthesis was developed, giving rise to a 

MINLP mathematical model. A meta-heuristic approach was revamped to handle the new complexities of 

the formulation. The methodology was applied to a large-scale problem in two scenarios: with one hot and 

one cold utility, as in the literature, and with multiple utilities. For Scenario 1, a solution with costs 5.1% 

lower than the best previously reported was found. In Scenario 2, an interesting solution comprising optimal 

choice of utilities was achieved using the newly developed aspects of the present model. It could be 

observed that allocating utilities to positions preceding heat exchange among process streams can lead to 

promising gains, outperforming previous methodologies. 
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1 Introduction

Power transformers are equipments installed in high power substations with the highest investment,
corresponding to about 60% of the invested capital [1]. The Brazilian power system, according
to the Sistema Interligado Nacional (SIN - National Interconnect System) performance indicators
provided by Operador Nacional do Sistema (ONS - System National Operator) in the years of 2012
and 2015, shows an upward increase of the indicator of disturbances in the basic network, having
a reduction of 1.57% in the year 2016, but still maintaining a total number of 3201 disturbances
[2].

The failure of high-powered assets can be disastrous and results in direct and indirect costs
for the industrial, commercial, and residential sectors [3], besides having a negative effect on the
social life of users of electric power [4]. In this way, a disruption in the supply of electric energy,
sometimes cannot have its losses fully measured, being able to surpass the value of investment in
the asset. Thereby, the evaluation of the operational state of power transformers is an essential
stage for maintenance of the electric power supply and increase in reliability of the network.

In the last years, the priorization of assets became a key issue, due to the scarcity of resources
and a difficulty of disconnection of assets. Aiming to verify the operational state of high power
assets, several equipments, procedures and methodologies arouse. However, with a large amount of
equipment evaluation methods, sometimes contradictions between results of different tests happen,
not being trivial a composition among them in order to obtain the operational condition of the
equipment. In this scenario, the use of methodologies based on the Health Index provides the means
to overcome these problems.

Health Index is a methodology that seeks the composition of several tests, necessary to verify
the operational condition of the transformer, aiming at a numerical index, which will represent
the condition of the asset and allow to establish a prioritization. The composition of the index
is traditionally dependent on experts, who assign scores for results from electrical, chemical and
physical equipment test. For each factor evaluated, they establish weights that ponder the results,
composing, by means of a summation, a numerical value, which will indicate the operational state
of the equipment. This value is then used for the ranking of the set of assets in a substation.
However, there is no consensus, among authors, on the composition of weights, falling into certain
randomness. This limits the composition of the Health Index with a comprehensive approach, in
which factors, such as the power of an equipment family, do not interfere in the composition.

The importance of having the means to compose several tests lead us to establish the operational
condition of the equipment and, therefore, establish a prioritization among a set of assets, which
do not always share the same characteristics in a substation. This is an opportunity to develop of
a tool with a more generic approach. In this work, we present a new proposal for the classification
and prioritization of high power transformers, performing the composition of the Health Index
with computational intelligence techniques, such as Particle Swarm Intelligence, Elephant Herding
Optimization and Genetic Algorithm.

In Section 2, the main methods, used in this project for the solution development and perfor-
mance comparison, are presented. In Section 3, the evaluated features, for composition of the index,
are described. In Section 4, the proposed method, for the prioritization and ranking problems, is

165 sciencesconf.org:meta2018:206881



R.A. Santos et al.

introduced. In Section 5, the results achieved are presented. In Section 6, the conclusions are drawn
together with future work.

2 Computational Intelligence Techniques

Computational intelligence techniques have been widely used to solve a diversity of engineering
problems in recent years. In this section, we introduce the main techniques used in this work, in
order to propose a new method for the classification and prioritization of high power transformers.

2.1 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a method developed by Kennedy and Eberhart [5], used
for solving NP-hard problems, where no adequate solution is found with traditional methods, not
requiring large specifications of the problem. In this method, each particle of the swarm represents
a possible solution of the problem, having the strategy of moving the particles in a n-dimensional
search space, based on the social behavior of a flock of birds or school of fish. The selection of the
best solution is performed by a fitness function, which must be modeled for each problem, so that
the particle, which presents a good solution to the physical problem, receives a good evaluation in
the algorithm. At each iteration, each particle is influenced by the process of cognitive and social
learning. The process directs the particles to promising regions until a stopping criterion is reached,
such as a maximum number of iterations (nMaxIt) or a given value of fitness of the solution.

The main steps of the PSO algorithm are described in algorithm 1. In this algorithm, each
particle has a velocity and an adaptive direction [5] that determine its next movement within the
search space. The particle is also endowed with a memory that makes it able to remember the best
previous position it passed by. In Algorithm 1, we denote by Pbest[i] the best fitness particle i
has achived so far and Pbestx[i] the coordinates of the position that yield it. In the same way, we
denote Lbest[i] the best local fitness particle i and its neighbors have achieved so far and Lbestx[i]
the coordinates of the position that yield it.

Algorithm 1 Local Best PSO

for i = 1 to n do
initialize the information of particle i
initialize the position and velocity of particle i

end for
repeat
for i = 1→ n do

compute fitness[i]
if fitness[i] ≤ Pbest[i] then

update Pbestx[i] using position of particle i
end if
if Pbest[i] ≤ Lbest[i] then

update Lbestx[i] using the Pbestx[i]
end if

end for
for i = 1 to n do

update velocity and position of particle i
end for

until nMaxIt
return Lbest[i] and Lbestx[i]

The social component, denominated Local Best, reflects information exchanged within the
neighborhood of the particle [6]. The Local Best PSO is less susceptible to being trapped in local
minimum and also the the ring topology used improves performance. The velocity is the element
that promotes the capacity of particle locomotion and can be computed as described in equation
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1 [5] [6], wherein w is called inertia weight, r1 and r2 are random numbers in [0,1], c1 and c2 are
positive constants called cognitve and social terms, respectively, yij is the personal best position
pbest found by the particle i so far, w.r.t. dimension j, and lij is the local best position lbest found
by the particle i, w.r.t. dimension j, in the neighborhood. The position of each particle is updated

as described in equation 2. Note that x
(t+1)
i,j is the current position and x

(t)
i,j is the previous position:

v
(t+1)
i,j = wv

(t)
i,j + c1r1

(
yi,j − x(t)i,j

)
+ c2r2

(
li,j − x(t)i,j

)
, (1)

x
(t+1)
i,j = v

(t+1)
i,j + x

(t)
i,j . (2)

The velocity component drives the optimization process, reflecting both the experience of the
particle and the exchange of information between the particles. The particle’s experimental knowl-
edge is referred to as the cognitive behavior, which is proportional to the distance between the
particle and its best position found, w.r.t. its first iteration. The maximum velocity vk,max is de-
fined for each dimension k of the search space. It can be expressed as a percentage of this space,
according to equation 3, wherein xk,max and xk,min are the maximum and minimum limits of the
search space explored, w.r.t. dimension k, respectively and δ ∈ [0, 1]:

vk,max = δ(xk,max − xk,min). (3)

In the context of our work, we defined w = 1, c1 = 1.5, c2 = 2, vmax = 0.5, xmax = 1, xmin = 0,
n = 10, 20, 50 and 100, and nMaxIt = 100 and 1000.

2.2 Elephant Herding Optimization

Elephant herd optimization (EHO) is a recent swarm intelligence method presented in 2015 [7]. The
method has its proposal focused on the search for global solutions in n-dimensional search spaces,
with its implementation inspired by the social behavior of Asian and African elephants. In nature,
the elephants of the herd move under the matriarch’s guidance and the male elephants, entering
into adulthood, abandon the group. To represent this behavior artificially, two main operators are
proposed in the method: an aggregation operator and a separation operator. In the artificial herd,
the best solution in each generation is represented by the matriarch and the worst solution by
the adult male elephant. Thus, with the aggregation operator, the elephant position of the herd is
updated under the influence of the matriarch and, with the separation operator, the replacement
of the worst solution of the artificial elephants is realized.

Each elephant has its position xnew,ci,j in the clan ci updated by the operator described by
equation 4:

xnew,ci,j = xci,j + α · (xbest,ci − xci,j) · r, (4)

wherein xbest,ci is the matriarch of clan i, xci,j is the actual position of elephant j, α ∈ [0, 1] means
the matriarch’s influence inside the clan and r ∈ [0, 1] is an uniform distributed random number.
However, the movement of matriarchs is modeled by equation 5:

xnew,ci,j = β · xcenter,ci , (5)

in which xcenter,ci is the center of clan ci defined by the average coordinates of its elephants,
β ∈ [0, 1] represents the influence of xcenter,ci . Algorithm 2 describes the agregation operator of
the EHO method applied in this proposal.

The separation operator models when male elephants reach puberty and leave their clans. For
each clan, the worse elephant is abandoned, and a substitute is created randomly inside the limits
of the clan [7]. The modification of EHO proposed in this work is to place the substitute close
to the matriarch, instead of restricting its position in the area occupied by the clan, as shown in
equation 6:

xworst,ci = xbest,ci + rand, (6)

wherein xworst,ci is the worst of all elephants of the clan ci, xbest,ci is the matriarch of clan ci
and rand ∈ [0, 1] is an uniform distributed random number. Algorithm 3 describes the separation
operator of the EHO method applied in this proposal.
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Algorithm 2 EHO agregation operator algorithm

for ci=1, ...,CLAN do
for j=1,...,nci do

Update xci,j
Generate xnovo,ci,j by Equation 4
if xci,j=xmelhor,ci then

Update xci,j and generate xnovo,ci,j
Generate xnovo,ci,j by Equation 5

end if
end for

end for

Algorithm 3 EHO separation operator algorithm

for ci=1, ...,CLAN do
Substitute the worst elephant xworst,ci of the clan by equation 6

end for

For the purpose of our work, we defined CLAN = 1, α = 0.9, β = 0.3, nc1 = 10, 20, 50 and
100, and nMaxIt = 100 and 1000.

2.3 Genetic Algorithm

Genetic Algorithm (GA) consists of an optimization technique, inspired by the Darwinian principle
of natural selection and genetic reproduction, introduced by John Henry Holland [8]. According to
the Darwinian theory, the principle of selection privileges the most apt individuals, therefore, with
greater probability of reproduction. The genetic codes constitute the identity of each individual,
represented in the chromosomes. These principles are used in genetic algorithms, which seek the
best solution for a given problem through the evolution of populations of solutions encoded by
artificial chromosomes.

The artificial chromosome is a data structure that represents the individual with one of the
possible solutions of the problem search space. These chromosomes are then subjected to an evolu-
tionary process that involves assessing each individual’s fitness, selection, crossover, and mutation.
After several generations of evolution the population should contain the same number of individ-
uals, but with the presence of the fittest.

A genetic algorithm is implemented through the procedure described by algorithm 4, wherein
parameters ps, ef and gn are the population size, the expected fitness of the solution and the
maximum number of generations respectively.

Algorithm 4 GA - Genetic algorithm basic cycle

gen := 0;
population := initialpopulation();
fitness := evaluate(population);
while (fitness[i] 6= ef , 1 ≤ i ≤ ps) & (gen < gn) do
parents := select(population);
population := mutate(crossover(parents));
fitness := evaluate(population);
gen := gen+ 1;

end while
return fittestindividual(population)

In algorithm 4, function intialpopulation returns a valid random set of individuals that com-
pose the population of the first generation, while function evaluate returns the fitness of a given
population storing the result into fitness. Function select chooses according to some random crite-
rion that privilege fitter individuals, the individuals that should be used to generate the population

168 sciencesconf.org:meta2018:206881



Transformer’s Health Index using Computational Intelligence

of the next generation and functions crossover and mutate implement the crossover and mutation
process, respectively, to actually yield the new population.

For implementation effect, we defined the crossover rate as 0.8, the mutation rate as 0.3, gn =
100 and 1000, ps = 10, 20, 50 and 100. The roulette method was used for individual selection and
the representation of the cromossomes was defined in real.

3 Evaluated Features

The method proposed in this work is reached using real data of 48 transformers. These data are
available in a public database published in journals and annals of conference[9], [10] and [11]. For the
characterization of the transformer, six tests of quality analysis of insulating oil, introduced below,
were used: water content, acidity, breakdown voltage, dissipation factor, dissolved gas analysis and
2-furfuraldehyde analysis.

3.1 Water Content

During the manufacturing process, transformers have, as standard, the variation of the concentra-
tion of moisture in the insulation between 0.5% and 1%, where the increase of the concentration of
moisture is due to the degradation of the insulation or communication with the atmosphere [12].
The IEC 60814 and ASTM D1533 standards with the Karl Fisher Titration Method determine
the methodologies for assessing the moisture content, commonly given in parts per million (ppm)
or µl/l[13]. The determination of this test has high importance, since it is one of the main factors
accelerating the aging process, reducing the dielectric capacity of the solid and liquid insulation.

3.2 Acidity

The production of acids in the isolation of power transformers results from the oxidation process,
where hydrocarbons, present in the oil, react with the dissolved air, generating carboxylic acids
[14]. The concentration of acids in the transformer is measured by chemical titration standardized
by IEC 62021-1, IEC 62021-2 and ASTM D1534, given in mg of KOH/g [15]. The increase in acid
concentration in the insulating oil occurs with extended periods in overload, being an indication
of the deterioration process of the solid insulation [16][17].

3.3 Breakdown Voltage

The breakdown voltage is a measure to verify the dielectric supportability of the insulating oil,
presenting significantly high values when the oil is without the presence of contaminants, such as
water and solid particles [12]. The tests are carried out according to IEC 60156 and ASTM D1816,
checking breakdown voltage of the oil sample in environments with a controlled temperature of
20◦ to 30◦ C, with a gap between the electrodes of 1mm [12]. The objective of the test is to verify
the presence of low dielectric withstand in oil, which may lead to the increase of partial discharges,
accelerating the process of aging of the transformer [9].

3.4 Dissipation Factor (tanδ)

The verification of the dissipation factor aims at quantifying the level of energy lost in the trans-
former during its operation [9]. The test is performed according to IEC 60247, being important to
verify the energy dissipation of the insulating oil, since it is in the form of heat dissipation, which
accelerates the aging process of the asset.

3.5 Dissolved Gas Analysis (DGA)

The determination of the concentration of combustible gases is one of the most important tests,
responsible for indicating the evolution of gases, which, in the normal operation process of a trans-
former, already exist. However, with the increase of their concentration, it becomes an indication
of failure or aging of the asset [4]. The evaluations can be performed through traditional criteria,
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such as Rogers, Dornenburg, Duval Triangle, CEGB Criteria, Laborelec Method, among others.
These methods characterize types of faults within transformers by the concentration of key gases.
However, we used in this work the total concentration of gases, such as H2, CH4, C2H4, C2H2 e
C2H6, to determine the operational condition [9].

3.6 2-Furfuraldehyde Analysis

The analysis of concentration 2-furfuraldehyde realizes condition evaluation of solid insulation of
the asset [18] [19] [20] [21]. This technique is responsible for measuring the concentration of aldehyde
chains in the insulating oil. In turn, the breakdown of aldehyde chains are the result of the aging
of the insulation paper. The increase of the aldehyde concentration in the insulating oil indicates
the loss of mechanical properties of the paper, generating a situation favorable to the increase of
partial discharges and increase of the aging process.

4 Proposed Method

Based on the tests performed on each transformer and the diagnostics, a model was established,
which was implemented in four stages: preprocessing of data, application of computational intelli-
gence techniques, validation of the solution found and application of the methodology in graphical
user interface.

The input data were separated into two groups: data for the Health Index weights optimization
process and data for validation. The first step in the development was the preprocessing of the
data, in which normalization of the characteristics was performed based on the standard deviation
of the results of each test.

After preprocessing, computational intelligence techniques were applied, i.e. PSO, EHO and
GA, seeking the set of optimal weights (wi) used in equation 7 for the composition of the Health
Index:

HI =

∑n
i=1 Siwi∑n
i=1 wi

. (7)

Each individual in the search space presents a vector of weights for the composition of the Health
Index. These solutions were applied in a set of known assets, each solution presenting an fitness
value according to the approximation with the expert result. With the optimum global solution
achieved, the validation process was performed with transformers not used in the optimization
process.

In the process of constructing the Health Index, the assets were classified into three critical
classes: good, medium and bad. Post-composition values of the health index were, then, estab-
lished, where bad assets are equipments with an index ranging from 0.75 to 1, medium assets are
equipments with an index between 0.45 and 0.75, and good assets are equipments with an index
between 0 and 0.45.

The solution search process was performed with a maximum number of 100 iterations in the
first case (C1) and 1000 iterations in the second case (C2). The increase in the number of iterations
aimed at verifying the behavior of the methods, as well as the possibility of obtaining better results
with more time for the search process.

The respective experiments were repeated for each algorithm 500 times, varying the number
of individuals (n) in 10, 20, 50 and 100. In this process, a variation of the amount of data was
performed, checking wether one good solution was achieved in the search process with a smaller data
set. Solutions were obtained, creating data relations for optimization-validation of 26-22 (54.2%
- 45.8%) and 30-18 (62.5% - 37.5%) transformers. In the end, the ideal weights were found and
the solutions validated. These weights were inserted into an executable processing routine with a
graphical user interface, simplifying its use.

5 Results

After the proposal of the initial method developed, a comparison was made between the techniques
in order to have an overview of which of the implemented ones was more efficient in terms of the
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precision, speed of convergence and the amount of data needed to converge to an appropriate
solution. The comparison with models based on neural networks and fuzzy inference system only
occurred for the accuracy of the systems presented in scientific publications in the area [22] [9].

The first sequence of tests was performed with 54.2% of the transformers for training and
45.8% for validation. The values reached, in both accuracy and processing time, were average,
from 500 repetitions for each configuration of the algorithms between a number of individuals and
a maximum number of iterations, seen in tables 1 and 2. Figures 1 and 2 compare the performances
of the techniques, using logarithmic scale.

Table 1. Accuracy with 54.2% of the transformers for training and 45.8% for validation

n PSO EHO GA
C1 (%) C2 (%) C1 (%) C2 (%) C1 (%) C2 (%)

10 89.97 91.61 99.19 100 74.11 82.21
20 92.58 93.44 99.82 100 78.23 93.19
50 92.78 93.43 99.98 100 82.81 94.55
100 93.45 93.15 99.95 100 86.31 94.79

Table 2. Processing time with 54.2% of the transformers for training and 45.8% for validation

n PSO EHO GA
C1 (s) C2 (s) C1 (s) C2 (s) C1 (s) C2 (s)

10 1.21 13.11 0.68 0.59 2.12 13.24
20 2.48 24.65 1.64 0.92 3.96 21.92
50 5.94 59.50 3.68 1.97 6.91 99
100 11.78 187.69 3.81 4.84 16.60 176.1

10 20 50 100

101.9

102
PSO EHO GA

(a) C1: 102 iterations

10 20 50 100

101.95

102
PSO EHO GA

(b) C2: 103 iterations

Fig. 1. Performance of the techniques for accuracy related to table 1

In order to evaluate the impact of the data in the weight optimization process, the number
of training data was increased to 62.5%, reducing the number of validating data to 37.5%. The
results, in relation to the accuracy and processing time, are shown in the tables 3 and 4. Figures
3 and 4 compare the performances of the techniques, using logarithmic scale.
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10 20 50 100

100

101

PSO EHO GA

(a) C1: 102 iterations

10 20 50 100

100

101

102

PSO EHO GA

(b) C2: 103 iterations

Fig. 2. Performance of the techniques for processing time related to table 2

Table 3. Accuracy with 62.5% of the transformers for training and 37.5% for validation

n PSO EHO GA
C1 (%) C2 (%) C1 (%) C2 (%) C1 (%) C2 (%)

10 89.72 92.08 98.74 100 70.67 85.67
20 92.74 94.71 99.28 100 76.32 93.72
50 93.94 94.34 99.98 100 82.37 96.37
100 94.78 94.84 99.97 100 84.59 96.80

Table 4. Processing time with 62.5% of the transformers for training and 37.5% for validation

n PSO EHO GA
C1 (s) C2 (s) C1 (s) C2 (s) C1 (s) C2 (s)

10 1.20 9.61 1.08 1.12 1.55 13.11
20 3.01 16.81 1.04 1.82 2.88 31.15
50 4.78 41.78 2.00 3.90 6.88 38.93
100 14.24 86.21 7.25 4.15 13.45 69.38

10 20 50 100

101.9

102
PSO EHO GA

(a) C1: 102 iterations

10 20 50 100

101.95

102
PSO EHO GA

(b) C2: 103 iterations

Fig. 3. Performance of the techniques for accuracy related to table 3
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10 20 50 100

100

101

PSO EHO GA

(a) C1: 102 iterations

10 20 50 100

100

101

102
PSO EHO GA

(b) C2: 103 iterations

Fig. 4. Performance of the techniques for processing time related to table 4

According to the literature, Health Index models, with the same characteristics presented in
the present work, reached 96.55% of accuracy when using artificial neural networks [22] and 96.7%
of accuracy when using fuzzy inference systems [9].

6 Conclusions

The proposed method aimed at the classification and prioritization of high power transformers,
performing the composition of the Health Index with computational intelligence techniques, such as
PSO, EHO and GAs. The results obtained, with relation to accuracy and processing time, proved
the ability of these techniques in providing very good results, with a high degree of precision,
reproducibility of results and without the presence of randoness in the definition of the weights of
the Health Index.

It is worth mentioning that the convergence time for results with computational intelligence
is low, compared to other optimization methods. It was observed that the implementation with
the EHO algorithm proved to be very efficient and adequate to solve the problem, surpassing the
implementations with PSO and GA, with average precision equal to 100% and average processing
time of less than 1s in the best solution found.

Regarding the data relationship for solution optimization and validation, even with few data
to search for weights, algorithms based on computational intelligence presented good solutions,
being able to generalize and characterize patterns in an appropriate way. With the increase of the
number of individuals in the algorithms, there was a slight improvement in the results, presenting
good solutions even with few individuals and, thus, reducing computational cost and processing
time.

Fuzzy inference systems and neural networks were compared only in terms of accuracy, since the
literature does not meet the minimum reproduction requirements of the methodology. However,
the method proposed in this work surpasses the two models in terms of flexibility, being easily
expandable, consuming less time for data processing due to the characteristics of algorithms based
on computational intelligence.

As for future work, we intend to investigate other computational intelligence techniques, such as
Artificial Bee Cololy, Cuckoo Search, Bacterial Foraging Optimization, Firefly, Fireworks Algorithm
for Optimization.
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1 Introduction

The protein structure prediction (PSP) is defined as finding 3D dimensional structure of a protein
from its primary sequence. The meta-heuristic algorithms have shown promising results to cope
with this problem [1]. The main challenge then came from computationally expensive simulations.
The surrogate models are offered as effective tools to address such computationally expensive
objective tasks. Accordingly, this study introduces a preliminary reference on the importance of
surrogate-models for the PSP. Toward this goal, we introduce a model management framework
which combines Stochastic Response Surface (SRS) [2] and differential evolution (DE) [3] to in-
terleave the exact and approximate objective functions during the search process. The proposed
approach is then applied on several variants of DE.

2 AB off-lattice protein structure prediction

The main step in PSP involves explaining relation of the tertiary structure in a protein to its free
energy. One of the best and realistic models is AB Off-Lattice [4] which takes into the account
sequence independent and dependent local interactions. In this model, amino acids are classified
either as hydrophobic (A) or polar (B) residues. These monomers are linked to each other by rigid
unit-length bonds to form the protein structure. In this way, the structure of a protein can be
determined by the bond angles [θ2, θ3, · · · , θn−1], where n demonstrates the number of bonds. The
free energy function of a sequence of amino acids is then given as below [4]:

E =
n−1∑

i=2

1− cos(θi)

4
+ 4

n−2∑

i=1

n∑

j=i+2

[
r−12
i,j − ς(ξi, ξj)r−6

i,j

]
(1)

where ri,j is the distance between monomer i and j in the chain as given in (2).

ri,j =

√√√√√
[

1 +

j−1∑

k=i+1

cos

(
k∑

l=i+1

θl

)]2
+

[
j−1∑

k=i+1

sin

(
k∑

l=i+1

θl

)]2
(2)

Also, ς(ξi, ξj) denotes interaction between the two monomers i and j:

ς(ξi, ξj) =
1

8
(1 + ξi + ξj + 5ξiξj) (3)

In such schema, ξi and ξj are two discrete variables that denote residue species. Accordingly,
coefficient ς(ξi, ξj) is equals to 1 for AA pairs, 0.5 for BB pairs, and -0.5 otherwise. More details
about the described model can be found in [4].

3 The proposed approach

The proposed approach, we called it as DE-SRS, begins with an population initialization step which
address poor uniformity of the initial individuals in the DE algorithm. More precisely, DE-SRS
adopts Latin Hyper-cube Sampling (LHS) [5] which is a statistical method. This sampling scheme
can enhance the chance of exploring promising regions of the search space on high dimensional
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problems with a minimum number of samples. All the generated solutions xi : i ∈ [1, n] are then
evaluated using the exact fitness function f . The data points Bn ← {(xi, f (xi)) : i← 1 · · ·n} are
used to initialize the population in DE and also to train our surrogate model. Among different
surrogate models, we utilized the Radial Basis Function (RBF) which is a good model for high
dimensional problems [6]. Next, DE algorithm evolves the solutions only for a single iteration.
Similar to the initialization step, the exact objective function f will be used to evaluate the solu-
tions. Subsequently, the DE-SRS continues with SRS local optimization method to incorporate the
approximation values of the exact functions for evolving the solutions. The SRS tries to obtain an
optimal response for a surface (output variable) which is influenced by several explanatory vari-
ables (input variables). To do so, it uses a collection of mathematical and statistical information
from surrogates and exact fitness function as described in [2]. All the solutions obtained by SRS are
compared to the solutions found by the DE algorithms. If the local SRS method performs better
than the DE, the former replaces the latter solutions. Otherwise, the solutions obtained by the
SRS are discarded.

Appropriate switching between the local and global search techniques is an important issue for
the DE-SRS. It is of interest to stop the global optimizer earlier in order to reduce the computational
time. However, this strategy increases the probability of falling into a local minimum [7]. To cope
with this issue, Duan et al [7] conducted a study in order to identify the most efficient way of
applying a local search method embedded in a global optimization algorithm. They found that
applying a local search method to every generated solution with a distinct probability is the most
efficient method. So, we adopted the aforementioned approach in the DE-SRS. According to this
approach, the solutions obtained by the stochastic explorer will undergo the deterministic search
with a certain probability Pa.

After evolving the individuals using the DE-SRS, we train our RBF surrogate model using
these obtained individuals. The DE-SRS switches between DE, SRS and surrogate training phases
until stopping criteria are met.

4 Experimental results

In this section, performance of the DE-SRS on two protein sequences, namely 1AGT and 1AHO,
from protein data bank [8] is investigated. In DE, F is 0.5, population size is 100 and crossover rate
CR is 0.9. The introduced DE-SRS algorithm applied on DE with different mutation strategies:
DE/best/1, DE/rand/1, DE/rand-to-best/1, DE/best/2 and DE/rand/2. From our simulations,
we also found that Pa = 0.2 is an appropriate configuration. All simulations are performed us-
ing Matlab. For the SRS, we adopted the same implementation and parameter configuration as
suggested in [2].

The experiments are repeated 10 times for each problem. The number of function evaluations
and runs are determined as 100000 and 10, respectively. It is also worth mentioning that during
each local search phase, the SRS uses 50 exact function evaluations. A non-parametric test, called
Kruskal-Wallis, followed by the Tukey-Kramer multiple comparison procedure is also conducted to
determine whether the obtained results by DE-SRS are significantly different from the standard
algorithm. To do so, the average values obtained from 10 runs are subjected to this test with
alpha = 0.05 as the level of significance. In this study, we use symbol ”+” to indicate that with
95% certainty DE-SRS presented a superior performance.

The obtained results are presented in Table 1 and Table 2. The comparison is performed based
on different extensions of the DE. From these tables, we can see that the DE-SRS yields superior
results for both proteins, independent of the introduced mutation strategy. The obtained results
confirm our hypothesis from Section 1, that the surrogate models could be effective for the PSP
problem.

5 Conclusion

This study investigated the application of surrogate models for the PSP problem by combining the
DE and SRS algorithms. To provide a perspective for present knowledge and future research, we
considered different variants of the DE. Experimental studies are carried out on two real-world PSP
problems. The Kruskal-Wallis statistical test followed by the Tukey-Kramer multiple comparison
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procedure is also conducted. From the results derived by this research, the surrogate modeling is
shown to be capable of speeding up the search process for the PSP problems.

Table 1. The best energies found for real protein sequence 1AGT

Algorithms Mutation Mean Median Best Worst Std. Sign

DE DE/best/1 1.582e+01 4.003e+00 9.883e-01 6.719e+01 2.875e+01 +
DE-SRS -2.716e+00 -3.491e+00 -5.250e+00 3.481e+00 3.554e+00

DE DE/rand/1 1.777e+07 1.448e+07 1.576e+06 3.943e+07 1.510e+07 +
DE-SRS 2.178e+00 1.217e+00 -9.678e-02 6.918e+00 2.779e+00

DE DE/rand-to-best/1 7.597e+00 3.539e+00 -1.909e+00 3.464e+01 1.355e+01 +
DE-SRS -4.591e+00 -4.059e+00 -6.354e+00 -2.909e+00 1.404e+00

DE DE/best/2 6.193e+07 3.876e+07 1.924e+07 1.732e+08 6.294e+07 +
DE-SRS 1.009e+02 2.998e+01 4.980e+00 3.939e+02 1.656e+02

DE DE/rand/2 7.970e+08 8.310e+07 1.753e+07 3.378e+09 1.455e+09 +
DE-SRS 4.647e+04 2.123e+04 2.511e+02 1.785e+05 7.492e+04

Table 2. The best energies found for real protein sequence 1AHO

Algorithms Mutation Mean Median Best Worst Std. Sign

DE DE/best/1 7.872e+04 7.107e+04 3.996e+01 6.719e+01 6.964e+04 +
DE-SRS -4.145e+00 -4.500e+00 -4.893e+00 -2.969e+00 7.696e-01

DE DE/rand/1 4.360e+10 2.783e+10 2.942e+08 1.975e+11 5.904e+10 +
DE-SRS 9.182e+00 4.885e-01 -5.092e-01 8.296e+01 2.596e+01

DE DE/rand-to-best/1 4.373e+05 1.072e+05 2.835e+02 2.308e+06 7.105e+05 +
DE-SRS -5.089e+00 -5.242e+00 -6.755e+00 -4.047e+00 7.633e-01

DE DE/best/2 8.395e+09 1.134e+10 1.869e+09 1.197e+10 5.660e+09 +
DE-SRS 2.275e+02 1.091e+01 2.433e+00 6.693e+02 3.826e+02

DE DE/rand/2 7.872e+04 7.107e+04 3.996e+01 1.806e+05 6.965e+04 +
DE-SRS 6.146e+00 6.520e+00 5.193e+00 7.969e+00 7.696e-01
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Abstract 

The problem studied in this paper is the Transportation job shop problem with blocking and no wait 

constraints. This problem is an extension of the classical job shop problem that take into account transport 

operations and the absence of storage space between machines. We formulate the problem by means of a 

new disjunctive graph. The new disjunctive graph served us to develop a Hybrid Method based on Genetic 

algorithm and greedy heuristics. The genetic Algorithm is used to evolve operations sequencing. The greedy 

Heuristic is then used to assign robot to transport operations. Computational results for a set of 

benchmarking tests are reported and the effectiveness of our methods are discussed. 

1 Introduction 

The classical job-shop problem is known as a standard problem in scheduling and has been widely investigated over 

the last few decades [15–16]. However, in real world, several problems often cannot be modeled as a classical job-shop 

problem, due to additional features. This is especially the case in flexible manufacturing systems where the model set 

by researchers have to take into account some aspects such as material handling, storage space etc. 

The jobs shop problems with transportation, blocking and no wait constraints (NWBT JSSP) are met for example in 

factories with robotic cells and no buffers between machines. A robotic cell is a flow-shop or job-shop scheduling cell 

in which the jobs are transported from machine to machine by one or more robots. We have to assign the transport 

operations to the robots and to schedule both the machine and robot operations. In some kind of robotic cells, there is 

no buffer between machines and jobs must be conducted from one machine to another one with no interruption, so we 

have to deal with blocking no wait constraints. Robotic cells with no storage buffers between machines are widely used 

in practice[12], especially in steelmaking and chemical batch production [13] [14]. 

Several researchers studied the Blocking Job shop Scheduling Problem BJSSP and the No Wait Job Shop Scheduling 

Problem (NWJSSP)[2]. [3] describes several applications of machine scheduling with blocking and no wait in process 

and reviews the computational complexity of a variety of related problems.  [4] and [5] formulate these problems by 

means of alternative graphs. [7] develop a genetic algorithm for solving no-wait and Blocking Job Shop problems 

(NWB JSSP) and [8] and [9] introduce a local search approach for the generalized Blocking Job Shop problem with 

application in automated warehouses. [6] study a multi-resource job shop problem with blocking constraints. [10] 

propose a tabu search algorithm to solve the BJSSP for cyclical scheduling. [11] proposes a combination of a branch 

and bound algorithm with alternative graphs and develops two methods based on genetic algorithms to solve the 

BJSSP. [38,39] present three improved heuristics basing on two simple construc-tive heuristics and a mimetic 

algorithm, respectively. [40] proposed a multi-search parallelization approach based on master/worker paradigm, 

exploiting the multi-Core CPU-processors to solve optimally a BJSSP. 

Several researchers have devoted to study job shop scheduling problems with transportation constraints (TJSSP) in 

various systems. However, the progress is limited as this kind of problem is difficult to solve even for simplified and 
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small size cases.  A State of-the-Art Review and Classification Schema for the Job Shop Scheduling Problem with 

Transportation Resources is given by [34].  [19] developed a mixed integer programming (MIP)formulation raising this 

constraint on the vehicles. [29] used a mixed integer linear program (MILP) to find optimal solutions for the Flexible 

Manufacturing Systems Scheduling Problem with one vehicle. [31] studied coupled task problem and one-machine 

robotic cell problems. It reported new algorithmic procedure for this problem with or without tolerances on the 

distance. [32] applied a decomposition method where the master problem (scheduling) is modeled with constraint 

programming and the subproblem (conflict free routing) with mixed integer programming. [30]  proposed a polynomial 

algorithm for finding the optimal cycle in a robotic cell with production of identical parts. [17] integrated transport 

constraints in the scheduling problem with one robot. [28] considered a cyclic hoist scheduling problem with a single 

hoist, but without assignment problem. [18] proposed a dynamic programming approach to construct optimal machine 

and vehicle schedules. [20] and [21] elaborated a genetic algorithm. [22]  and [23] proposed, respectively, neural 

networks and tabu search approaches. [24] described a hybrid method composed of a genetic algorithm for the 

scheduling of machines and a heuristic for the scheduling of vehicles. [25]  and [26]   considered a job shop problem 

with several robots, with fixed operation times andfixed assignment of machine for each job’s operation. [27] studied a 

two machines flow shop scheduling problem with intermediate transportation with a single transporter. [41] proposed a 

hybrid metaheuristic approach based on clustered holonic multiagent model for the JSPT-MR. [42] considered a 

coloured Petri net-based hybrid heuristic search approach to simultaneous scheduling of machines and automated 

guided vehicles 

To the best of our Knowledge there is no research that incorporate simultaneously transport, blocking and no wait 

constraints in the problem of job shop scheduling. Two common approaches to tackle the Job Shop scheduling 

problems with additional constraints are the utilization of exact methods and heuristic approaches [1]   and [33].  We 

have already used a MILP to solve The NWB JSSP Problem [47]. The MILP allow us to find optimal solutions but is 

not suitable for large size instances. In this paper, we propose a hybrid method of genetic algorithm and a greedy 

heuristic based on priority rules. The genetic Algorithm is used to evolve operations sequencing. The greedy Heuristic 

is then used to assign robot to transport operations. To evaluate solutions, we elaborate a modified disjunctive graph 

which contains transportation nodes, alternative and perishability arcs. 

This paper is structured as follows. In the next section, we will define our problem and the notations associated to its 

formulation. After, in Section 3, we present the disjunctive graph representation for the NWBT JSSP. In section 4, we 

describe and present our Hybrid Genetic Algorithm. Section 5 discusses a series of experimental tests and 

computational results. Conclusion follows in section 6. 

2 PROBLEM DEFINTION 

We consider a job shop problem with several transport robots and no buffers. In this problem, a set of n jobs 

{J1, J2, …, Jn} are processed on a set of m machines {M1, M2, …, Mm}  and transported by a set of k {r1, r2, …, rk}. 

Transportation times are robot-independent. Every job Ji require an operation order, {Ji={Oi1, Oi2 …, Oini}}, that must 

be executed according to its manufacture process. Operation Oij of the job Ji requires the exclusive use of 

Ml(1{1,2,…m}) for an uninterrupted duration pij, its processing time; the preemption is not allowed; each machine can 

process only one job at a time; the machine which execute the operation Oij is denoted as Mij. In addition, we consider 

transportation operations between two machines. Consider two successive operations of the same job Oij and Oij+1 to 

execute in two machines Mij and Mij+1. Tij is used to denote transport operation of job Ji from machine Mij to machine 

Mij+1. Each robot can handle at most one job at one time. Loaded transfer times do not depend on the job transported, 

but only on the travel routes and the robot which perform the transportation operation. These times are given by 

where r represents the robot and p,l represents the route between machine Mp and  Ml. It is assumed that the triangle

inequality is satisfied: 

 machine indexes. 

  +  ≥ (1) 

(1) means that the direct way between two machines is at least as short as the detour through a third machine. 

Otherwise, the robot always takes the shorter way through the third machine. 
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Note that a sequence of loaded transport operations indirectly induces necessary empty moves. Empty transfer time 

from machine Mp to Ml is denoted . It is assumed that: 

 machine indexes 

        (2) 

The first assumption means that no empty transfer time is considered if a robot waits at the same machine the next 

transportation operation. The second one is the triangular inequality for empty moves. The third one means that empty 

transfers between two machines by a robot r take less time than loaded transfers between this two machines by another 

robot r'. (It is also valid if r = r'). In the other hand, we consider the blocking constraint because there is no machine 

buffer. This means that after finishing its processing on the machine, a job has to stay there until it is unloaded by the 

robot. During this stay, the machine is blocked and not available for processing any other job. We also consider the no 

wait constraint that means if the robot transporting the job Ji reaches machine Mij, the operation Oij must start 

immediately without any interruption. 

We distinguish two cases of blocking: blocking with swap allowed and blocking no swap [37].  In our case, we 

consider that the job can move independently and therefore the swaps are allowed. It means that whenever there is a 

job  Ji in Machine Ml and a Job Ji’ in a Robot rs , each one waiting for another to be freed as the job Ji has to be 

transferred from Machine Ml to robot rs and job Ji’ from robot rs to machine Ml , Job Ji and Ji’ could move 

simultaneously.  

The scheduling problem objectives are: 

- To determine the starting time dij for each machine operation Oij. (the completion time is denoted  fij). 

- To assign a handling robot to each transport operation Tij and to determine its starting time d’ij. (the completion 

time is denoted  f’ij) 

- To minimize the Makespan denoted Cmax = max (Ci) where Ci denotes the completion time of the last operation of 

job Ji . 
All data pij, , , dij, d’ij, fij, f’ij, and Cmax are assumed to be non-negative integers. 

3 DISJUNCTIVE GRAPH MODEL 

In this section, the disjunctive graph model that we will use as a basis for developing our two Heuristics is 

described. It is an extension of the classical disjunctive graph model G = (N, A, E) [35] in order to take into account 

transportation and the blocking no wait constraint. [17] extend the disjunctive graph model for classical job shop to 

correspond to G = (V, C, DM, DR) to describe the classical job shop problem with transportation operation performed by 

a single robot. [25] extend it to G = (VM, VT, C, DM, DR) to encompass several robots. The disjunctive graph G = (VM, 

VT, C, DM, DR) dedicated to job shop problem with transportation by several robot consists of: a set of vertices VM  

containing all machine operations; a set of vertices VT representing the set of transport operations obtained by an 

assignment of one robot to each transport operation ; two dummy nodes {0} and {*}. The graph consists also of a set of 

conjunctive arcs C representing precedence constraints between operations of the same job, a set DM of disjunctive arcs 

connecting the operations to be processed by the same machine and a set DR of disjunctive arcs connecting the transport 

operations to be processed by the same robot. [11] introduced Alternative graph formulation to model the blocking 

constraints in the classical job shop.  

Since the graph of [25] already deals with all conflicts regarding job-shop machines and transport operations we will 

use this graph to incorporate blocking and no wait constraints. 

To deal with the blocking constraint in the job shop with transportation, each disjunctive arc in the set DM is 

replaced by a disjunctive couple. More precisely, for each pair of operation Oij and Oi’j’ sharing common machine, we 

introduce a disjunctive couple of two arcs: one from vertex Tij to Oi’j’ and another one from Ti’j’ to Oij. Since the swap is 

allowed, the weight of the disjunctive couples is zero. 

To deal with no wait constraints, for each two consecutive transport and machine operations Tij et Oij+1, we add to 

the Set C a negative arc between these two operations, The weight of the negative arc is -tij. This negative arc assume 

that a machine operation must start processing immediately after the completion of transport operation. 

The Figure 1 represents the non-oriented disjunctive graph of the NWBT JSSP (P1) of size (3 jobs × 3 machines ×

4 robots) defined by table 1: 
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Table 1: The NWBT JSSP (P1) instance 
- Machine operations: - On load transfer times - empty transfer times:

J1 [M1:8 ; M2:10 ; M3:6] ;  

J2 [M2:14 ; M3:10 ; M1:10] ; 

J3 [M1:14 ; M3:10 ; M2:8] ; 

M1 [M1:0 ; M2:2 ; M3:4] ; 

M2 [M1:2 ; M2:0 ; M3:2] ; 

M3 [M1:4 ; M2:2 ; M3:0]  

M1 [M1:0 ; M2:1 ; M3:2] ; 

M2 [M1:1 ; M2:0 ; M3:1] ; 

M3 [M1:2 ; M2:1 ; M3:0] ;

To solve the scheduling problem it is necessary to select one arc from each couple of the Set DM to assign one

robot to each transport operation and to turn all undirected arcs between robots into directed ones. We suppose that (S1) 

defined by table 2 is the solution of the problem (P1).. This solution (S1)is represented by the conjunctive Graph of the

figure 2. 

Table 2: Solution (S1) of the NWBT JSSP (P1) 
Machine 1 {O11, O31, O23i} Robot 1 {T11, T22, T32i} 

Machine 2 {O21, O12, O23i} Robot 2 T12 

Machine 3 {O22, O32, O13i} Robot 3 T21 

Robot 4 T31 

Figure 1. Disjunctive Graph representing the problem (P1) 

Figure 2: The conjunctive Graph representing the solution (S1) of  the problem (P1) 
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4 The Hybrid Genetic Algorithm 

4.1 Genetic Algorithm principles 

Genetic algorithms (GAs) were developed during the 1960s [44]. They are stochastic search heuristics that mimic 

biological evolution. A genetic algorithm has a population of individuals (called chromosomes or genotype). 

Individuals who fit the environment best should have a better chance to propagate their offspring. By the same reason, 

solutions that have the best ‘‘fitness” should receive higher probability to search their ‘‘neighbors”. This idea was first

proposed by [45]. 

The five main components of a GA are listed below[46]: 

(1) Parameters setting for the algorithm, the operators and so forth. 

(2) A way of encoding solutions to the problem – fixed length string of symbols. 

(3) A way of initializing the population of solutions. 

(4) Operations that may be applied to parents such as reproduction, crossover, mutation, and other domain specific 

operators. 

(5) An evaluation function that returns a rating for each solution. 

When problem-specific mechanism is encapsulated in component (4), either a local search procedure or a heuristic 

tailored for the problem, it is usually called a hybrid genetic algorithm 

 4.2 Chromosome representation and population initialization 

Chromosome representation: 

When solving problems with genetic algorithms, the first step is to represent a solution to a problem as 

chromosome. A good representation is crucial because it significantly affects all the steps of the algorithm and has a 

great impact on computational time. In our representation, the chromosome is encoded using a selection of Two 

Vectors (OM and AR) as shown in figure 3:  

Figure 3: The conjunctive Graph representing the solution (S1) of  the problem 

- The OM vector represents machine operation sequencing: We use a permutation with repetition of job numbers as 

it has been proposed by [43] for the classical Job shop Problem. This representation has the advantage of not 

producing illegal sequences of each job operations. 

- The vector AR is used to represent the robot assignments to transport operations. As we deal with The NWBT JSSP

problem, the transport operation sequencing is directly deduced from vector OM.  

Chromosome feasibility: 

The permutation with repetition cannot produce illegal sequence in regards of the technological operation 

sequence operations of each job but, unlike classical job shop, we can obtain unfeasible schedules containing deadlock. 

For an OM vector to represent a feasible schedule, the machine operations sequence must respect the following 

condition  

Non deadlock condition:

Note P(OM,Oij) the rank of Oij on OM vector.  Consider Oij.and Olq such that Mij = Mlq and P(OM,Oij)< P(OM,Olq): 

OM is feasible if and only if P(OM,Oij) < P(OM,Oij) 

To avoid unfeasible schedules, we verify the feasibility of OM vector and repair its sequence so as to respect the 

non-deadlock condition. 

Chromosome Fitness: 

The solution associated with the chromosome C (a selection) is obtained by creating the graph associated with this 

representation. We apply the Bellman Ford algorithm to calculate the longest path distance wich correspond to the

Cmax. The Fitness of C is defined as follows: Fitness (C) = 1/Cmax. 
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Population Initialization: 
Initial population serves as the starting point of GA’s searching process and it can be generated randomly or by some problem specific 
heuristics. we choose to generate the initial population P(0) by generating Sp random permutations of OM and AR. Sp is the size of  
P(0). 

4.3 Greedy Heuristic for robot assignment 

After setting OM vector, the scheduling of transport operations is deduced directly. To set the Vector AR 

representing the assignment of robots to transport operations, we propose a dedicated heuristic (HC) that complete

iteratively AR vector according to priority rules.  

These Selection rules of robot assignment are as follows: 

- Rule 1: To select the robot that will perform the transportation operation Tij, we opted to choose the robot which 

provides the minimal completion time of the transportation operation f'ij, which involves exploring all robots for 

each assignment. 

- Rule 2: In the case of two or more robots provide the minimal completion time f'ij, we choose the robot that has the

minimal empty robot arrival time to arrive at the departure machine for the loaded move Tij. 

The Heuristic pseudo code is given on algorithm 1: 

Algorithm 1. (HC) algorithm Pseudocode 

Function generate_ AR; 

Data: Problem inputs (operating range of jobs, processing times, and transfer times). 

Result: AR : robot assignement vector 

Begin 

AR:=  /* set of scheduled operations */ 

AT := Transport (OM) /* Vector AT is deduced from OM */ 

while (AT ≠ ) 

 rs := Rule_Robot (AT, R) /* Assign a robot to the first operation Tij of vector (AT) according rules 1 & 2.*/ 

AR:= Update (AR, rs)  /* Adding rs to AR */ 

AT := AT - Tij /* Subtract Tij from AR */ 

end while 

end 

4.4 Genetic Algorithm operators 

Crossover: 

We used a 1-Point Crossover technique. We randomly selects any crossover point pi (i = 1 to Nj). An offspring vector 

(EOM) is created by combining OM vectors of two parents (P1OM & P2OM) at crossover point.  

The crossover operator should enable inheritance of the number of appearance of each job. After the 1-point crossover 

we count the appearance number of each job Ji and correct the created offspring to ensure that each job Ji appear nj

times. 

Mutation: 

The mutation operator that we used is called Simple Exchange Mutation which selects two genes from a chromosome 

(vector DM) at random and then exchanges their positions. Mutation is applied with small probability Pm since large

probability of mutation may lead to loss of the good genes and, as a result, a slowdown of algorithm. 

After setting (EOM) following crossover and eventually Mutation operations, (EAR) is set by applying the greedy 

Heuristic (HC) described in 4.3. 

Selection: 

- Parent selection for offspring production: 

We use a tournament selection method to choose Parent 1 and Parent 2. In each iteration we select Parent P1 and Parent

P2 by tournament from two set of K individuals randomly chosen from the population POP. The crossover is then 

applied on P1 & P2 to create the offspring E. 

- Chromosome Selection for replacement 
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We use a roulette wheel method to select the individual to be replaced Rp. If the fitness of Rp is less than the fitness of 

E, then Rp is replaced by E on the population (elite selection). 

4.5 Hybrid Genetic Algorithm Pseudo 

The basic pseudo code of our Hybrid Approach is given on Algorithm 2: 

Algorithm 2. (HGA) algorithm Pseudocode 

Function : Hybrid_Genetic_Algorithm (P Instance) 

Data: Problem inputs (P Instance). 

Result: Best: the Best chromosome 

Algorithm parameters: 
mni : Maximum number of iterations 

mnii : Maximum Number of non-improving iteration to restart 

Pm : mutation probability 

PNew : Percentage of population to be replaced after mnii is reached 

NPoP : Population size 

Variable: 

POP : Chromosome Population 

P1, P2, E, R, Best : Chromosomes 

ni, nii : Integer 

Begin: 

PoP := population_initiale () \*Generation of initialPopulation 

ni:= 0 current number iteration 

nii := 0 \*Number of non improving iteration 

While (ni < mni) 

(P1, P2) : = Selectparent (POP) \*Tournament selection 

EOM : = Crossover (P1OM, P2OM) \* 

If ( Random < Pm)  

        Then EOM := Mutate (EOM) \*Chromosome mutation with pm probability 

EndIf 

EOM :=Repairdeadlock(EOM) \*Repair OM vector if its sequence is unfeasible. 

EAR := GreedyHeuristic(EOM)\* To assign robot to transport Operations 

If  DOUBLE (POP,E) = FAUX \*if E is not a double  

 Then R : =Select_Remp (POP) \* Roulette wheel selection.

If (Fitness (E) > Fitness (R)) 

 Then Pop := Replace(E,R, POP)\* Replace chromosome R by E 

  nii :=0 

      Else nii : =nii+1 

EndIf 

EndIf 

If (nii := mnii)

      Then  POP := Restart (Pop, PNew) and nii=0 \*Generate randomly a PNew chromosome. 

EndIf 

ni : =ni + 1 

EndWhile 

Return:  

Best \*Return the best population chromosome 

End 

5 NUMERICAL RESULTS 

The evaluation of our methods is carried out using a first set of instances from a well Known Benchmark for the 

problem of a job shop with transport and second set of instances developed by ourselves. The Well-known benchmark 

is suggested by [23] and has been used by [36]. This instance set encompass one subsets P1 whose size (n * m) is (6 * 

6). The second set of instances comprises 15 instances grouped into three subsets S1, S2 and S3 with respective sizes of 

(4 * 4), (6 * 6), (10 * 10). For these instances, the jobs routing are randomly generated and the processing times and 

transfer times are randomly distributed respectively over [10; 100] and [1; 20]. The evaluations are carried out using 
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respectively 1 robot, 2 robot. For all instances, that encompass more than one robots, the robots are considered as 

similar. 

The experiments were performed using the following set of Parameters:  mni : 5000; mnii : 100; Pm : 5%; PNew :

10%; NPoP : 100. 

In the table 3, we report the results of our Hybrid Genetic Algorithm (HGA) and the MILP[47]. These results are

obtained using the C++ programming language for HGA and CPLEX 12.6 as LP solver. The programming codes were 

run on a simple desktop PC running Windows 10 with a Intel Core i5 processor running at 2.40GHz with 8,00GB of 

memory.  

The notations below are used in the numerical results table: 

- C_max[1]:  The optimal solution found by the execution of MILP for the NWBT JSSP. We set the time limit for 

each problem instance to 4 Hours. If if the problem could not be solved to optimality when the time limit had been 

reached then we report the lower Bound and we specify this by (LB). 

- C_max[2]: the approached solution found by HGA. 

- Dev: The relative deviation between C_max[1]  and the C_max[2].

Table 3: Comparison of Numerical results obtained by HGA and MILP. 

With One Robot With 2 -Robot 
Set Size Instance C_max[1] C_max[2] Dev% C_max[1] C_max[2] Dev% 

P1: (6*6) D1-d1 94 105 11,70% 68 74 8,82% 

D1-t1 82 86 4,88% 68 71 4,41% 

D2_d1 152 162 6,58% 101 (LB) 125 23,76% 

D3-d1 171 182 6,43% 125 (LB) 147 17,60% 

T2-t1 112 125 11,61% 79  (LB) 100 26,58% 

T3-t0 77 82 6,49% 58 (LB) 72 24,14% 

Tkl.1 104 112 7,69% 77 (LB) 96 24,68% 

Avg Dev 7,91% avg Dev 18,57% 

S1: (4*4) S1.1 209 209 0,00% 341 209 0,00% 

S1.2 181 181 0,00% 304 181 0,00% 

S1.3 215 215 0,00% 386 215 0,00% 

S1.4 163 165 1,23% 384 164 3,14% 

S1.5 188 190 1,06% 602 190 1,06% 

Avg Dev 0,46% Avg Dev 0,84% 

S2: (6*6) S1.1 367 396 7,90% 209 379 11,14% 

S1.2 310 334 7,74% 181 339 11,51% 

S1.3 412 439 6,55% 215 435 12,69% 

S1.4 403 446 10,67% 159 436 13,54% 

S1.5 604 655 8,44% 188 652 8,31% 

Avg Dev 6,16% Avg Dev 10,05% 

S3:

(10*10) 

S3.1 1235 (LB) 1959 58,62% 867 (LB) 1399 61,36% 

S3.2 1308 (LB) 1801 37,69% 908 (LB) 1416 55,95% 

S3.3 1317 (LB) 1930 46,55% 914 (LB) 1398 52,95% 

S3.4 1140 (LB) 1787 56,75% 759 (LB) 1215 60,08% 

S3.5 1042 (LB) 1640 57,39% 881 (LB) 1523 72,87% 

Avg Dev 51,40% Avg Dev 60,64% 

Since there is no benchmark results for the NWBT JSSP, the evaluation of the performance of our Hybrid 

Genetic Algorithm is done by comparing its results with MILP. 

The absolute quality of the results obtained by HGA are only compared for small and medium size instances. For 

large instances, we could not obtain an optimal solution within a reasonable computational time by MILP to compare it 

with the HGA. From our computational results in Table 3 and over the 34 test instances (Small and Medium Size), we 

noted that HGA Solution is on average 9,10% larger than MILP results. 

6 CONCLUSION

This paper addresses the NWBT JSSP problem with the objective of minimizing the make span. We have 

modeled the problem by a disjunctive graph and proposed a hybrid method based on a Genetic Algorithm for setting 

operations sequences, a repair procedure to get feasible schedules and a greedy heuristic to assign robots to transport 

operations. Since no benchmark tests for the NWBT JSSP problem were available in the literature, we have evaluated 

our methods by comparing our results firstly with the results obtained by a MILP.  
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Numerical application show that our Hybrid Genetic Algorithm find a good solutions compared to MILP for a small 

and large instances and remains more interesting for very large instances in that it allows us to find approximate 

solutions in reasonable times.  

For further research, it would be interesting to ameliorate the solution obtained by our Hybrid Genetic Algorithm by 

investigating other Heuristics. These heuristics can be Meta –heuristics, such as Artificial Immune Systems, Tabu 

Search, simulated annealing, or other Hybrid Methods which can be a couple of two Metaheuristics even for Operations 

sequencing and Robot assignments . 
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Abstract: In this paper we present a Greedy randomized search procedure (GRASP) 

combined with the simulated annealing procedure to resolve the capacitated location routing 

problem, the objective is to determine the total costs combined from fixed cost associated 

with opening a depot at each potential site, and the total cost of a route includes a fixed cost 

and the transportation. The proposed method gives best results competitive with others

heuristics in literature, able to exceed best known solutions for some instances.   

Keywords: greedy randomized search, simulated annealing, capacitated location routing problem.

1 Introduction 

The location routing problem (LRP) is fundamental problems of the supply chain management; it can be 

defined as follows: given a set of customers with known demand and a set of potential depot sites. The 

objective reached consists to minimizing the sum of the routing costs and fixed costs associated with the 

selected depots. A special case of the location routing problem is the capacitated location routing problem 

(CLRP) where capacity on vehicles and depots are imposed, the CLRP well known as NP-hard problems. 

Prins et al. gives the following binary integer programming model for the CLRP-problem [4]. Let 

 be an undirected graph where   is a set of nodes,   is a set of edges. The set  where   is a 

subset of   potential depot sites, and   is a subset of n customers. For each edge  is associated a cost 

  , which represents the travelling distance between nodes   and  . Each depot site  has a capacity 

and an opening cost   . Each customer     has a demand  which must be fulfilled by a single vehicle. A 

set   of identical vehicles with capacity   is available. Each vehicle performs a single route, and when used, 

incurs a fixed cost  .  

The main objective is to minimize the following function 

The following constraints are imposed for the problem: 

 Each route must start and finish at the same depot; and each vehicle performs a single route;

 each customer is visited exactly once by a single route;

 the sum of the demands of the customers visited by each route must not exceed the vehicle capacity;

 the sum of the demands of the customers assigned to each depot must not exceed its corresponding

capacity;

 connections between depots are not allowed.

 Each route must start and terminate at the same depot, and its total load must not exceed vehicle

capacity. 

 The total load of the routes assigned to a depot must fit the capacity of the depot.

Prins et al. [4] solved the CLRP with a Greedy Randomised Adaptive Search Procedure (GRASP) followed 

by a path relinking algorithm and Duhamel et al. [3] proposed a GRASP hybridized with Evolutionary local 

search procedure.  In [5] authors propose a two-phase hybrid heuristic algorithm to solve the CLRP, in the 

proposed hybrid heuristic algorithm, after a Construction phase a modified granular tabu search, with 

different diversification strategies, is applied during the Improvement phase. The algorithm is able to 

provide good solutions within very fast run-time. In the rest of this summary, we outline our proposal. 
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2 Proposed Algorithm 

Construction phase 

In this phase, we propose a procedure to construct an initial feasible solution. The goal is to open a set of 

potential facilities that cover all clients with a minimal cost. Three selection models were randomly used, the 

first was proposed by Prins et al. the other two are a simplified version of the first   

1.    2.    3.   

Where     is the cost of selected depot  ,  : opened cost of depot  ,  : the capacity depot, and  is

the distance between depot   and customer    

Fig. 1  construction phase. 

After having classified all deposits and selecting the ones that will be opened, the solution is built according 

to the following steps (Fig. 1):   

• Grouping: based on a greedy algorithm used for the K-center problem [6].

• Assignment: The second step is to determine routes.

• Affectation: Assign tours to depots select.

• 2-opt: Application of the 2-opt operator in order to escape the crossings.

Improvement phase 

Once the solution is built an improvement phase based on the simulated annealing heuristic SA() inspired 

from [2], will succeed. The difference is that in our implementation the algorithm and for the same solution 

is called the number of open facilities. The following movements were used to determine the best neighbors:

permutation, moving from and CROSS-exchange operator. 

After the complete solution is thus reconstructed, a local search procedure Localsearch (s) is used, which

takes into account inter-depot movements. 
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3 Preliminary Tests  

The algorithm has been implemented in JAVA Net Beans; the computational experiments have been 

performed on an Intel Core™ i7-2600 CPU (3.40 GHz). The preliminary performance test of the proposed 

algorithm has been evaluated by considering data set proposed by Prins et al. [1], contains 30 instances with 

capacity constraints on both the routes and the depots. The number m of potential depots is either 5 or 10, 

and the number of customers’ n numbered in [20, 50, 100, 200]. 

The customers and the depots correspond to random points in the plane. The traveling costs are 

calculated as the corresponding Euclidean distances, multiplied by 100 and rounded up to the next integer. 

The vehicle capacity Q is either 70 or 150, and the demands of the customers are uniformly random 

distributed in the interval [11, 20]. Our preliminary tests give, for instance types of 100 customers 5 depots 

and 100 customers 10 depots, the following results 

100 Customers

# BKS GRASP GRASPXELS SALRP* 2-HGTS SA-GRASP RC LC D/R 

100/5/1a 

100/5/1b 

100/5/2a 

100/5/2b 

100/5/3a 

100/5/3b 

100/10/1a 

100/10/1b 

100/10/2a 

100/10/2b 

100/10/3a 

100/10/3b 

275419 

213615 

193671 

157150 

200079 

152441 

287983 

231763 

243590 

203988 

250882 

204317 

279437 

216159 

199520 

159550 

203999 

154596 

323171 

271477 

254087 

206555 

270826 

216173 

276960 

215854 

194267 

157375 

200345 

152528 

301418 

269594 

243778 

203988 

253511 

205087 

275419 

213615 

193671 

157150 

200079 

152441 

287983 

231763 

243590 

203988 

250882 

204317 

276186 

214892 

194625 

157319 

201086 

153663 

289755 

238002 

245768 

204252 

254716 

205837 

278512 

217831 

195214 

157946 

200003* 

153671 

287306* 

232565 

246601 

203851* 

251066 

200928* 

145622 

84941 

92968 

55700 

112857 

65384 

132375 

84242 

103211 

60461 

120075 

69937 

132890 

132890 

102246 

102246 

87146 

88287 

154931 

148313 

143390 

143390 

130991 

130991 

3/24 

3/12 

2/24 

2/11 

2/24 

2/11 

3/25 

3/12 

3/25 

3/11 

3/25 

3/11 

BKS : Best known Solution, RC: Routing Cost,   LC: Localisation Cost,  D/R: Opened Depot / Routes 
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Abstract: The H.264 is an emerging video coding standard, which aims at compressing high-quality video

contents at low-bit rates. While the new encoding and decoding processes are similar to many previous 

standards, the new standard includes a number of new features and thus requires much more computation 

than most existing standards do. The complexity of H.264 standard poses a large amount of challenges to 

implementing the encoder/decoder in real-time requiring large amount of processing resources. This paper 

presents the design and analysis of the H.264 decoder implemented on a heterogeneous architecture (multi-

CPUs/multi-GPUs). A model-driven approach is adopted by using the standard MARTE profile of UML. Our 

approach is based on hybrid partitioning that combines both functional and data partitioning which is applied 

to find the most suitable processors (CPU or GPU) regarding the execution time. We claim that our approach 

allows giving a better performance, which is crucial when implemented in modern complex systems. 

Keywords : General-Purpose Graphics Processing Unit (GPGPU), Multimedia, H.264/AVC 

decoder, Parallel Processing, Functional Partitioning, Data Partitioning. 

1 Introduction 

In recent years, the performance improvement of Graphics Processing Unit (GPU) is remarkable and 

GPUs are becoming attractive as accelerators for heavy tasks. GPUs are now commonly used as co-

processors in many embedded systems to accelerate general-purpose applications. They are particularly 

capable of executing data-parallel applications, due to their highly multithreaded architecture and high-

bandwidth memory. Various embedded system domains can benefit high performance and better energy 

efficiency from utilizing GPUs. For example, GPUs can efficiently perform matrix operations such as 

factorization on large data sets and multidimensional FFTs and convolutions. Such operations are often seen 

in many embedded applications including signal processing, imaging and video processing. By leveraging 

new programming models, such as CUDA [1] and OpenCL [2], programmers can effectively develop highly 

data-parallel kernels to execute such applications on GPUs. 

By integrating heterogeneous processing elements with different performance characteristics in the 

same system, heterogeneous CPU/GPU architectures are expected to provide more flexibility for better 

performance compared to homogeneous systems. Execution time and energy consumption are imperative 

performance metric that needs to be optimized in most embedded systems. In order to minimize execution 

time and energy consumption for running a set of workloads, the step that partitioning computations to 

processing elements is critical. In this paper, we consider the partitioning of workload problem in a

heterogeneous system containing multiple CPUs and GPUs. Our goal is to minimize the execution time. 

Embedded applications that we are used to process are generally complex such as MPEG, H263, and 

H264.......etc etc encoders. This type of application is characterized by parts of different types, a party is 

treated regularly and the other irregularly. The latter represents intensive computing. For this type of 

application two types of parallel processing are applied, regular processing (task Parallelism) and irregular 

processing (data Parallelism). Furthermore, video coding standards like H.264/AVC [3] and HEVC [4] are
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adopting complex algorithms like context-adaptive binary arithmetic coding (CABAC) and variable length 

coding (CAVLC) in order to achieve better compression and thus lower transmission bitrates for high 

resolution video sequences. The additional complexity of these algorithms has a major impact by increasing 

execution time and energy consumption. 

In our research, we intend to solve the problem of high complexity of the H.264 decoder using 

parallelization on multicore embedded processors and on graphical processors. Video resolutions are 

increasing rapidly, which require more processing time and consequently more energy consumption. Many 

solutions based on parallel execution exist ranging from macroblocks (fine-grain) till groups of pictures 

(coarse-grain) parallel decoding. Macroblock parallel decoding is highly scalable since many macroblocks 

can be processed in parallel. However, dependencies and huge overheads are created as a result of 

communication and synchronization between macroblocks. Parallel decoding of groups of pictures require 

large memories for high definition video sequences. In addition, they have a lower scalability than 

macroblock decoding because of the limited number of groups of frames that can be decoded in parallel. Our 

solution is based on the H264 video decoder design taking into account the different parallelism and 

heterogeneous multiprocessor architecture CPUs/GPUs. 

Our main contribution in this paper is to propose a new approach based on modeling analyze the 

computational requirements of H.264 decoder and implement H.264 decoder on heterogeneous architecture 

(multi-CPUs/multi-GPUs) in order to minimize execution time. Our approach utilizes parallel processing

techniques such as workload partitioning. 

The remainder of the paper is organized as follows. In Section 2, we present the related work 

concerning H.264 parallel optimizations. In Section 3, we describe our approach for parallel execution of 

macroblock rows of the H.264 decoder. In Section 4, we present the experimental results for execution time 

on CPUs and GPUs using a simulator for multicore processors. Final conclusion and future work are given

in Section 5. 

2 Related Works 

Ever since the H.264/AVC standard [3] was published in 2003, researchers started to solve the high 

complexity issue of the new standard mainly using parallelism. Several modifications were suggested for the 

H.264 encoders and decoders in order to improve the performance in terms of execution time and memory 

usage. Parallel decoding techniques of H.264 exist from the highest level, which is the group of frames or 

pictures (GOP), the coarse-grain level, till the lowest level, which is the block inside a macroblock, the fine-

grain level. Kannangara [5] reduced the complexity of the H.264 decoder (19-65%) by predicting the SKIP 

macroblocks using an estimation based on a Lagrangian rate-distortion cost function. Gurhanli [6] suggested 

a parallel approach by decoding independent groups of frames on different cores. The speedup is 

conditioned with the modification of the encoder in order to omit the start-code scanner process. Any 

modification to the encoder will require a long process for modifying the H.264 specification in order to be 

compliant with the standard. The exclusion of previously encoded video sequences is also an effect for 

modifying the H.264 encoder. Nishihara [7] proposed a load balancing mechanism among cores where 

partitions sizes are adjusted during runtime. He also reduced the memory access contention based on 

execution time prediction. Among frame-level and MB-level parallelization, the 3D-wave technique 

proposed by Azevedo [8] decodes independent MBs in parallel on different cores. A good scalability is 

proved for HD resolutions where macroblocks are scanned in zigzag mode and decode independent 

macroblocks in parallel. Chong [9] added a pre-parsing stage in order to resolve control dependencies for 

MB-level parallelization. Van Der Tol [10] mapped video sequences data over multiple processors providing 

better performance over functional parallelization. He groups macroblocks in a way that minimal 

dependency between cores is required. Horowitz [11] compared different H.264 implementations including 

FFmpeg [17] and the H.264 reference software JM [18]. He also analyzed the complexity of the H.264 

decoder subsystems. Sihn [12] proposed a multicore pipeline for the deblocking filter based on the group of 

pictures data level partitioning. He also suggested software memory throttling and fair load balancing 

techniques in order to improve multicore processors performance when several cores are used. [13] Proposes 

to decode the lines of the macroblocks in parallel on a certain number of cores of the processors, the 

dependencies between macroblocks are ignored. [16] Implements H264 decoder on FPGA architecture. In 

our research we optimize the H.264 decoder knowing that our approach can be also applied to the H.264 
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encoder. We focus on improving the efficiency of the H.264 decoder using heterogeneous processors 

CPU/GPU. We model the H264 / AVC decoder with the recent standard MARTE profile [14] taking into 

account the different parallelism (component parallelism and data parallelism) and the data dependency 

between macroblocks. We map our implementation on CPU and GPU processors. Execution time 

implementation is calculated using simulated execution time. We further implement an OpenCL [2] version 

of our parallel H.264 implementation. Simulation experiments on heterogeneous processors are conducted 

using a CPU-GPU simulation Multi2Sim [21]. 

3 Heterogeneous System Architecture (HSA) 

The Generic graphics processors or GPGPU (General Purpose GPU) have evolved in such a way 

that they can now perform parallel calculations for a wide range of applications. However, programming 

these devices at the same time as the CPU present on the same chip constitutes a major difficulty. A new 

architectural concept, The HSA (Heterogeneous System Architecture), paves the way for greater fluidity in

the development of heterogeneous code. 

The GPUs (Graphics Processing Unit) have passed in recent years from the status of purely graphic 

accelerators to that of generic parallel processors, Supported by standard APIs and tools such as OpenCL and 

DirectCompute. Despite this promising start, there are still many obstacles to the existence of an 

environment using the GPU in a manner as transparent as the CPU (Central Processing Unit, General 

processor) for current tasks of programming. The CPU and the GPU, in particular, manage different memory 

spaces, and the hardware is not virtualized. The HSA (Heterogeneous System Architecture) architecture 

eliminates these obstacles, So that the programmer can exploit the parallel processor contained in the GPU 

as a coprocessor of the same level as the traditional multi-threaded CPU. 

HSA is actually a software layer that provides a unified view of the fundamental processing 

elements, and allows the programmer to write applications that smoothly integrate CPUs and GPUs while 

benefiting from the best characteristics of each. The underlying strategy is to create a unified programming 

platform that serves as a foundation for the deployment of languages, Frameworks and applications that 

exploit parallelism. More specifically, HSA intends to break the programmability barrier CPU/GPU, Reduce 

communication latency CPU / GPU, Open the platform to a wider range of applications by accepting 

existing programming models, and prepare the reception of new processing units in addition to CPU and

GPU [19]. 

Figure 1: Architecture HAS 

New class processors known as Accelerated Processing Unit or APU in a grate CPUs and GPUs in 

the same computer chip [20], two different processor units working together like a human brain is a enable 

by heterogeneous system architecture or HSA. “Figure1”. Two sides of AMD API (CPU and GPU) share the 

same system memory known as heterogeneous Uniform Memory Access or hUMA1 via cache coherent 

views. Advantages include an easier programming model and less copying of data between separate memory

pools. 

In our work we are interested by news type of architecture such as heterogeneous architecture 

GPGPU (multi-CPUs/multi-GPUs) based on Heterogeneous System Architecture (HSA) in order to benefit 

from advantages of HSA. 
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4 An Overview of the H.264 Standard 

H.264/ AVC [22] video compression standard takes advantage from spatial and temporal redundancy 

in a video sequence. Therefore, it defines various prediction modes to predict each macroblock depending on

its texture properties. 

In encoder processing, residual macroblocks consists of difference between original macroblocks

and the corresponding predicted one. Residual is the final data organized in bitstream. 

Decoder is responsible to reconstruct a video sequence from the compressed data created by 

encoder. As shown in Figure 1, first step is entropy decoding. It receives the compressed bitstream to 

reconstruct video parameters and residual coefficients. Then, two primary paths are considered in decoder 

process. First one is the decoding of residual macroblocks by inverse quantization and inverse transform. 

Second path is the generation of the predicted macroblocks according to prediction mode fixed by encoder. 

The addition of the outputs of these two paths is the reconstruct macroblock. A deblocking filter is then 

applied to have a better video quality. For more details, following sub-sections describe every module of 

decoder. 

Figure 2: H.264/AVC decoder

4.1 Elements of a Video Sequence 

H.264 is a block-based coder/decoder (codec), meaning that each frame is divided into small square 

blocks called macroblocks (MBs). The coding tools / kernels are applied to MBs rather than to whole 

frames, thereby reducing the computational complexity and improving the accuracy of motion prediction. 

Figure 3 depicts a generic view of the data elements in a video sequence. It starts with the sequence of 

frames that comprise the whole video. Several frames can form a Group of Pictures (GOP), which is an 

independent set of frames. Each frame can be composed of independent sections called slices, and slices 

ones, in turn, consist of Mbs. Each MB can be further divided into sub-blocks, which in turn, consist of 

pixels. 

Figure 3: Elements of a video sequence 
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A MB consists of separated blocks for luma (denoted by Y) and chroma signals (denoted by Cb and 

Cr). A pre-processing step has to be applied to convert video from a different color component format (such 

as red-green-blue, RGB) to the Y Cb Cr color model. Chroma sub-sampling is applied to reduce the amount 

of color information, since the human eye is more sensitive to brightness (Y) than to color (Cb and Cr) [23]. 

The most common color structure is denoted by 4:2:0 in which the chroma signals (Cb and Cr) are sub-

sampled by 2 in both dimensions. As a result, in H.264, as in most MPEG and ITU-T video codecs, each MB 

typically consists of one 16 × 16 luma block and two 8 × 8 chroma blocks. 

4.2 Frame Types 

H.264 defines three main types of frames: I-, P-, and B frames. An I-frame uses intra-prediction and 

is independent of other frames. In intra-prediction, each MB is predicted based on adjacent blocks from the 

same frame. A P-frame (Predicted frame) uses motion estimation as well as intra-prediction and depends on 

one or more previous frames, which can be either I-, P- or B-frames. Motion estimation is used to exploit 

temporal correlation between frames. Finally, B-frames (Bidirectionally predicted frames) use bidirectional 

motion estimation and can depend on previous frames as well as future frames [24]. 

Figure 4 illustrates a typical I-P-B-B (first an I-frame, then two B-frames between P-frames) 

sequence. The arrows indicate the dependencies between frames caused by motion estimation. In order to 

ensure that a reference frame is decoded before the frames that depend on it, and because B-frames can 

depend on future frames, the decoding order (the order in which frames are stored in the bitstream) differs 

from the display order. Thus a reordering step is necessary before the frames can be displayed, adding to the 

complexity of H.264 decoding. 

Figure 4: Types of frames and display order versus decoding order 

4.3 H.264 Decoding Tools 

The H.264 standard has many decoding tools each one with several options. Here we can only 

briefly mention the key features. 

4.3.1 Entropy decoding 

After decoding Network Abstraction Layer (NAL) parameters, the data elements are entropy decoded 

by two ways: Context-based Adaptive Variable Length Decoding (CAVLD) or a binary arithmetic coder 

(CABAC) which achieves higher compression and Exp-Golomb. 

Exp-Golomb: is used for others syntaxes elements such as prediction mode and quantization parameter. 
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CAVLD is more time consuming than Exp-Golomb [27]. It is used to reconstruct and to reorder data on 

4x4 block of 16 integers. By the mean of standard code tables, each 4x4 block is decoded into five syntax 

elements: Coefftoken, Sign, Level, TotalZeros, and Run [22][23].CAVLDis easier to implement than 

CABAC. 

4.3.2 Inverse quantization 

CAVLD output is a residual quantified macroblock. Following step is inverse quantization to 

produce a set of coefficients () (Wij). Since quantization is a losing information step, inverse quantization 

reconstructs data. It is multiplication operation as described in equation 1, where Zijis inverse quantization 

input, Wij is its output and 𝑄𝑠𝑡𝑒𝑝is a quantization factor given by standard according to Qpvalue. 

Qp Is the quantization parameter fixed by encoder. It is decoded from the bitstream using Exp-

Golomb codes. 

Wij=Zij∙Qstep   (1) 

In order to manipulate only integer value in transform step, H.264 standard have postponed real 

multiplication operation from transform to quantization [23].Details of this operation is given in inverse 

transform sub section. The final inverse quantization equation given by standard is described by equation 2, 

whereVij is the rescaling factor defined by the standard. 

Wij=Zij∙Vij∙2
floor(Qp/6)  (2) 

To implement this equation, a number of shifts equal to “floor(Qp/6)” was used instead of arithmetic

multiplication. Shift operation is less time consuming than multiplication operation. 

4.3.3 Inverse transform 

In previous video coding standards, Inverse Discrete Cosine Transform (DCT) was used. Inverse 

transform step is applied for each 4x4 block. For 16x16 Intra prediction modes, a suppliant Hadamard 

transform is adding for DC Coefficients. Most of the energy is concentrated in the DC coefficients for a 

16x16 intra coded macroblock. This extra transform helps to de-correlate the DC coefficients to take 

advantage of the correlation among coefficients. As shown in Figure 5, DC coefficients of each 4x4 block 

are assembling in a matrix to applied inverse Hadamard transform given by equation 4. An inverse DC 

quantization is also applied on DC matrix. 
R=FT(T⊗E)F 

[

1 1 1 1/2
1 1/2 −1 −1
1 −1/2 −1 1
1 −1 1 −1/2

] ([

𝑇00 𝑇01 𝑇02 𝑇03

𝑇10 𝑇11 𝑇12 𝑇13

𝑇20 𝑇21 𝑇22 𝑇23

𝑇30 𝑇31 𝑇32 𝑇33

] ⊗ [

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

𝑎2 𝑎𝑏 𝑎2 𝑎𝑏
𝑎𝑏 𝑏2 𝑎𝑏 𝑏2

]) [

1 1 1 1
1 1/2 −1/2 −1
1 −1 −1 1

1/2 −1 1 −1/2

] (3) 

With a= 
1

2
 and b=√

2

5

𝑅𝐷𝐶𝐿𝑢𝑚𝑎 = [

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

] [

𝑇𝐷𝐶0 𝑇𝐷𝐶1 𝑇𝐷𝐶2 𝑇𝐷𝐶3

𝑇𝐷𝐶4 𝑇𝐷𝐶5 𝑇𝐷𝐶6 𝑇𝐷𝐶7

𝑇𝐷𝐶8 𝑇𝐷𝐶9 𝑇𝐷𝐶10 𝑇𝐷𝐶11

𝑇𝐷𝐶12 𝑇𝐷𝐶13 𝑇𝐷𝐶14 𝑇𝐷𝐶15

] [

1 1 1 1
1 1 −1 −1
1 −1 −1 −1
1 −1 1 −1

] (4) 

Figure 5: DC coefficients positions in a macroblock 
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4.3.4 Inverse prediction 

Because of redundancy in video sequence, H.264/AVC standard is based on two principal prediction 

modes [22]. Temporal resemblance between frames is treated as inter prediction. Spatial resemblance in 

same frame is treated as intra prediction. In LETI decoder, first frame of a sequence is necessarily Intra (4x4 

or 16x16) coded because it hasn’t reference frame. For next P frames, each macroblock can be coded intra 

(4x4 or 16x16) or inter prediction. 

The 4x4 intra prediction modes are suitable for significant details within a frame. Each 4x4 block is 

predicted independently from spatially neighboring coefficients. One of nine prediction modes illustrated by 

Figure 6 [23] is used. According to adjacent block availability, modes can be applied or not. Vertical 

prediction mode (called also Mode 0) cannot be applied only if top neighboring block at least is available, 

because this mode copies pixels above the 4x4 block as indicated in Figure 6. For horizontal prediction 

mode (Mode 1), the pixels to the left of the 4x4 block are copied horizontally if available. Adjacent pixels 

availability is not necessary to perform DC prediction mode (mode 2). The remaining 6 modes are diagonal 

prediction modes. They use defined equation to privilege specified direction. Directional modes are suited 

but they entail additional complexity in the decoding process [25]. 

The 16x16 intra predictions is characterized by four prediction modes: horizontal mode, vertical mode, 

DC mode and planer mode. Except of planer mode, all modes have respectively the same propriety of 4x4 

modes but they are applied on a 16x16 macroblock. In planer mode, a curve fitting equation is used to form 

a prediction block having a brightness and slope in the horizontal and vertical directions that approximately 

matches the neighboring pixels. After statistic work [27], planer mode has been eliminated from LETI 

encoder because of its supplementary incising complexity relative to its video quality contribution. 

In inter prediction case; motion vector is first extracted from bitstream. Then, motion compensation 

module is applied. It consists of adding motion vector coordinates to corresponding block in reference 

frame. Result is reconstructed block. Block size can change from one motion vector to other. Different block 

sizes are supported in H.264/AVC standard, as shown in Figure 7. In LETI decoder only one frame reference 

is applied and smaller block size for motion vector is 8x8[27]. 

The data obtained from the intra or inter prediction is added to the inverse transformed residual 

coefficients. This sum is copied to the decoded buffer which is used as an input for deblocking filter step. 

Figure 6: 4x4 Intra prediction modes 
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Figure 7: Inter prediction block size type 

4.3.5 Deblocking filter 

The deblocking filter performs in-loop filtering to reduce blocking artifacts created by image 

partitioning and quantization. After inverse quantization and inverse transform, the deblocking filter 

compares the edge values of each 4x4 block with its adjacent block to select the level of filtering. In LETI 

decoder, Strong or Standard filter is selected according to the block edge, macroblock position in frame and 

prediction mode. The design algorithm of deblocking filter used in this work is shown with details in [28]. 

5 H.264 Implementation 

5.1 H264 Decoder Partitioning 

The H264 decoder process is modeled with the UML / MARTE specification, as shown in the figure 

8.Where it's divided into five main functional parts: Entropy Decoder (ED), Inverse Quantization (INVQ),

Inverse Transform (IDCT), Inverse prediction (INV-Pred) and and Deblocking Filter (DF). After decoding 

Network Abstraction Layer (NAL) parameters, the data elements are entropy decoded, that is divided into 3 

components: Exp-Golomb is used to extract syntax elements such as the prediction mode and the 

quantization parameter, CAVLD is used to reconstruct and to reorder data on 4x4 blocks of 16 integers. 

Incoming maclocks are analyzed with an inter-prediction and intra-prediction in order to increase the coding 

efficiency by finding redundant information. In the intra-prediction, it determine predicted pixels according 

to the prediction mode and the macroblock position within a frame (MBX, MBY). Neighboring pixels are 

generated by a suppliant component called “Neighboring pixels”. In the intra-prediction, macroblocks are 

decoded by a vector, called motion vector, the component Intra/Inter selects the right prediction. The Sub-

component consists in subtracting the redundant information from the initial frame. The component Inverse 

quantization input is 16 coefficients of a block seized 4x4 the CAVLC outputs, component Inverse 

Transform used Inverse Discrete Cosine Transform (DCT) Inverse transform step is applied for each 4x4 

block.  Deblocking filter is executed at the end of the decoding process in order to reduce the edging effect 

between macroblock borders 4X4 after adding the coefficients predicted and transformed by the component 

addition.  

Whereas components, Inverse Quantization, Inverse Transform and Deblocking filter correspond 

contain intensive data-parallel computations. The Repetitive Structure Modeling (RSM) package of MARTE 

offers suitable concepts to describe such computations. 
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5.2 H264 Decoder Functional Partitioning 

According the MARTE model in figure8, the video decoding application is composed of six tasks called 

Decoding Exp-Golomb (Exponential-Golom), MB-Header, Context-based Adaptive Variable Length 

Decoding (CAVLD), Inverse Quantization (INVQ), Inverse Transform (INVT), Inverse prediction 

(INV.Pred) and Deblocking filter (DBfilter). As shown in figure 9. 

Figure 9: Inter prediction block size type 

Exp-Golomb and MB-Header are running in the first place and sequentially because of data 

dependency. CAVLD, Inverse quantization and inverse transform are running sequentially because of data 

dependency. Inverse prediction task can be done in parallel with CAVLD, inverse quantization and inverse 

transform (task Parallelism). Inverse prediction and inverse transform tasks should be completed before 

running DBfilter. 

5.3 H264 Decoder Data Partitioning 

5.3.1 Low-level parallelization: decode macroblocks in parallel 

In H.264, there are 3 types of macroblocks: I-, P-, and B frames. An I-MB uses intra-prediction., 

each MB is predicted based on adjacent blocks from the same slice of frame. A P-MB (Predicted 

macroblock) uses motion estimation as well as intra-prediction and depends on one or more macroblocks 

from previously decoded frames. Motion estimation is used to exploit temporal correlation between frames. 

Finally, B-MB (Bidirectionally predicted macroblocks) uses bidirectional motion estimation and can depend 

on previous frames as well as future frames. 

In our work we use the frame sequence I-, P-, and B frames, for more details see section 4.2. Each 

frame is subdivided into 16x16 or 4x4macroblocks. For each frame sequence we have a single frame of type 

Ï, we start with coded I-macroblocks sequentially then P-macroblocks and B-macroblocks are coded in 

parallel. As shown in figure 10. 

5.4 Implementation of H264 Decoder on CPUs / GPUs 

In our work we are interested by news type of architecture such as heterogeneous architecture 

GPGPU (multi-CPUs/multi-GPUs) based on Heterogeneous System Architecture (HSA). In HSA, the CPU 

processor and GPU processor run together and in the same level, data access for the GPU is direct via shared

heterogeneous memory. 

Exp-Golomb and MB_Header tasks are executed in the first and sequentially because of data 

dependency on CPU. These two tasks are executed in the same to cancel the data transfer time. 

CAVLD, Inverse quantization and inverse transform are running sequentially because of data 

dependency. These tasks are executed on GPU (first GPU) because this latter contain intensive data-parallel 

computations and The Repetitive Structure) in order to benefit from advantages of GPU (parallel 

computing). 
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Inverse prediction task can be done in parallel with C AVLD, inverse quantization and inverse 

transform (task Parallelism). This task is executed on GPU (second GPU). The I-macroblocks are coded 

sequentially on a GPU core, P and B macroblocks are coded in parallel on other GPU cores. 

Inverse prediction and inverse transform tasks should be completed before running DBfilter. So

DBfilter can be run on either GPU1 or GPU2. 

Figure 8: Video application modeling based on the H.264 decoder 

Figure 10: H.264 decoder task graph with Data parallelism 
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6 Exprimental and Results 

6.1 Simulations 

The H.264 reference software, JM [18], is an open source implementation used as a reference 

implementation for the H.264 standards. In our research, we modified the JM [18] source code of the H.264 

decoder in order to decode macroblocks in parallel (P et B) and I sequentially, partition the source code into 

sub-code and run them on the different processor using the PThread library in C programming language. Our 

H.264 implementation is executed in real HSA architecture by emulator Multi2Sim [21], a cycle-accurate 

simulator for multicore x86 and graphics processors. Cache and memory configurations comply with 

common x86 processors that are available nowadays in many Intel [32] or AMD [29] processor chips. Each 

core has a private L1 cache of 512 KB and All other cores have a shared L2 cache of 2 MB and shared 

memory between the two processors CPU and GPU. We simulate the execution of our parallel H.264 

decoder using 2 GPU multicore (AMD Evergreen) and CPU multicore (x86). We perform simulation 

experiments of the H.264 OpenCL version on the AMD Evergreen GPU family with the configurations of 

the AMD Radeon 5870 GPU [31].We gather statistics using 15 video sequences with HD resolution is 

performed for the H.264 decoding process of 60 frames for each video sequence. 

Figure 11: Execution time of the H264 decoder implementation on heterogeneous architecture HAS

(multiCPU/multiGPU) 

6.2 Results 

Execution times with different processors CPU/GPU using HD resolutions are illustrated in figure 11. 

The execution time for each task of the H264 video decoder on each type of processor taking into 

account the different parallelism (task parallelism, data parallelism) is shown in figure 12. This is the first 

work that deals with the implementation of H264 on heterogeneous architecture HAS (multiCPU/multiGPU) 

taking into account the different parallelism (task parallelism, data parallelism) and data dependence. 

Comparing our result with previous work [13] and [16], our approach gives a better performance in

terms of execution time for each H264 decoder task and for entire application. 

7 Conclusion 

This paper illustrated the design of the H.264 encoder on a heterogeneous architecture HAS 

(multiCPU/multiGPU). A high-level modeling approach based on the standard MARTE profile has been 

adopted. The obtained model has been analyzed by considering different parallelism, data dependence and 

characteristics processors (CPU/GPU). Our approach gives a better performance in terms of execution. 
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Finally, in the future, we are planning to integrate the idea of automatically mapping and scheduling 

multimedia applications such as H264 onto heterogeneous architectures taking into account different 

parallelism (task parallelism, data parallelism) and data dependence and the cost of data transfer. 
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1 Introduction

Differential Evolution (DE) is a powerful stochastic optimization algorithm [6]. It has been suc-
cessfully applied on a wide range of optimization problems [4, 5, 11]. The iterative search process
of DE relies on three search operators: mutation, crossover and selection which are controlled by
three parameters (the scaling factor F , the crossover rate CR and the population size NP ). Sev-
eral works have studied the impact of DE parameters on its performance [6, 1–3], which revealed
that their appropriate tuning would achieve a resilient performance. In this paper, we propose an
on-line parameter tuning of DE along with a graphics processing unit (GPU)-based parallel im-
plementation to reduce the computational time. The proposition has been applied to optimize the
structure of a recent electric motor and compared with state-of-the-art adaptive and self-adaptive
versions of DE.

2 Electric motor design optimization

The problem at hand is a recent engineering minimization problem with the aim of improving the
autonomy of electric vehicles. The given optimization problem has eight variables that are depicted
in Table 1.

Table 1. The geometrical variables

Symbol Description Variation limits

Dis Inner stator diameter [50; 80] mm
hjr Rotor yoke height [7; 15] mm
histm Tooth isthmus [0.5; 2] mm
hjs Stator yoke height [8; 15] mm
wt Tooth width [3.5; 8] mm
gap0 Air-gap length [0.5; 1.5] mm
hmp PM height [4; 8] mm
Lm Machines length [100; 160] mm

The objective function to be optimized is as follows:

minJ(x) = −Pout/matot + penality (1)

where Pout is the power density distribution, matot is the weight of the electric motor and

penality = 104
7∑

i=1

Ci (2)

In (2), Ci=0 if the constraint i is satisfied, 1 otherwise. The set of constraints is presented in Table
2.
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Table 2. The problem constraints

Parameter Symbol Unity Variation limits

Output power Pout W [19995; 20005]
Current consumption Is A [20 ; 56]
Motor torque Tm Nm [8.5 ; 8.6]
Motors efficiency n - [0.9; 0.99]
Motors power factor PF - [0.81; 0.99]
Rotor inner diameter Dir mm [22; 70]
Slot filling factor T - [0.1; 0.5]

3 PADE

This work proposes a GPU-based parallel adaptive version of DE called PADE. This algorithm
incorporates a pool of discrete possible combinations of F and CR. Each combination has a corre-
sponding score that represents its performance in the previous generations of the search process.
Accordingly, at each generation, a roulette wheel selection is performed to select one of the best
10% combinations (combinations with the highest score) to be applied on the search operators
of DE. If the combination can improve the current state of a given individual, it is rewarded.
Otherwise, it is penalized. Moreover, to control NP , a linear size reduction of the population is
introduced to eliminate fractions of the worst individuals over the generations. In the mutation
phase, we use the well-known DE/current-to-pbest/1 proposed in [10], which has been successfully
applied in several works[7, 8, 12]. DE/current-to-pbest/1 is presented as follows:

vG+1
i = xGi + F.(xGpbest − xGi ) + F.(xGr1 − xGr2) (3)

where xGi is the current individual, xpbest is one of the best p individuals in the population, xGr1
and xGr2 are two random individuals. Table 3 reveals the advantage of our proposition over the
unmodified DE [6] and several state-of-the-art adaptive DE algorithms, i.e. SADE [11] and EPSDE
[9] where a budget of one million evaluations has been used.

Table 3. Comparison with state-of-the-art DE algorithms after 30 runs

DE (DE/rand/1) SADE EPSDE PADE

Best -3.15e+03 -3.27e+03 -3.20e+03 -3.33e+03
Mean -2.91e+03 -2.92e+03 -2.85e+03 -3.07e+03
Worst -2.84e+03 -2.78e+03 -2.43e+03 -2.74e+03

In Table 4, PADE is compared with its sequential version on CPU, in terms of computational
time and of best and mean fitness of the solutions found. To test the parallel implementation, we
used an NVIDIA Quadro M620 GPU and an Intel i5-744HQ @ 2.80 GHZ computer. Table 4 shows
that the parallel implementation can reduce the computational time and could slightly improve
the results.

4 Conclusion

In this paper, we have presented a parallel adaptive DE algorithm to optimize the structure of
an electric motor. The approach relies on a simple yet efficient learning technique to tune DE
parameters. Moreover, the proposed algorithm, parallelized on GPU, shows significant acceleration
compared to its sequential version. Promising results have been noticed when comparing with state-
of-the-art DE propositions. In works under progress, we are applying PADE on other real-world
problems where the acceleration, in terms of computational time, can be even more significant.

205 sciencesconf.org:meta2018:207014



A Parallel Adaptive Differential Evolution Algorithm for Electric Motor Design

Table 4. Comparison with GPU-based implementation

NP CPU GPU

Best -3.15e+03 -3.33e+03
200 Mean -2.91e+03 -3.07e+03

Mean time 60.27 s 27.74 s

Best -2.79e+03 -3.39e+03
400 Mean -2.76e+03 -2.95e+03

Mean time 63.74 s 7.79 s

Best -3.12e+03 -3.21e+03
600 Mean -2.75e+03 -2.90e+03

Mean time 66.28 s 7.28 s

Best -2.98e+03 -3.05e+03
800 Mean -2.76e+03 -2.85e+03

Mean time 75.27 s 7.08 s
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1 Introduction

Nowadays, a lot of effort has been made in the health area, mainly in the pharmaceutical field,
to discover more efficient and innovative drugs. This can be observed, among other factors, in the
increase of scientific papers which propose new techniques amined to find new compounds. Broadly
speaking, those techniques, called Virtual Screening (VS) methods, try to determine which chem-
ical compounds, from an enormous dataset, can replace a given protein target or interact with
it. This allows reducing experimentation time and in-vitro costs. Depending on the information
available from the pharmacological targets and the compounds in the dataset, they can be clas-
sified between: (i) Structure-Based Virtual Screening (SBVS) techniques, which require detailed
structural information about the compounds; and (ii) Ligand-Based Virtual Screening (LBVS),
where only information about known ligands (actives and inactives, agonists and antagonists, etc)
is exploited in order to predict new bioactive compounds against selected protein targets. LBVS
methods will, therefore, consider all existing available information about known active and inactive
compounds, and this information will be referred to as molecular descriptors. There exist a large
number of molecular descriptors o potentials used to compare molecules, as for example Shape sim-
ilarity, Electrostatic similarity, Atomic property fields, Aromatic potential, Desolvation potential,
etc.

In this work, we propose the use of Optipharm, a new LBVS method to discover the most
similar compound to a given target. The electrostatic potential will be considered as a measure of
the existing similarity. Optipharm is a global hybrid evolutionary optimization algorithm, where
a population of candidate solutions (‘individuals’) is generated and simulated to evolve (including
interaction) until a certain halt condition met. This algorithm has been designed ad-hoc to solve
this LBVS problem and some problem definition knowledge has been introduced in order to improve
the search.

1.1 Electrostatic similarity

To calculate the similarity of the electrostatic potential [1], a function of the OpenEye Toolkit
has been used, Zap [4]. The following is a brief overview of the most important mathematical
expressions. Zap Toolkit uses a numerical solution of the Poisson equation to obtain the electrostatic
potential [2]:

∇{ε(r)∇φ(r)} = ρmol(r) (1)

where φ(r), ε(r) and ρmol(r) represent the electrostatic potential, the dielectric constant and the
molecular charge distribution, respectively.

Electrostatic potentials between two compounds are compared by determining the following
expression:

EAB =

∫
φA(r)φB(r)ΘA(r)ΘB(r)dr ≈ h3

∑

ijk

φAijkφ
B
ijkΘ

A
ijkΘ

B
ijk (2)

where Θ is a masking function to ensure potentials interior to the molecule are not considered as
part of the comparison.
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(a) Tanimoto coefficient = 1. (b) Tanimoto coefficient = 0.78.

Fig. 1: 1a Comparison of compound DB00331 with itself and, 1b comparison of DB00331 with
DB00316. In both figures, the blue and red surfaces show the positive and negative electrostatic
potential of DB00331. The light blue and orange colors have been chosen to show the positive and
negative electrostatic potential, respectively, of DB00316 compound, facilitating its visualization.

Finally, the final electrostatic similarity score is obtained by the standard Tanimoto coefficient:

Tc =
VAB

VAA + VBB − VAB
(3)

2 Preliminary results and conclusions

The experiments have been carried out in a supercomputing cluster of the HPCA research group.
Its main characteristics are 484 cores, 3900 GB of Memory and 22 TB HDD [3].

The database used for computational experiments is the Food and Drug Administration (FDA)
database [6]. This database consists of approved drugs in the United States for use in humans.
Such a dataset contains 1751 molecules, and some of them are used as pharmacological targets.

The preliminary results have shown the superiority of Optipharm at finding most similar com-
pounds to a given target, as compared to the ones obtained by methods previously proposed in
literature.

Figure 1 illustrates the performance of Optipharm by showing a couple of graphical results.
In Subfigure 1a the electrostatic potential of compound DB00331 is computed with itself. As
can be seen, the similarity score is 1. Blue and red surfaces show positive and negative potential
respectively. As the score is 1, the overlap is perfect and only one compound can be seen. This is
the first fire test for any LBVS, i.e. a competitive method should be able to obtain the maximum
possible score (which is one), when target and compound are the same molecule. In Subfigure 1b
the previous compound is represented with DB00316 obtaining a 0.78 of similarity.In this case, the
light blue and orange colours have been chosen to represent the positive and negative electrostatic
potential of compound DB00316 and show its differences compared to compound DB00331 (blue
and red). The figures have been represented using VIDA [5], an OpenEye software.
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Abstract. In this paper, a research was carried out on the problem of evolution-

ary multi objective business process optimization. It does involve (i) to con-

struct feasible business process designs with optimum attributes, and (ii) to 

classify the obtained solutions using a simple and scientific approach under-

standable by the decision maker. The business process evolutionary multi ob-

jective optimization (BPMOO) approach involves the generation of a series of 

diverse optimized business process designs for the same process requirements 

using an evolutionary algorithm (EA). The work presented in this paper is 

aimed to investigate the benefits that come from the utilization of multiple-

criteria decision analysis methods (MCDA) with an evolutionary multi objec-

tive optimization algorithms (EMOA) execution process. The experimental re-

sults clearly bring that the proposed optimization Framework is capable of pro-

ducing an acceptable number of optimized design alternatives to simplify the 

decision maker's choice of solutions in a reasonable runtime. 

Keywords: Multi objective optimization, evolutionary algorithm, business pro-

cess, multiple-criteria decision analysis. 

1 Introduction 

According to [1], optimization refers to finding the best possible solution to a prob-
lem given a set of constraints. Firstly, when a single objective has to be optimized, the 
aim is to find the best possible solution available called "global optimum". Secondly, 
the case where there is not one but several objectives to optimize simultaneously. Ac-
tually, these objectives are most often in conflict with each other. These problems are 
called "multi-objective optimization" (MOO) that leads to a set of solutions. Therefore, 
a solution in a MOO is Pareto optimal [2] if it exists no other feasible solution which 
would decrease some criterion without causing a simultaneous increase in at least one 
other criterion. Such problems can be mostly solved using metaheuristics [3]. Evolu-
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tionary algorithms are particularly recommended because of their ability to handle a set 
of solutions simultaneously, and their capability to deal with problems of various kinds 
[4]. Having said that, evolutionary multi objective optimization (EMOO) was intro-
duced in the 1980s [5], and used in a lot of disciplines, nowadays, and business process 
optimization (BPO) is, by no means, an exception. BPO is considered the problem of 
building feasible business processes (BPs) while optimizing conflicting criteria [6]. 

This article proposes a Framework that deals with a business process multi objec-
tive optimization dealing with 02 conflicting optimization criteria. MRS-NSGAII, for 
Majority Rule Sorting NSGAII is used by the Framework as enhanced EA. It tests and 
experiments the influence of using an MCDA in BPMOO. Section 2 presents a state 
of the art on BPMOO. Section 3 presents the main contribution of the paper, the op-
timization Framework with its proposed Fitness function and introduces MRS-
NSGAII. Experiments are performed and the results are presented in Section 4. Final-
ly, Section 5 summarizes the proposed research and provides perspectives. 

2 Related Work 

NSGAII is one of the most widely used evolutionary algorithms to overcome the 

question of multi objective (up to 03 criteria) of business processes [7]. The first work 

to mention is [8]. It focuses on how to appropriately allocate resources to activities in 

BP designs to ensure its high performance. A series of work on BPMOO with evolu-

tionary algorithms are introduced by [9]. The proposed approach uses a formal defini-

tion of a BP. It proposed and tested a Framework using NSGAII to generate new BP 

designs. Thereafter, [10] to [12] present the most important work in this field. The 

authors have improved [9] work by adding (i) the ability to review or reconfigure any 

unfeasible BP design and (ii) using other EAs. They finally propose a Framework 

where each task can be regarded as a Web service. [13] proposed an optimization 

Framework using Petri networks for modeling. [14] resumed the work of [10] by 

modifying the mutation and crossover operators used within NSGAII. [15] are inter-

ested in a BPMOO (up to three criteria) by implementing a Framework using NSGAII 

with a modified crossover’s operator and different selection techniques. [16] worked 

on a novel selection operator within NSGAII tested with a real BP scenario. 

The present work is an enhancement of the optimization Framework proposed in [16]. 
We propose to add a step on the EA progress while generating and evaluating pro-
cesses with diverse designs constructed based on a predefined business process. 

3 Proposed Approach 

3.1 Overall Architecture of the Proposed Framework 

A BP is defined as a collective set of tasks when properly connected perform a 

business operation, e.g. a product or a service providing value to the organization [17]. 

The main elements involved are tasks, resources and attributes of the BP. The attrib-
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utes provide the capability of evaluating a BP design. The problem of BPMOO can be 

defined as follows: 

  is the BP designs search space (    ), 

 is the Fitness function that assigns a numerical score  for each BP design, 

 is a set of constraints to optimize.

The aim of the optimization problem is to find either the instance of: 

 Global optimal BP , such as    ,  or 

 A near-optimal BP , such that  . 

Throughout the Framework course; each BP design must fulfill a certain amount of 
constraints. MRS-NSGAII is used to generate BP designs. Each solution set has 
(i) a feasible graphical representation and (ii) optimized’ attributes values. Fig. 1 de-
picts the proposed Framework. 

Create an initial population. A random population of BP designs is generated. It 

takes place only once in the Framework's progress. The steps 2-5 are repeated for a 

predefined number of iterations.  

Create designs representation. For each BP design, a matrix tasks/task (Fig. 2) is 

generated to represent the relationship between tasks and resources composing a po-

tential design (compared to [16] with 02 matrix).  

Verify and apply the restraints. Prior to evaluate a design, the Framework verifies a 

set of constraints because a design might be modified thereafter. As restraints, we 

quote: 

 A task must appear once, in each design.

 Replace or delete any task or resource useless for the design.

 Verify inputs and outputs of each BP design.

Assess designs. BP design’s Fitness value is calculated based on its attributes values. 

The proposed Framework uses a Fitness function dealing with 02 optimization crite-

ria. To save time, the solutions are evaluated after the restraints verification because

only tasks that really participate in a BP design are taken into account. 
The authors use the Fitness function proposed by [16]. It can be symbolized geomet-
rically as the hypotenuse of the right-angled triangle formed by    and   . 

   (1) 

 

 : BP design optimization criterion.

 : attribute of a task  BP design. 
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 : Number of tasks in a BP design.

 are normalized.

Perform EA. MRS-NSGAII is applied (simulated binary tournament selection, simu-

lated binary crossover and mutation operators). The process does not check whether 

a solution is feasible (step 3). Subsection III-B introduces MRS-NSGAII and its inner 

functioning. 

3.2 MRS-NSGAII 

MRS-NSGAII is an enhanced version of NSGAII proposed by [17] (see Fig. 3). 

The authors propose to add the majority rule sorting method (MR-sort) to the non-

dominated sorting stage into NSGAII execution. MR-sort is a simplified version of the 

ELECTRE TRI sorting model [19][20]. The general principle of MR-sort is to assign 

alternatives by comparing their performances to those of profiles delimiting proposed 

categories. To the authors' knowledge this technique has never been used with NSGAII 

and particularly in a BPMOO, by the past. MRS-NSGAII can be summarized as fol-

lows: 

1. A parent population called  is randomly generated and an offspring population 

 is created from it. 

2. Both populations  and  are combined into population  with  population 

size.

3. The population  is categorized by going through the MR-sort model where all

members are classified and put into categories.

4. The non-dominated sorting is applied on all categories except the last category (i.e.

the worse according to the sorting by MR-sort).

5. The best remaining   individuals from  are selected using the crowding distance 

and so form the next generation’s parent population . 
6. The steps 1-5 are repeated until the stopping criteria have been satisfied.

MR-sort method works as follows [21]: Let   be a set of objects (i.e. BP designs) 

evaluated on   ordered –optimization- criteria,  . We assume that   is 

the Cartesian product of the criteria scales, . An object     is a vector 

 , where  for all  . The ordered categories which the objects are 

assigned to by the MR-sort method are denoted by   , with  . Category 

 is delimited by its lower limit profile and its upper limit profile   which is 

also the lower limit profile of category  (provided  ). The profile    is 

the vector of criterion values , with         for all j. 

We denote by   , the list of category indices. It is assumed that the profiles 

dominate one another, i.e. , for           and          . 

An object is assigned to a category if its criterion values are at least as good as the 

category lower profile values on a weighted majority of criteria while this condition is 

not fulfilled when the object’s criterion values are compared to the category upper 
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profile values. In the former case, we say that the object is preferred to the profile, 

while, in the latter, it is not.  

Formally, if an object     is preferred to a profile   , it’s denoted by     . 

Object   is preferred to profile    whenever the following condition is met: 

                     
                                       (2) 

where    is the non negative weight associated with criterion  , for all   and   sets 

a majority level. The weights satisfy the normalization condition         , 

  is called the majority threshold; it satisfies          . 

 

Fig. 1. Optimization Framework main steps 

214 sciencesconf.org:meta2018:207071



Fig. 2. Task/task matrix 

Fig. 3. MRS-NSGAII main steps 
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Fig. 4. MRS-NSGAII illustration 

4 Experimentation and Results 

In order to generate satisfactory results, the proposed Framework needs to achieve 

two goals (i) obtain optimal business process designs by converging to the Pareto-

optimal front and (ii) obtain a variety of different sizes of BP designs while maintain-

ing the population diversity. This suggests that the features of the problem that require 

more attentions are: 

 The number of feasible non-dominated solutions. 

 The different acceptable BP designs sizes. 

 The execution time.  

Each of these problem features is related with the performance goals of the Frame-

work. The optimization Framework is expected to increase the quality of generated 

solutions in shorter time periods. The work presented is aimed to investigate the bene-

fits that come from the utilization of MRS-NSGAII. This feature puts to test both the 

convergence and diversity capabilities of MRS-NSGAII execution. It must not content 

itself by discovering feasible solutions but also to converge towards the optimal, in 

reasonable time frames. 

Table 1 shows the parameters used by the proposed Framework. The problem is set 

up to deal with 02 criteria    (x-axis) and    (y-axis). MRS-NSGAII performs 500 

iterations, it might seem excessively low but initial experiments showed that it pro-

duced better quality results in comparison with higher numbers and in a timely fashion. 

Initial population is limited to 500. Table 2 shows the parameters of the test scenarios. 

To apply correctly MR-sort, we propose 03 categories: "Good", "medium" and "bad" 

ranked from most important (to the decision maker) to least important, respectively. 

The limit profiles are resulting from [16] experiments. 
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NetBeans 8.1 IDE and Java 8 on a MSI GT70 laptop have been used to perform the 

experimentation. This article proposes to add MR-sort to the canonical non-dominated 

sorting used within NSGAII, and compare the results using traditional NSGAII. 

Table 1. Framework parameters 

Parameter Value 

Evolutionary algorithm MRS-NSGAII 

Simulated Binary crossover (probability) 0.8 

One point mutation (probability) 0.2 

Simulated binary tournament selection - 

Optimization criteria {  ,  } 

Categories {   good,   medium,   bad} 

Limit profiles Scenario A 
{  1003,  1801, 

    } 

Limit profiles Scenario B 
{  1663,  , 

    } 

Limit profiles Scenario C 
{     ,     , 

    } 

Limit profiles Scenario D 
{     ,     , 

    } 

0.86 

Table 2. Scenarios test parameters 

Parameter Scenario A Scenario B Scenario C Scenario D 

Library 30 100 500 1000 

Resource ( 9 30 30 30 

Objective 2 2 2 2 

[100 200] [100 200] [100 200] [100 200] 

[300 400] [300 400] [300 400] [300 400] 

In summary, MR-sort has proved to enhance the performance of MRS-NSGAII 

used by the proposed Framework in the optimization of the business processes scenari-

os by reducing its execution time while finding more non dominated solutions. 

In more detail (Table 4): 
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 MR-sort has a very good impact on the runtime of the Framework for all scenarios.

Resulted in execution time decrease rate to 44,44% with scenario B.

 MR-sort method assists NSGAII in generating more non-dominated solutions. The

increase rate of the solutions comes up to 56.41% for scenario C.

 The Framework has better solutions using MRS-NSGAII both from the point of

you of the convergence towards optimal solutions and maintaining the population

diversity.

Table 3. Optimization data for different scenario 

EA Average time 

(millisecond) 

Generated non-dominated 

solutions 

Scenario A 
NSGAII 4927 25 

MRS-NSGAII 3333 36 

Scenario B 
NSGAII 5247 37 

MRS-NSGAII 2915 49 

Scenario C 
NSGAII 5355 39 

MRS-NSGAII 3679 61 

Scenario D 
NSGAII 5547 84 

MRS-NSGAII 3954 89 

Table 4. MSR-NSGAII optimization performance 

Scenario A 
Time decrease (%) 32,35 

Number of solutions increase (%) 36 

Scenario B 
Time decrease (%) 44,44 

Number of solutions increase (%) 32,43 

Scenario C 
Time decrease (%) 31,29 

Number of solutions increase (%) 56,41 

Scenario D 
Time decrease (%) 28,71 

Number of solutions increase (%) 5,95 
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Fig. 5. All scenarios results 

5 Conclusion 

Knowing that the optimization of business processes is as important as delicate to 

deal with for modern organizations, this article presents an enhancement of a Frame-

work capable of generating optimal feasible BP designs. It involves a quantitative rep-

resentation for each solution, a modified optimization EA that generates diverse opti-

mized designs using a MCDA method for the categorization of the solutions. The re-

sults have demonstrated that the Framework with the aid of the MR-sort method has 

increased its capability of generating diverse solutions and selecting the optimal ones 

in less time. Which pave the way to further experimentations as using another type of 

MCDA (e.g. for ranking), adding more optimization criteria and rewrite the Fitness 

function as well. Using MR-sort method needs to set several parameters and it is not 

easy for a decision maker to assess such parameters. In the present article, we choose 

to assess these parameters regarding to previous work and automate the proceeding is 

the next step to achieve. 
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Abstract. Global constraint are very popular mechanism in local search because they
achieve very good complexity, notably for routing problems. Our concern is on building
generic re-usable framework for local search and builds on the concept of Constraint-Based
Local Search. We showed how to embed global constraints for routing into CBLS framework,
thanks to an extension of this framework, namely a variable of type “sequence of integers”.
Developing a global constraint for our framework still requires two things. First designing a
differentiation algorithm, then embedding this algorithm into the targeted framework. In this
paper we identify a generic stereotype of differentiation used by global constraints and pro-
pose a generic support for this stereotype. The stereotype is an algebraic group. Our generic
framework is basically an abstract class with the place holders for this algebraic group. Once
this class is properly extended, it gives rise to a fully usable and efficient global constraint
featuring some form differentiation. Our framework is illustrated on classical examples as
well as on an intricate global constraint for vehicle capacity.

1 Introduction

Efficiently evaluating constraint in the context of vehicle routing optimization by local search relies
on so-called global constraint algorithms [1–3]. A classic example of global constraint is one that
maintains the length of the route in routing optimization through an incremental computation
[1]. For example, when considering the flip of a portion of route (i.e. a, b, c, d becomes d, c, b, a
or a, b, c, d, e, f, g, h, i becomes a, b, c,g, f , e,d, h, i) and considering a symmetric distance, a smart
global constraint is able to update the route length in O(1)-time because the length of the flipped
segment is the same in both directions.

Some global constraints can also rely on differentiation. At some point they are informed about
a current solution and that lots of neighbour solution will be explored around this current solution.
They typically perform some pre-computation and use it to quickly evaluate the explored neighbour
solutions. In the case of the asymmetric distance matrix, the pre-computation typically associates
the forward and the backward distance to each node. The forward (resp. backward) distance
associated to a node represents the distance travelled by the vehicle from the start point to the
node (resp. the distance travelled from the node to the start point if the whole route was flipped).
When a subsequence is flipped, the old (resp. new) length of the flipped segment is the difference
between the forward (res. backward) distances associated to the nodes at both ends of the flipped
segment. These two distances can be computed in O(1) -time, thanks to the pre-computation.

Such efficient algorithms are most of the time implemented into custom-made solvers, usually
for run time efficiency reasons. This raises two concerns; first: their implementation is often not
reusable, and second: they are costly to implement since these algorithms can be complex.

Our research line is to provide a modular framework enabling to quickly and easily develop,
benchmark and evolve search procedures by assembling algorithmically efficient more generic build-
ing bricks. We developed the OscaR.cbls featuring a constraint-based modelling language that no-
tably features variables of type “sequence of integers” (SeqVar) [4–6]. This specific variable type
enables us to embed efficient global constraints into our framework because these global constraint
receive symbolic, incremental information about the neighbours that are explored by the search
procedure. This framework also features some checkpoint mechanism that the search procedure
uses to tell global constraint when they can perform pre-computations, so that they can use dif-
ferentiation approaches.
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Our framework also features a domain-specific language for assembling complex search proce-
dures as combination of neighbourhoods [7]. It notably involves a cross-product operator between
neighbourhoods [8]. The consequence of this cross-product is that checkpoints might actually be
stacked. Standard neighbourhoods are also provided, including routing neighbourhoods [9] and
scheduling algorithms [10].

This paper builds on top of this framework and proposes a generic stereotype for implementing
global constraints on top of our SeqVar by defining an algebraic group. It provides support for
triggering and managing pre-computations so that the only concern to address when implementing
a new global constraint is exclusively related to the specific aspects of the global constraints.

For the concrete illustration of our work, we will use our own OscaR.CBLS framework. However
the design presented here can be transposed to other CBLS frameworks provided they support the
above stated foundations related to the sequence variable.

The structure of this paper is as follows. Section 2 provides some minimal background over
OscaR.CBLS and sequence variable. Based on this, Section 3 will present our generic support for
global constraints. Section 4 will illustrate our framework on a more elaborated global constraint,
namely the capacity constraints. Finally Section 5 will draw some conclusions and discuss our
future work.

2 Background

2.1 Constraint-Based Local Search

Like other local search approaches, CBLS relies on a model and a search procedure. CBLS frame-
works may offer support for both of these two aspects.

In CBLS frameworks, the model is composed of variables (integers and set of integers at this
point), and invariants, which are directed constraints maintaining one or more output variables
according to the specification they implement and according to the value of one or more input
variables. A classical invariant is Sum. It has an array of integer variables as input, and a single
integer variable as output. The value of the output variable is maintained by the invariant to be
the sum of the values of all the input variables. This means that the invariant sets the value of the
output variable, and adjust it according to the changes of the input variables. This is generally
implemented through incremental algorithms. For instance, when the Sum invariant defined here
is notified that one of its input variables has changed its value, it computes the delta on this
variable between the new value and the old value, and updates the value of its output variable by
incrementing it by this delta. OscaR.cbls for instance has a library of roughly 80 invariants.

The model is declared at start-up by some application-specific code that instantiates the vari-
ables and invariants. The input and output variables of each invariant are also specified at this
stage.

During the search, the model is active: if the value of some input variable changes, this change
is propagated to the other variables of the model through a process called propagation that is
managed by the underlying CBLS framework. Propagation is performed in such a way that a
variable is updated at most once, and only if it needs to be updated.

2.2 Sequence Variable

The OscaR.CBLS framework supports a variable of type “sequence of integers” [6]. This section
gives a quick summary of the sequence variable to make the paper self contained. The proposed
variable comes with a tailored data-structure enabling complex moves such as flips to be performed
on the value of a single variable and described in a symbolic way as an update performed on the
previous value of the variable. Global constraints are then aware of changes performed to these
variable in a symbolic form. In order to enable very efficient implementation of global constraints,
potentially having O(1)-time complexity for evaluating neighbour solutions, the data structure
used for representing sequences exhibits similar complexity. Sequence values are represented by
non-mutable data structures that are specifically developed for the context of local search.

The sequence variable replicates the three incremental operations supported by the sequence
value (insert, remove, move) in a mutable form, and they also can be assigned a sequence value.
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The sequence variable also features a complete checkpoint mechanism that serves to signal when
pre-computations should be performed and also makes it possible to use a Rollback operation that
restores the variable to the value it had at the checkpoint.

Upon propagation, sequence variables notify their value updates to the global constraint lis-
tening to them. They communicate in the form of a SeqUpdate. The object model of SeqUpdates
is shown in Figure 1.

previousUpdate

valueAfter
SeqUpdateSequence

IncrementalUpdate

Insert

DefineCheckpoint

Move

Remove

LatestNotified

Assign

RollBackToCheckpoint

Fig. 1: Class diagram of the notifications used by sequence variables

2.3 VRP Encoding Using a SeqVar

To represent our VRP, we will take the following assumptions and conventions:
– there are v vehicles, numbered for 0 to v1
– there are n nodes, numbered for 0 to n1
– we assume v < n
– notation abuse: n− 1 and n+ 1 will be interpreted as the next node in the route (and not as

an integer addition)

Fig. 2: Encoding of VRP using SeqVar

A unique SeqVar is used to represent the whole problem as shown in Figure 2. It is composed
of the concatenation of all vehicle routes: ”road of vehicle 0” → ”road of vehicle 1” → ... → ”road
of vehicle v− 1” as depicted in Figure 2. For a given vehicle w, we also define the starting point to
be w (same number) and will refer to the endpoint as w∗ (with an implicit return to start point).

3 Generic Global Constraints Mechanism

3.1 Identifying a Recurring Stereotype of Global Constraints

We noticed that lots of global constraints on sequences rely on pre-computation and actually define
a mathematical structure (T ,+,−,flip) where T is a type, + and − are opposite of one another.
In mathematical terms, this structure is a non-Abelian group with neutral element, inverse values
(for each x there exists a −x). A group means + is associative, however we do not assume that
it is commutative, thats why it is non-Abelian. For conciseness, we assume that +, − and flip are
O(1) -time operations.

Each node in the sequence has an associated value of type T , represented by the function:

value(node) : T

The classical pre-computation performed by global invariant is to associate to each node a value
pre-computed(node) defined as follows:
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precomputed(node) : T =
∑

n∈PathBetween(vehicleStart,node) value(n)

These pre-computed values can be generated in a single pass over the current route, this takes
O(n) -time by iterating over the sequence.

Flipping a segment is a common operation and can also be defined as an extra operation when
it can managed independently of the + and − operation:

flip : T → T

When considering a fraction of path represented by a pair of nodes (a, b), we define its value as
the sum of the value of all node that constitute it:

segmentValue(a, b) =def

∑

n∈PathBetween(a,b)

value(n)

We can reason on the definition of precomputed to extract in O(1) -time the sum of all value
of nodes between a and b:

segmentValue(a, b) = precomputed(b)− precomputed(a) + value(a)

//if (a, b) was not flipped since pre- computation was generated

= flip(precomputed(b)− precomputed(a)) + value(a)

//if (a, b) was flipped since pre- computation was generated

For any sequence of node, its cost can easily be computed according to the global constraints
as the sum of the cost of each subsequence that compose it.

The global gain of this approach is that pre-computations are performed once per neighbour-
hood exploration and cost O(n)-time. They can be queried in O(1)-time for each segment of the
sequence, and therefore for each explored neighbour. This is a winning approach if we explore more
than O(n) neighbours and if the sequence is not fragmented into too many sub-sequences according
to the specific data structure presented later in this paper.

The template for defining a global constraint is therefore defined as described in Table 1.

Table 1: Template with explicit flip operator
Template Definition

T Type of computation associate to carry out global invariant computation

value : node→ T Returns computation associated with a node

+ : T × T → T Operator for combining different nodes/segments (without flip)

− : T × T → T Operator to removing a node/segment (without flip)

flip : T → T Operator to flip a segment

3.2 Example: Routing Distance

A classic example of global constraint is the constraint that maintains the length of the route in
routing optimization. It takes a distance matrix specifying the distance between each pair of nodes
of the routing problem and the current route as input. Assuming the most general case with an
asymmetric distance matrix, we can perform the pre-computation described in the introduction to
ensure that the overall route length can be updated in O(1)-time in case a portion of the route is
flipped. To do this, we associate a couple of integers to each node:

– the length of the incoming hop
– the length of the incoming hop supposing it is taken in reverse direction

This defines T as (Int, Int). We also define + and − as the pairwise sum and difference on the
couple of integers.

Type T is defined as the constraint that maintains both the forward and backward distances at
each node (distanceFW and distanceBW ). The segment boundaries are also recorded (firstNode
and endNode). Considering m(p1, p2) and m(p2, p1) respectively return the forward and backward
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distance between points p1 and p2, it is easy to express the + and − operation. The flip operation
simply swap forward and backward distances and segment boundaries. Finally value is trivial to
express as distances are zero and both boundaries are on the considered node.

The fully instantiated template is presented in Table 2. Note that type T has been further
enriched with the first and last node of the considered route.

Table 2: Template instantiated for the routing distance global constraint

Template Definition

T (distanceFW : Int, distanceBW : Int, firstNode : Int, lastNode : Int)

value : node→ T (distanceFW = 0, distanceBW = 0, firstNode = node, lastNode = node)

+ : T × T → T (a, b, fn1, ln1) + (c, d, fn2, ln2)→ (a+ c+m(ln1, fn2), b+ d+m(fn2, ln1), fn1, ln2)

− : T × T → T (a, b, fn1, ln1)− (c, d, fn2, ln2)
→ (a− c−m(ln2, succ(ln2)), b− d−m(succ(ln2), ln2), succ(ln2), ln1)

flip : T → T (a, b, fn1, ln1)→ (b, a, ln1, fn1)

3.3 Re-using Pre-computations

The global strategy is to ensure that pre-computation is done before exploring a neighbourhood.
When a neighbour is evaluated, the relevant subsequence is identified and the differential formula
using pre-computation is applied on it. When dealing with simple neighbourhoods (like 2-opt,3-
opt), it is trivial to identify the involved subsequence. However this becomes more tricky when the
exploration is more complex and relies on cross-product of neighbourhoods as described in Figure
3. In this case, we do not want to perform pre-computation at each intermediary level.

Fig. 3: Typical search tree in the presence of cross-products

In order to re-use pre-computation when updating the sequence or when exploring search trees,
we maintain a piecewise affine bijection that maps the node position in the current sequence to
the node position at the checkpoint level 0. At this level, the bijection is initialized to the identity
function. As the sequence is being updated, this bijection will progressively become more and more
fragmented as illustrated in Figure 4. The position of the last routed node at the checkpoint level
0 is kept in memory and is named ω. It is represented in the figures by the vertical line.

In practice, we only care about positions between 0 and ω given only those contribute to
define the current violation. Since the image of inserted nodes is always strictly greater than α,
it is easy to distinguish nodes with pre-calculations from those without pre-calculations. Segment
present in the bijection can be classified in three categories: (1) segment having pre-calculations
(2) segment having pre-calculations and a negative slope (i.e. flipped) and (3) segments without
pre-calculations.

Assuming the group (T,+,−,flip) has been defined, the value can be computed through com-
bining contribution from each segment as:

∑

[xy], segment of bijection
on domain defined for vehicle

(pre-computations for y) − (pre-computations for x)
flipped if segment [xy] has a negative slope
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(b) Bijection after insert at position 5
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(c) Bijection after remove at position 8
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(d) Bijection after move of [2,4] after position 5
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(e) Bijection after flip of [5,7]

Fig. 4: Evolution of the bijection from position now to position at pre-computation time

Note that if a node was not in the sequence when the pre-computation was performed, its value
must be inserted in the sum as is. To ease the update, two interesting properties are the following
ones (see [11] for their proofs.)

Property 1 (Pre-computation completeness on a segment)
Given seg, a segment of the bijection whose ends have pre-calculations. All points of seg have
pre-calculations.

Property 2 (Pre-computation relation with initial value)
Let valuen(p) be the value of pre-calculation for node p when performed after n route operation (no
considering flips) since checkpoint.
Let value0(p) be the initial value of the pre-computation performed at the checkpoint.
Let x and y be two points with pre-calculations and such that they belong to the same segment of
the bijection. Then, we have:

valuen(y)− valuen(x) = value0(y)− value0(x)
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The proposition 1 guarantees all pre-calculations have been done entirely on a segment while
proposition 2 enables the reuse of the pre-calculations. Note however that segments with a negative
slope must be managed separately.

4 Application - Capacity Invariant for VRP

4.1 Problem Definition

We consider a fleet composed of v vehicles and n nodes to be visited. Each node p is characterised
by a weight w(p) which is the number of units that needs to be taken in or out of the vehicle at
this node. All units are considered equivalent and all vehicles have the same total capacity c.

The goal is to maintain the capacity violation invariant, i.e the capacity overflow with respect
to the maximal capacity. Given the above convention this invariant can be expressed as follows for
a given vehicle w,

overflow(w) =
∑w∗

p=w max(0, contentw(p)-c)

where content(w) is the current capacity at the output of node w

content(w) =
∑p

p=w w(p)

Table 3 shows a simple example of route with weight resulting in some violation level at different
points of the route. This table suggest a naive approach where the total violation is computed by
systematic iteration over the whole route which makes it O(n).

Table 3: Example of route with capacity violation. Total violation is 6
node 0 1 2 3 4 5 6 7

w(node) 3 1 2 −4 −3 6 1 −1

content 3 4 6 2 −1 5 6 5

overflow 0 0 2 0 0 1 2 1

Figure 5 illustrates the evolution of the capacity violation graphically as a function of the route
node. Actually it has a simple and nice graphical interpretation: it is the surface of the curve above
an horizontal line at the maximal capacity level. The surface value is 6 as computed in Table 3.

Fig. 5: Graphical representation of the capacity violation invariant

4.2 Identification of Pre-Computation and Ad-Hoc Implementation

In order to compute the capacity violation in O(1), it is required that each vehicle has quick access
to the full history of its content at each point of his route. Moreover this history must be efficient
to compute (time efficiency) and represented in a condensed form (space efficiency).
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This can actually be achieved using a Red-Black tree, i.e. a specialised form of binary search tree
which is self-balancing and exhibit O(log n) complexity for search, insert and delete operations.
Each node m will contain such a tree to store couples of the form (value, count) meaning that
the considered node has had count times the content value. This data structure has the wished
properties because:

– given that we have all values and their multiplicity, the constraint violation is computed through
the following conditional weighted sum performed over the couples of the red black tree that
are easy to retrieve in the red black tree

∑
(value,count), value>c count · (value− c)

more generally, the red black tree will allow to easily compute sums of the following form
∑p2

p=p1 max{0, w(p)− k} where k is a (pre-computed) constant

– the tree attached to each node can easily be derived by cloning the tree of the previous node
in the vehicle route and increasing the capacity reached at the current node

– the tree representation is O(n) in space

The coding of the red-black tree for each node of the previous is represented in Table 4. The
table shows the count for each node (columns) and possible value (lines), so the set of couples of
the red-black tree at position m is formed by assembling columns m and content.

Table 4: Matrix representation of the Red-Black trees for each node

content
node

0 1 2 3 4 5 6 7

−1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 1 1 1 1 1
3 1 1 1 1 1 1 1 1
4 0 1 1 1 1 1 1 1
5 0 0 0 0 0 1 1 2
6 0 0 1 1 1 1 2 2

For example, to compute the total violation of a route, we consider the last node of the route
and content strictly above 4, this result in 2.(6− 4) + 2.(5− 4) = 6 as already computed before.

An additional benefit is that the contribution of a segment s1 s2 can also be computed by
combining information of the couples s1 − 1 and s2. For example, for the segment 5 → 6 → 7,
overhead surface between 5 and 7 is (2 − 1).(6 − 4) + (2 − 0).(5 − 4) = 4. Note that the count
information is directly factorised in this computation.

Considering the different neighbourhood operations, efficient violation update properties can
be defined for inserting, removing, moving, flipping a segment. Those are given in annex. All those
formula are composed of terms that can efficiently be evaluated using the pre-computations de-
scribed above and based on the red-black tree structure, i.e. all summation can be reduced to an
evaluation on the end node and the node preceding the start of the segment. However those compu-
tations cannot be efficiently maintained over complex explorations without our proposed bijection
management. In the next section we will show that the above formulation can fit our template,
then we will compare the resulting implementation with the above ad-hoc implementation.

4.3 Template Instantiation

We use here the conventions defined in Section 2.3. Pre-computations associate to a node are:

– cont[n] content of vehicle m at node n

– rb[n] the associated red-black tree (as defined in Section 4.2)
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Given that, it would be very expensive to really fully compute the + and − on red-black tree.
In order to be efficient, different specialised types based on the same abstract type are defined
and used in specific contexts. Each specialised type contains different information and the + and
− operators work with subclasses as needed, considering how they are used as summation of
differences (so minus operators are connected with the global summation). Table 5 shows our
template instantiated for the capacity global invariant. Note that for the integrals +∞ et −∞
respectively represents the biggest and smallest vehicle content.

Table 5: Template instantiation for the capacity global invariant

Template Definition

T Actually an abstract type, concrete types are: T1, T2, T3

Those are used in specific context for optimizing performance

T1 (node : Int, prevNode : Int, content : Int, rb : RedBlackTreeMap[Int])

T2 (fromRB : RedBlackTreeMap[Int], toRb : RedBlackTreeMap[Int],
deltaContent : Int, contFrom : Int)

T3 (viol : Int, contEnd : Int)

− : T1 × T1 × flip
→ T2

(n2, n2 − 1, cont[n2], rb[n2])− (n1, n1 − 1, cont[n1], rb[n1])

→
{

(rb[n1], rb[n2], cont[n2]− cont[n1], cont[n1]) if¬flip

(rb[n2 − 1], rb[n1 − 1], cont[n2]− cont[n1], cont[n2]) if flip

+ : T3 × T2 × flip
→ T3

(viol, contAtEnd) + (fromRB, toRB, deltaCont, contFrom)

→
{

(viol +
∫ +∞
c−(contEnd−contFrom)

toRB − fromRB, contEnd+ deltaCont) if¬!flip

(viol +
∫ contEnd+contFrom−c

−∞ toRB − fromRB, contEnd+ deltaCont) if flip

value : node→ T3 (max{(∑n
i=0 w(i))− c, 0},∑n

i=0 w(i))

In short, for a segment moved, the − receives the content and red-black trees associated with
the ends. It sends to the + operator both red-black and the content difference at the end taking
into account whether the segment was flipped or not.

In addition to the − output, + also receives the vehicle violation and its content for the position
just before the new position of the moved segment. For this, the integral is computed using the
two red-blacks (always taking into account whether the segment is flipped or not). We only do this
at that time because we need to know the contents of the vehicle before the new position of the
segment. Knowing the result of the integral, the vehicle violation can be computed and the vehicle
content can also be updated.

4.4 Benchmarking

The goal of our benchmarking is to assess the algorithmic efficiency of our framework on this
specific case. We can actually rely on three implementations:

– a naive non-incremental implementation
– an ad-hoc implementation using pre-computation but without reuse capability (no bijection)
– a fully fledge implementation based on the instantiated template presented in Section 4.3

Two kind of neighbourhood were used: simple ones and cross products. Considering first simple
neighbourhoods, Table 6 shows that all operations are performing better with a gain between 2.3
(for switch between route with requires double update) and 15 (for simple insert).

However considering cross-products neighbourhoods, this gain is totally lost in the ad-hoc
implementation, resulting in similar times as the naive implementation (e.g. about 5s for a routing
problem of 30 nodes).

When using updates through the bijective function, the efficiency is restored at roughly the
same level of simple neighbourhoods provided lazy updates are used to update the bijection (i.e.
not necessary at the leaf node shown in Figure 3). Although we have not yet fully benchmarked
the behaviour over a large set of problems, with expect our solution to keep close to linear as a
function of the number of routed node and neighbourhood involved.
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Table 6: Comparison of main operations at route start (route with 2000 nodes)
Operation Naive Pre-computations Gain

Insert 1.5s 0.1s 15

Remove 1.0s 0.1s 10

Flip 1.0s 0.2s 5

Move 0.9s 0.4s 2.3

5 Conclusion and Perspectives

In this paper, we extended the basic mechanisms provided by our sequence variable to manage
global constraints by defining an abstract invariant template that makes their implementation much
easier. We also contributed efficient mechanics to manage the execution of the pre-computation and
the queries to the pre-computation. Pre-computation being an expensive operation, we designed
our framework so that it can exploit pre-computation even if the sequence was modified since it
was performed through a specific bijective function. We illustrated the use of our template on a
complex capacity constraint.

As future work, we plan to capture a wider variety of constraints to further assess and refine
our template as required. We will also carry out a wider scale benchmarking campaign based on
a larger set of examples and also compare our work with global constraints implemented in other
engines not only from the performance point of view but also for the ease of development and
evolution.
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Annex - Update of violation after neighbourhood operators

The following table gives efficient computation for updating vehicle violation after specific neigh-
bourhood operators. The full proofs are not reproduced here for space reason but they are available
in [11].

Table 7: Incremental update of violation after specific neighbourhood operators

Move type Violation delta

Inserting a node
of weight wnews

after node p∗

+
∑w∗

p=p∗+1 max
{

0, content(p)− (c− wnew)
}

−∑w∗
p=p∗+1 max

{
0, content(p)− c

}

+ max{0, content(p∗) + wnew − c}
Removing node p∗

of weight wnews

+
∑w∗

p=p∗+1 max
{

0, content(p)− (c+ wnews)
}

−∑w∗
p=p∗ max

{
0, content(p)− c

}

Moving a segment
p1 → · · · → pm
after p∗ > pm

+
∑p∗

p=pm+1 max
{

0, content(p)− (c+
∑pm

k=p1
w(k))

}

−∑p∗
p=p1

max
{

0, content(p)− c
}

+
∑pm

p=p1
max

{
0, content(p)− (c−∑p∗

k=pm+1 w(k))
}

Moving a segment
p1 → · · · → pm
after p∗ < p1 − 1

−∑pm
p=p∗+1 max

{
0, content(p)− c

}

+
∑pm

p=p1
max

{
0, content(p)− (c+

∑p1−1
k=p∗+1 w(k))

}

+
∑p1−1

p=p∗+1 max
{

0, content(p)− (c−∑pm
k=p1

w(k))
}

Moving a segment
from route v1
after node p∗ of route v2
(update for v2)

+
∑v∗

2
p=p∗+1 max

{
0, contentv2(p)− (c−∑pm

k=p1
w(k))

}

−∑v∗
2

p=p∗+1 max
{

0, contentv2(p)− c
}

+
∑pm

p=p1
max

{
0, contentv1(p)−(c−contentv2(p∗)+contentv1(p1−1))

}

(update for v1) −∑v∗
1

p=p1
max

{
0, content(p)− c

}

+
∑v∗

1
p=pm+1 max

{
0, content(p)− (c+

∑pm
k=p1

w(k))
}

Flipping segment
p1 → · · · → pm

−∑pm
p=p1

max
{

0, content(p)− c
}

+
∑pm−1

p=p1−1 max {0, h− content(p)}
where h := content(p1 − 1) + content(pm)− c
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Abstract. We propose in this paper a Hidden Markov Model (HMM) approach to avoid
premature convergence of ants in the Ant Colony System (ACS) algorithm. Indeed, the pro-
posed approach was modelled as a classifier method to control the convergence through the
dynamic adaptation of the α parameter that weighs the relative influence of the pheromone.
The implementation was tested on several Travelling Salesman Problem (TSP) instances
with different number of cities. The proposed approach was compared with the standard
ACS and the existing fuzzy logic in the literature. The experimental results illustrate that
the proposed method shows better performance.

1 Introduction

The TSP is one of the most complex combinatorial optimization problems studied in computer
science, logistics, and transportation industries [1–3]. Where, the task is finding the shortest tour
that visits all the cities in a given list once and only once starting from one city and returning to
the same city [4].
The TSP is then the optimization problem to find a Hamiltonian cycle that minimizes the length
of the tour.
For this minimization mission, (n− 1)! possibilities of solutions have to be compared, which make
it very hard to solve and then belongs to the NP-hard problem that cannot be optimally in a
polynomial time. Many heuristics and meta-heuristics have been proposed to find near optimal
solution to it. The Ant Colony Optimization (ACO) meta-heuristic is one of the most powerful
algorithms for solving the TSP [5]. Since the development of the first (ACO) algorithm by Dorigo
1991 [6], many other variants have been proposed, which differ one to the other in the Update
Pheromone procedure and some characteristics in the Construction Solution. One of the most in-
teresting variants is the Ant Colony System (ACS). The (ACS) algorithm differs in several ways
from the other (ACO) techniques. The main steps of ACS algorithm are:

Algorithm 1: Standard ACS

1 Initialization phase: Initialize pheromone trails with τ0 = 1/LNN

2 Construction phase:

repeat
foreach ant do

build a feasible solution according to (1) and (2)

Local update according to (3)
end

3 Global update according to (4)

until stop criteria is reached ;
4 Return the best found tour Lbest

– Initialization: In this step, the parameters are set and pheromone matrix is initialized with
a small values.
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– Construction solution: ants uses the so called pseudo-random proportional rule to construct
a feasible solution in the case of TSP a complete tour: with a probability q0 the next city is
chosen as

argmaxu∈Jk(r)[τ(r, u)]α[η(r, u)]β ifq ≤ q0 (1)

and with probability (1-q0) the random proportional rule is used as

pkrs =





[τ(r, s)]α.[η(r, s)]β∑
u∈Jk(r)[τ(r, u)]α[η(r, u)]β

if s ∈ Jk(r)

0 otherwise

(2)

where τ(r, s) and η(r, s) are the pheromone level and heuristic value between i and u, and
Jk(r) is the set of component solutions yet to be chosen by ant k positioned on r. The state
transition rule resulting from (1) and(2) is called pseudo-random-proportional rule.
A local pheromone update rule is applied during the solution construction of the ants. Each
time an ant moves to the next city j the amount of pheromone between (r,s) is modified
according to:

τ(rk, sk) := (1− ξ)τ(rk, sk) + ξτ0 (3)

where ξ ∈ (0, 1) is a parameter called local pheromone parameter, and τ0 is the value that

initializes the trails of pheromone, τ0 is a very small constant with value
1

n.Lnn
, where Lnn is

the length of a nearest neighbour tour and n is the number of instances in the problem. The
aim of the local update pheromone is avoiding the stagnation by decreasing the pheromone
value on the used edges and make them less attractive.

– Global pheromone update: At the end of each iteration the amount of pheromone is updated
again according to either the iteration-best or the global so far solution as

τ(rk, sk) := (1− ρ)τ(rk, sk) +
ρ

(Lbest)
(4)

This rule applied after all ants have constructed their solutions.

– Stop criterion: The algorithm can be stopped after it reached the stop criterion which is a
maximum number of iterations without improvement and returns Lbest.

The performance of ACO algorithms depends strongly on the given values to parameters. In the
earliest ACO applications, parameters values are set constant during the running of the algorithm.
However, modifying the values of parameters throughout the run of the algorithm can evolve the
performance of algorithm. Parameter adaptation is becoming a considerable task in the field of
evolutionary algorithms (EAs). The adaptation of parameters while running the algorithm using
machine learning techniques is also the influential theme in the research area.
Several strategies have been proposed in the literature for adapting parameters while solving a
problem. For example, in [7–12] authors have chosen the HMM machine learning to adapt param-
eters of other meta-heuristics at runtime.
In this paper, we propose the machine learning technique Hidden Markov Model (HMM) to adapt
the exponent of pheromone level α parameter dynamically according to some performance mea-
sures while solving some TSP problems.
The rest of the paper is organized as follows. Section 2 presents the relate work. Section 3 de-
scribes a new method of parameter adaptation through Hidden Markov Model. Section 4 outlines
the experimental results and comparison. Finally, Section 5 gives the conclusion.

2 Related Work

The exponent on the pheromone level α of ACO algorithm does not received enough attention
in the literature, the reason why Meyer [13] decided to study the influence of this parameter on
the ACO performance by proposing an algorithm called critical cycle Ant System (ccAS) in which
the subsequent runs start from an already developed pheromone matrix, and he proved that the
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parameter α determine the quality of the convergence of ACO also it rends the ant algorithms
more efficient.
In the same context, Neyoy et al [14] proposed a new approach to control the diversity in ACO
by the dynamic variation of α parameter using a convergence fuzzy logic controller that aims to
avoid or slow down full convergence.
In [15] Chusanapiputt et al proposed an Selective Self-Adaptive approach Ant System (SSAS) to
solve the constrained unit commitment problem by adapting transition probability parameters and
population size through increasing and decreasing the value of αandβ and cooperation with Effec-
tive Repairing Heuristic Module (ERHM) and Candidate Path Management Module (CPMM).
Li et al [16] proposed an information entropy based approach to solve the premature convergence
problem of the ACO algorithm, which is applied to tuning α and β parameters on Traveling Sales-
man Problem.
Martens et al [17] suggested a a self-adaptive implementation of Max-Min Ant System (MMAS) ap-
plied to the data mining field for extracting rule-based classifiers. The aim of their called AntMiner+
classification technique, is to find suitable values for α and β parameters by creating a new vertex
group in the construction graph for each parameter. The values of α and β are limited to integers
1,2 and 3.
Khichane et al. [18] proposed a self-adaptive approach to modify the parameters α and β of MMAS
by introducing two reactive frameworks that differ in he granularity of parameter learning and ap-
plying it to constraint satisfaction problems. The updated parameters are considered independent
of each other. For this adaptation authors developed two mechanism. The first one, called global
parameter learning ant-solver (GPL-Ant-solver) define one common parameter for all the colony
during the construction solution by ants. In the second mechanism, called distributed parameter
learning ant-solver (DPL-Ant-solver), the values of α and β are updated at each step of the con-
struction solution.
Ling et al [19] introduced the Artificial Fish Swarm Algorithm (AFSA) to solve the parameter
modification problem of ACO algorithm when applying it to the TSP. Three parameters were up-
dated α, ρandQ. In their work, authors defined the same parameter setting for all ants.
Melo et al [20] proposed a multi-colony ACS algorithm, where various ant colonies try to solve the
same problem at the same time. Each colony has its proper values of parameters α, β, ρandq0. The
main idea of their work is to replace the parameters of the worst colony by the values of the same
parameters of the best colony.
For their part, Olivas et al [21] developed a dynamic parameter adaptation approach for Ant
Colony Optimization (ACO) based on interval type-2 fuzzy systems, for controlling the ability of
exploration and exploitation. The objective of their method is to be able to apply it to a wide
range of problems without the need of finding the optimal values of parameters for each problem.
The exponent on the pheromone level α and the rate of evaporation of the pheromone trail ρ are
the chosen parameters to be change.

3 Proposed method

In this section a new improved ACS algorithm based on HMM method is proposed to adapt the
exponent on the pheromone level α according to some performance measures. The reason why
we have chosen to tune this parameter, is its strong influence on the quality of convergence and
performance of the ACS algorithm.
The main idea of this work is that the value of α should be modified according to the diversity
throughout the population and the closeness to the best known solution which are considered as
the performance measures. For example, if the diversity throughout the population is high so there
are several different paths explored by the ants, this means we don’t require any more exploration
and we need to exploit the accumulated information by setting the α parameter to a high value.
Considering the error from getting the best solution, if the error is high this means we are far from
the best solution so we need this time to explore more solutions by setting α to a low value.
To describe the diversity throughout the population we have chosen the Variance measure which
has the power to indicates how far ants are spread out.

V ariance =

∑m
i (Li − µ)2

m
(5)
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Where, Li is the length of the found solution by ant i, µ is the mean of all solutions found by the
population, and m is the number of ants. For the closeness to the best known solution the error
variable was chosen as a measure performance.

Error = Lbest − Lbest−known (6)

Where, Lbest is the best found solution by the population, and Lbestknown is the best known solu-
tion for [TSPLIB].
These two measures are considered as observations for the HMM, while the values of α are consid-
ered as states.

3.1 Hidden Markov Model

Hidden Markov Model is a learnable stochastic automate which consists of two stochastic processes.
The first process is an underlying unobservable Markov Chain that externally cannot be visible
(hidden) and characterized by states and transition probabilities. The second one is an observable
process producing observation symbols depending on probability distribution of the first process.
In practice, A HMM noticed by the symbol λ.
We now define the five following elements for the proposed model:

– S = {L,ML,M,MH,H} is the hidden states set

– V = {LL,LM,LH,ML,MM,MH,HL,HM,HH} is the observation symbols per state set

– Π = [π1, π2, π3, π4, π5] = [1, 0, 0, 0, 0] is the initial probability where πi is the probability of
being in the state Si. Where, at time t=0 the model is in state ”Low” for α parameter. As it
mentioned before, at the beginning of the algorithm we need to explore maximum area that’s
why we have to set the α parameter at a low value.

– A = [aij ] is a matrix of transition probabilities from state Si at time t to state Sj at time t+1.
In our method, we considered a five state left-to-right HMM to describe the ants states. In the
case of left-to-right HMM, the initial state probability is equal to one. Thus, all the ants start
with the same state.

– B = [bjk] is the emission matrix of observing a symbol Vk from a state Si. The emission
matrices were defined according to some knowledge that a low value of variance means that
the ants may be stuck in an optimal solution so we need to explore more solutions by de-
creasing the value of α. And a low value of error means that the ants are close to the best
known solution so we have to exploit the accumulated information by increasing the value of α.

A = (aij) =




0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 1




B = (bjk) =




0 0 0 0 0 0 0 0 1
0 0 0 0.5 0 0 0 0.5 0
1

3
0 0 0

1

3
0 0 0

1

3
0 0.5 0 0 0 0.5 0 0 0
1 0 0 0 0 0 0 0 0




We have defined five states corresponding to the values of α such as: Low (L), Medium Low (ML),
Medium (M), Medium High (MH), High (H). For the observation symbols we have concatenated
the performance measures Variance and Error such as each measure represented by three symbols
L, M, H. Where, L means Low, M means Medium, and H means High. So we obtain nine possible
concatenation.
In our method, the Viterbi algorithm was adopted so as we tried to compute the most likely
sequence of states that produced the current observation sequence. The dynamic adaptation of the
parameter q0 is done according to the last state in the found sequence of states. For example, if the
most likely state sequence for α parameter is H, L, M, MH, L, ML, M, then its value is updated
according to the last state which is ”Medium”. In addition to the Viterbi, we have used the well
known Baum-Welch training method to adjust the HMM parameters λ = (A,B, π) during the run
time.
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Adjusting HMM parameters and State determination At the end of each iteration we
perform an Online Learning for HMM parameters by the Baum-Welch algorithm. The Baum-
Welch algorithm uses the expectation maximization algorithm to find the maximum likelihood
estimate of the HMM parameters given a sequence of observed data. After that, to find the most
likely explanation or the most likely state that generated a particular sequence of observations the
Viterbi algorithm is used to find a maximum over all possible state sequences. This algorithm has
the ability to deal with the entire sequences of hidden states from the beginning of the algorithm
till the current iteration,and then make a decision base on the whole history, which makes it
advantageous compared to other algorithms that depend only on the information of the current
iteration.

Algorithm 2: Parameters estimation and state determination

Input: O=o1,o2,...,oT , S, λ = (A,B, π)
repeat

Re-estimate λ using Baum-Welch

Find the most likely sequence of states ST using Viterbi
until no increase of P(O/λ) or no more iterations are possible to do;

Proposed algorithm In the proposed algorithm, each ant builds a tour by choosing the next
node using the pseudo random-proportional action choice rule.

Algorithm 3: The pseudocode of our proposed algorithm

1 Initialization:

2 Construction Solution:

while termination condition not met do
foreach ant k in the population do

chose the next according to (1) and (2)
local pheromone update according to (3)

end
Update the global best solution;

3 Global pheromone update according to (8)

Compute Variance and Error according to (5) and (6)

if 0 < Variance ≤ MaxV ariance

3
then Variance = L;

else if
MaxV ariance

3
< Variance ≤ 2 ∗MaxV araince

3
then Variance = M;

else Variance= H;

if 0 < Error ≤ MaxError

3
then Error= L;

else if
MaxError

3
< Error ≤ 2 ∗MaxError

3
then Error= M;

else Error= H;
Return O=Variance Error; Apply algorithm 2 to find the suitable state

update α according to the found state,

if state= L then α = 0.6;
if state= ML then α = 0.7;
if state= M then α = 0.8;
if state= MH then α = 0.9;
else

α = 1
end

end
Return Lbest

236 sciencesconf.org:meta2018:207087



After building a tour the variance and the error calculated and converted into symbols accord-
ing to the determined intervals. The symbols then combined to build an observation, then the
observation sent to the Viterbi algorithm to determine which state is the most likely responsible
for producing this observation. The sequence of observation is incremented after each iteration, so
the number of elements of a sequence equal to the number of iterations.

4 Experimental results and comparison

To test the efficiency of the proposed algorithm, we compared it with the standard ACS algorithm
also with Fuzzy Logic results.
The algorithm was run according to the best known values of ACS algorithm parameters [22]
which are β = 2, ρ = 0.1, q0 = 0.9, and m=10. The initial position of ants is set randomly on all
experiments.
The TSP benchmark instances used in this study were chosen from the TSPLIB [23] according to
the most common used instances in the literature. The algorithm is developed on MATLAB. Each
instances was ran for 1000 iterations. The stop condition is: 200 iteration as the maximum number
without improving in results.

4.1 Comparison on the solution accuracy

Table 1 shows the results of running the proposed and the standard ACS algorithms on the chosen
TSP instances.
The meaning of each column of the table is as follows.

– The first column represents the names of the chosen TSP instances.
– The second column represents the best found solution by the standard ACS algorithm.
– The third column represents the amount of time used for the standard ACS processing.
– The fourth column represents the best found solution by the proposed method ACSHMM.
– The fifth column represents the amount of time used for the proposed method.
– The sixth column represents the best found solution by Fuzzy Logic [25].

Table 1. Summary of results of the standard ACS and ACSHMM algorithms on some TSP instances

Problem
standard ACS ACSHMM FuzzyLogic best known solution

Solution CPUtime Solution CPUtime Solution

Eil51 435.4 [104] 143 428.8 [325] 201 431.9 [199] 426
St70 690 [224] 252 677 [246] 292.6 691 [66] 675
Eil76 566 [12] 167.7 555.79 [286] 275.79 556 [479] 538
Rat99 1228.5 [614] 1158.4 1221 [403] 711.8 1234.2 [315] 1211
Eil101 675.7 [7] 316.78 656.4 [75] 363.3 655.6 [218] 629
Lin105 14551 [165] 698.8 14474 [148] 436.79 14543.1 [27] 14379
Pr107 44620 [82] 403.6 44481 [127] 510.5 45757.9 [329] 44303
Pr124 59632.9 [25] 472.2 59159 [309] 1101.5 60203.3 [322] 59030
Rat195 2458.8 [114] 1833.3 2434 [28] 1400 2401.9 [65] 2323
pr264 53118.4 [101] 5590 52514.5 [31] 2790 53429.6 [78] 49135

The numbers between brackets are the numbers where the algorithms found the best solution.
From the table 1 we can observe that the proposed algorithm ACSHMM gives better results in
the convergence speed and the solution accuracy compared with both the standard ACS and the
proposed one in the literature by fuzzy logic. Thus in The most instances our proposed algorithm
outperforms the others except in one instance which is considered as a small problem. We can
see that the found solutions by the proposed ACSHMM method are very close to the best known
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solutions.
Also, the important aspect about our proposed algorithm is its behaviour under bad parameter
setting. Thus, the optimal known value for the number of ants equal to the size of the TSP instance,
but when we set the number of ants to 10, our proposed algorithm outperforms the standard and
the Fuzzy Logic algorithms.

4.2 Comparison on the convergence speed

In order to show the convergence speed of the proposed method we calculated its CPUtime (Table
1), also the charts that show the progress of the tour length with the iteration number have been
drawn.
The first chart correspond to St70.tsp instance, shows that the proposed method converge to a

Fig. 1. Sample run on pr107.tsp Fig. 2. Sample run on pr264.tsp

Fig. 3. Sample run on rat99.tsp Fig. 4. Sample run on rat195.tsp

better solution, as we can observe from the table 1, even if the standard ACS found its best solution
in the 82th iteration but the proposed method found better one.
In the second, the third and fourth charts, the proposed method can achieved better solutions and
can made faster convergence.
From those charts and table we can assume that the results of our proposed method are very
encouraging.

4.3 Statistical test

We used the Wilcoxon Rank Test in a pair-wise comparison procedure under significance level
α = 0.05 as a statistical test to compare the methods. The reason why we have used the Wilcoxon
Rank Test is its consideration to the quantitative differences in the algorithms performance. Also,
it is the recommended statistical test method used in many other researches [26,27]
The null hypothesis says that the found solutions of the ACSHMM method are worse than the

ACS method, while the alternative hypothesis says that the solutions of the ACSHMM method
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Table 2. Statistical validation for the TSP benchmark instances with ACSHMM as control algorithm

TSP Eil51 St70 Eil76 Rat99 Eil101

Standard ACS 2.57E-02 3.445E-01 1.04E-02 6.5E-02 9.09E-01

TSP Lin105 Pr107 Pr124 Rat195 pr264

Standard ACS 2E-02 2.39E-02 4.69E-02 4E-02 5.8E-03

are better when compared with the standard ACS.
From the Table 2 that represents the p-value for the test, we can observe that our proposed
algorithm outperforms the original ACS with level of significance of 5%. As we can notice, the
calculated p-value is below the significance level in most benchmark instances. Also, we can see
that the proposed method only in one instance fails to reject the null hypothesis, however in all
other results our proposed method converge to better solutions when compared to other methods.

5 conclusion

We can conclude from proposing the Hidden Markov Model (HMM) controller to the Ant Colony
System (ACS) algorithm for the sake of dynamic adaptation to its exponent of pheromone level α
parameter when applied to some Travelling Salesman Problems (TSP) that this proposed algorithm
could improve the quality of solutions compared with the standard algorithm and the proposed
one by the Fuzzy Logic on one hand. On the other hand, we can see that the proposed method
converge faster to better solutions in all most instances. Also, from the results of the statistical
tests we can observe that only in one instance the test fails to reject the null hypothesis, however
in all other results the proposed approach found enough evidence to reject the null hypothesis with
a level of significance of 5%. Thus, the ACSHMM outperforms the other methods in both solution
accuracy and speed convergence.
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Abstract

Not so long ago, to develop numerical methods to determine the solution of

a non-linear, non-convex and non-differentiable optimization problem that can

respond to a set of constraints, also non-linear and non-convex, seemed very

difficult. Although the classical theory of optimization can not be applied di-

rectly in global optimization problems, traditional tools such as convex analysis,

are widely used in the construction of global optimization methods. This ap-

proach is an important part of overall deterministic optimization. For example,

a remarkable progress has been made in the construction of minimization al-

gorithms of concave functions in convex regions, and also the minimization of

the difference functions of two convex functions. The major disadvantage of

these algorithms is their inability to answer both questions: see if the solution

obtained is global. Global optimization methods were introduced to try to sat-

isfactorily answer the two previous questions. In recent years, much work has

been done on the overall optimization of Lipschitz functions of one or more

variables. Recently, works on the extension of Piyavskki’s method to problems

of minimization of less regular functions was presented. It is a question of find-
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ing the global minimum of the Hölderian functions of parameters h > 0 and

β < 1 defined on a closed and bounded hyper-rectangle Ω. The direct general-

isation of this method can be easily extended to the case of several variables,

but it is cumbersome and too complicated for practical realisation. For this,

we will present a variant of a new deterministic method. This is the Alienor

reduction transformation method, developed by Y. Cherruault et al. In this

method, we have brought new ideas to apply this approach to problems opti-

mizing Hölderian multivariate functions. The fundamental principle to perform

a transformation that reduces the multi-dimensional optimization problem to a

one-dimensional problem in order to apply more efficient optimization methods

adapted to the case of a single variable. The basis idea is to densify the feasible

set by a regular parametric curves (α− dense). The Hölder multivariate initial

function f of the parameters h > 0 and β < 1 on the hyper-rectangle Ω is

transformed into a function of a single variable f∗ also Hölderian of parameters

h∗ > 0 and β < 1 on a closed and bounded real interval. So our problem is

reduced to a problem that is easier to solve because there is only one direction

to explore. The Alienor method has proven to be very effective by associating

with some one-dimensional methods such as covering algorithms. As mentioned

in the literature, the standard Piyavskii’s method applies to Lipschitz functions

β = 1. The idea consists in constructing an increasing sequence of affine piece-

wise lower bounding functions, and such that the global minima of the elements

of the sequence converges towards the global minimum that we are looking for.

This technique can be extended to Hölder functions where the parameters h > 0

and β < 1 are a priori known. Indeed, one builds a sequence of functions having

the same properties as the preceding continuation but this time the functions

are piecewise parabolic instead of being affine. Our work on this question was

based on new results concerning the generation of α-dense curves expressed in a

simpler way. The transformation used would consume the global minimizers at

least in an approximate way and preserve the properties of the objective func-

tion. The algorithm obtained from the coupling of the new variant of Alienor

method with the Piyavskii’s algorithm is quite simple and relatively effective.
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The convergence of the coupled method is proven. We will see that it offers very

interesting perspectives to reduce the calculation time. Finally, we will finish

our work with a series of numerical applications on test functions given in the

literature and having the distinction of having several local minima.

Keywords: Global optimization, Hölder condition, α-dense curves ,

reducing transformation method, Piyavskii’s algorithm.
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1 Introduction

Emergency situations are uncertain, and complex for emergency managers. Efficient evacuation
plans are the fundamental output of emergency management to reduce damage as much as pos-
sible. Traditional evacuation plans include static instructions of guidance based on shortest paths
to exits. These plans cannot be adapted to changes in disasters situations. For example, in the fire
event, as a fire progresses, some evacuation routes can become blocked by fire or smoke. Smart
building technologies can be used to minimize casualties of emergency situations by considering
real time evacuation information.

Recently, several intelligent evacuation systems that integrate real time collection and diffusion
of buildings’ state and dynamic guidance of people. Filippoupolitis and Gelenbe (2009) proposed a
distributed system to compute shortest evacuation routes in real-time. The recommended routes are
computed by decision nodes and are communicated to the evacuees located in their vicinity. Lujak
et al. (2017) considered only the physical distances and the hazard progresses during computing
efficient routes. They did not take into consideration crowd congestion on the routes. Lee et al.
(2017) proposed a multiple exits evacuation algorithm (MEEA) that guide the occupants in one
space to the same exit. The MEEA is based on graph theory and computes a process of exits
assignment of the nodes. cite bernardini considered the optimization of dynamic guidance as a
bi-level problem. The computation of guidance paths based on the prediction of hazards spread is
the upper-level problem. However, the look for evacuation paths based on prediction of congestion
is the lower-level problem. A local search procedure is developed to solve the problem.

this paper propose an agent based intelligent evacuation system. This framework defines the
interoperability between intelligent management subsystems of smart building. In addition, the
agent evacuation guidance optimizer treats the guidance problem as a mult-iobjective problem
using metaheuristics.

2 Intelligent Agent Based Evacuation system

We propose an agent based framework for an intelligent evacuation system that combines subsys-
tems of smart buildings in order to provide situation awareness for an evacuation guidance agent
that is explained in next section. The framework makes use of three types of agent: Fire control
agent, Environment control agent and guidance optimizer agent.

– The first agent is the fire control agent (FCA) wich is related to the different sensors of fire.
The FCA integrates an intelligent fire detection algorithm that is able to detect false alarms.
Therefore, FCA is apt to obtain more comprehensive and real-time dynamic information about
the propagation of the fire.

– The environment control agent (ECA). It consists on a coordinator between agents and build-
ing’s monitoring subsystems. ECA manage the different monitoring systems such as crowd
monitoring system, elevator, doors and windows monitoring system in order to block danger
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Fig. 1. Proposed Agent based evacuation system framework

paths and analyzes the occupancy distribution. At each unit time this agent, transform the
building and collected information into a dynamic navigational map.

– The evacuation guidance agent (EGA) is able to compute dynamic efficient paths for evacuees
considering the impact of congestion and fire spread. EGA is a robust and scalable decision-
making system that will align the choices of the routes by evacuees with the goal of maximizing
the number of saved evacuees as earlier as possible. The main idea of this decision support is
the agent based ant colony algorithm.

3 Evacuation Guidance Agent

In our study, we propose an agent based ant colony optimizer to help evacuees to determine
evacuate as earlier as possible by optimizing three main objective:

– Maximize safety of paths
– Minimize distance of paths
– Minimize congestion in paths

Considering the assumption that individual follows the group behavior as it was stated by
Crano (2000). For example, people prefer to follow others rather than find alternative routes
during emergent evacuation if they are not familiar with the building layout. we will treat evacuees
departing from the same source as one agent. This agent is characterized by a source node and
number of evacuees following this agent. Each agent applies ant colony algorithm in order to look
for the best triplet: departure time, nearest exit and efficient path. Therefore, the best solution is
sent to the supervisor agent in order to estimate congestion and verify the state of the followed
path. Evacuees start to follow selected paths and each unit time they can change their paths
depending on the message sent by the supervisor agent.
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1 Introduction 
Nowadays, multimedia data applications require an important storage space and large bandwidth. 

Despite the rapid and continuous progress in storage space, processor speed and numerical communication 

systems, the need for big space storage and transmission delay time still surpass the existing technologies 

and become a serious problem. To overcome these weaknesses and reach an optimal exploitation, the 

compression of multimedia data (image, audio and video) is the most suitable solution. Image compression, 
based on removing redundant information, reduces the required data bit rate without greatly affecting the 

image quality [1]. Therefore, several compression methods have been proposed and classified in two 

categories, lossless and lossy compression. The first one is a non-destructive compression that allows 
reducing the data size without any information loss. The second category codes the image with quality 

degradation, since this technique does some loss of data allowing to achieve a higher compression rate than 

the lossless one. Vector Quantization (VQ) is one of the most successful techniques used in lossy image 

compression, because of its simple architecture and high compression rate with minimum distortion. VQ 
allows to generate a limited-length optimal codebook that represents the original image with higher fidelity 

based on block coding. Furthermore, several algorithms have been proposed in VQ, the well-known method 

is the Linde Buze Gray (LBG) which is an iterative learning algorithm based on training set [2]. However, 
the LBG algorithm drawback is the generation of local optimal codebook [3]. In this context, swarm 

intelligence algorithms are among the meta-heuristic methods that are developed to solve optimization 

problems by trying to find the most global optimal solution in a short time. In this work, we have used three 
swarm intelligence algorithms, which are: PSO (Particale Swarm Optimization), Firefly and bat algorithms. 

The experimental results we have performed demonstrate that the codebook generated by the LBG algorithm 

is better than the one generated by meta-heuristic methods (PSO, Firefly and Bat) concerning both image 

quality and generation time.  

The rest of the paper is organized as follows: in section 2, an overview of the swarm intelligence 

algorithms used. The proposed approach is described in section 3. An experimental study is presented in

section 4. Finaly section 5 concludes this paper. 

2 Swarm intelligence 
The main aim of the swarm intelligence is to optimize an objective function, specific to a given 

problem, in order to find the most optimal solution in a reasonable time. Many algorithms have been 
proposed in the literature, among them: PSO (Particle Swarm Optimization), Firefly and Bat algorithms. 

 The Particle Swarm Optimization (PSO) is a population-based algorithm which uses

a swarm of particles; each particle represents a potential solution to the problem of

optimization. PSO simulates the feeding behavior of birds in nature, it was initially

developed by Kennedy and Eberhart in 1995 [4].
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 The Firefly (FF) algorithm was introduced by X.S. Yang in 2008. Its source of inspiration is

based on light emission/absorption and mutual attractive behavior between fireflies [5].

 The Bat algorithm (BA) is a recent metaheuristic approach proposed by Yang in

2010 [6]. The idea behind this algorithm is to mimic the echolocation behavior of

microbats.

3 Proposed approach 
The main purpose of our work is to find the near global codebook for the lossy image problem. 

Therefore, we have defined the noise peak signal (PSNR) as an objective function. PSNR is a quality 

measure calculated between the original and compressed images, where a higher value of PSNR indicates a 
better quality of compression. 

The PSNR value is calculated as follows: 

Where MSE (mean square error) is expressed as: 

Here I and Î are the original and compressed images of size M x N, respectively 

The objective function is defined as: 

Where  is the set of the all possible solutions. Our objective is to maximize the quality measure 
(PSNR) calculated between the input image and the estimated one using the swarm intelligence algorithms. 

4 Results and discussion 
The LBG and the meta-heuristic algorithms proposed in this paper have been implemented in C 

language under Windows 7 operating system. The test machine consists of an Intel® Core™ i56-4590S, 

3.00GHz processor with 8G of RAM. The experiments are carried out on the standard 512x512 test images 
(Lena, Barbara, Baboon, Cameraman, Pepper and GoldHill) . Due to space limitation, we report the results 

for only two images:  Lena and pepper, Fig. 1 and Fig. 2, respectively. 

According to the PSNR values presented in Fig. 3 and Fig. 4, the LBG algorithm shows a higher 

value than the meta-heuristic algorithms. This means that LBG produces a better codebook compared to the 

one generated by optimizing an objective function based on PSO, firefly and bat algorithms. For instance, 

the PSNR value using LBG algorithm (eg. Lena with book size = 256 / 512) results in a higher value (31,66 / 
32,73) compared to the meta-heuristic based methods (PSO = 29,43 / 30,33), (FF= 29,44 / 30,35) and (Bat = 

29,36 / 30,36).  

Table 1. Reports the convergence time of different algorithms with different bit rate, it should be 

noted that the computation time using the LBG algorithm to generate the codebook is considerably lower 

than the computation time when using the swarm intelligence algorithms. 

Fig.1. Lena image Fig.2. Pepper image 
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CPU time (second) 

M=8 M=16 M=32 M=64 M=128 M=256 M=512 

Lena 

LBG 0.05 0.21 0.57 1.07 1.78 3.66 6.31 

PSO 3.201 7.133 14.462 28.408 56.191 110.682 222.425 

FF 4.322 6.112 13.99 26.457 54.68 106.874 213.656 
Bat 3.867 6.564 12.34 25.123 55.6 103.234 210.33 

Pepper 

LBG 0.07 0.19 0.59 1.02 1.73 3.54 6.13 
PSO 3.9 7.317 14.43 28.299 58.22 112.679 224.11 

FF 4.865 7.626 16.5 30.324 54.097 106.903 211.502 

Bat 4.561 6.987 15.1 29.321 52.067 101.127 209.098 

5 Conclusion 
Linde Buzo Gray (LBG) is the most popular method used to generate the VQ codebook, and the 

quality of the image compression depends on the choice of the codebook.  

In this paper, a codebook generation based on meta-heuristic algorithms using a PSNR metric as an 

objective function is proposed. The numerical results presented in this paper indicate that the LBG algorithm 

is still the good choice to design the codebook compared to the use of swarm intelligence.  

Knowing that the results obtained by the swarm intelligence algorithms depend on the choice of 

their parameters, our ongoing work is focusing on finding the most suitable parameters to overcome this 

problem. We may also make some changes in the original algorithms in order to further improve their 
performances. 
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Table 1. Comparison of computation time between PSO, Firefly, Bat and LBG algorithms (size codebook M =  8 – 512) 

Fig. 4. The PSNR value of four vector quantization method for pepper image Fig. 3. The PSNR value of four vector quantization method for Lena image 
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1 Introduction 

DNA microarray technology is currently experiencing an exceptional growth and generating 

tremendous interest in the scientific community due to its great potential to measure simultaneously the 

expression level of a great number of genes in tissue samples [1], which offers researchers the opportunity to 

obtain a comprehensive global view of genes regulatory network and then find out which ones are expressed 

in a specific tissue under different conditions [2]. Typically, DNA microarray dataset produces several 

thousand genes expression values for a small number of samples (usually less than 100), however, only a few 

genes from these high dimensional datasets are significant in classification task [3].  

From the classification point of view, it is well known that, when the number of samples is much smaller 

than the number of features, classification methods may lead to data overfitting, meaning that one can easily 

find a decision function that correctly classifies the training data but this function may behave very poorly on 

the test data [1]. Moreover, data with a high number of features requires inevitably a large processing time. 

So, for analyzing microarray data, it is necessary to reduce the data dimensionality by selecting a subset of 

genes that are relevant for classification. 

Computationally, genes selection problems can be expressed as a combinatorial optimization problem 

in which the search space involves a set of all possible subsets of variables among the set of n variables 

available (n is the large number of genes). This problem is known as an NP-hard problem because the selection

of "good" subset of attributes requires potentially examining 2n-1 possible subsets. 

In this work, we investigate Multi-gene Genetic programming (MGGP) technique [6], which is a new 

subset of genetic programming (GP) that combines the ability of the standard GP in constructing the model 

structure with the capability of traditional regression in parameter estimation. 

 In MGGP, each individual (solution) is denoted as structure from 1 to Gmax genes represented as trees 

with a max depth Dmax, that receives a set of input terminals xj (j=1,…J) (expression values in our case) 

mapped via mathematical operators inserted in nodes to predict an output variable ŷ constituted by a weighted 

linear combination of the results of each of the trees/genes (Gi , i∈[1,Gmax]) in the multi-gene individual plus 

a bias term d0 [4]. The mathematical form of the multi-gene representation is shown as following: 

 𝒚 =̂ ∑ di 
n
i=1 Gi + do  (1). 

After creating an initial population of individuals, a process of some steps will be repeated until it reaches a 

specific criterion: calculate the fitness value of each individual, select the best among them as parents, 
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reproduce new individuals through genetic operators (crossover, mutation and selection) and finally replace 

the weakest parents by the strongest ones. For that, MGGP requires to define certain parameters, which are: 

Iteration number, Gmax, Dmax, Crossover and mutation event probabilities and selection method, Nodes 

mathematical function (+, - , cos, sin …) and Fitness functions: maximize the performance and minimize 

complexity model (Minimal number of genes). 

To develop the proposed MGGP-based model for feature selection in DNA Microarrays, an open-source 

software platform for symbolic data mining in MATLAB, namely GPTIPS 2 [5] is used in this work. For 

training data, we use two well-known public datasets described in (Table 1).  

Dataset 

name 
Number of samples Number of genes 

Number of 

Classes 
Description 

Prostate 

Cancer 
102 12600 

2 (50 Normal, 52 

Tumor) 

http://www.broad.mit.edu/cg

i-bin/cancer/datasets.cgi 

Lung Cancer 207 12600 
2 (17 Normal, 190

Tumor) 

http://www.broad.mit.edu/cg

i-bin/cancer/datasets.cgi 

Table 1. Microarray Datasets Description 

The MGGP algorithm was run on the learning data and checked on the other subsets. The optimal model was 

selected considering its simplicity as well as its performance on the learning data. In this context, two criteria 

are optimized simultaneously; the complexity and the goodness-of-fit, by searching the so-called Pareto front 

(non-dominated solutions) set.  

The complexity of the model is defined as the sum of nodes of all sub-trees within a tree. Minimizing this 

complexity is required to assess its simplicity. The goodness-of-fit is determined by the calculation of 

coefficient R2 or the root-mean-square error (RMSE): 

𝑅2 =  
  ∑ ( �̂�𝑖 − �̄�)2𝑛

𝑖=1

∑ ( 𝑦𝑖 − �̄�)2𝑛
𝑖=1

 (𝟐)    𝑹𝑴𝑺𝑬 =  √
  ∑  ( �̂�𝒊 − �̄�)𝟐 𝒏

𝒊=𝟏

𝒏
 (𝟑) 

To assess the performance of model, we minimize E = 1 - R2   or minimize RMSE .  
The parameter settings, used for the MGGP implementation, are shown in Table 2. These parameters were 

determined experimentally observing convergence of the objective functions over the generations. 

Table 2. MGGP parameter settings 

After 200 iterations on each dataset, two prediction models were selected as the best with 49 relevant genes 

for prostate dataset and 50 for Lung dataset (Table 3):  

Table 3. The selected genes in best prediction models 

Population 

size 
Number of 

generations 
Gmax Dmax 

Training 

data 

Test 

data 

Crossover 

probability 

Mutation 

probability 

Nodes 

functions 
tournament 

selection 

size 

Pareto tournament 

Prostate Cancer 

500 200 8 6 90% 10% 0.8 0.1 + , - 5 0.3 

Lung Cancer  

500 200 8 7 90% 20% 0.8 0.1 + , - 5 0.3 

The selected genes 

PROSTATE 

CANCER 

(49 genes 

selected) 

'768_at' -  '40349_at' -  '36569_at' -  '38665_at' - '39845_at' - '40993_r_at' - '40025_at' -  '37093_at' - '36802_at' -  '2073_s_at' -    '36629_at' -  

'39430_at' - '38976_at' - '725_i_at' - '672_at' - '35278_at' - '340_at' - '39423_f_at' - '38876_at' - '38090_at' -  '36686_at'  -'36043_at' - '1260_s_at' - 

'39720_g_at' - '769_s_at' - '32545_r_at' - '40536_f_at' - '32436_at' - '35429_at' - '33881_at'  - '36893_at' -'41252_s_at' - '40336_at' - '38287_at' - 

'39840_at' - '39562_at' - '34185_at' - '32598_at' -  '35048_at'  - '41376_i_at' -  '38764_at' -'34137_at' - '34551_at' - '40233_at' - '37639_at' - 

'39557_at' - '40433_at' - '876_at'

LUNG 

CANCER 

(50 genes 

selected) 

'33176_at'- '37604_at'- '39045_at'- '36535_at'- '619_s_at'- '37997_r_at'- '41776_at'-'41695_at'-'32947_at'- '35730_at'  -  

'36447_at'  -'33910_at'- '37464_at'- '32082_at'-'37132_at'-'37689_s_at'-'40092_at'- '40387_at'- '1857_at'- '1175_s_at'- '41087_at'- 

'35019_at'- '34829_at'-'585_at'-'41464_at'-'37094_at'- '32242_at'- '31859_at'-'36734_at'- '35705_at'- '38308_g_at'- '31329_at'-

'33966_at'-'40275_at'- '35990_at'- '31506_s_at'- '38856_at'- '32244_at'- '34003_at'- '35042_at'- '444_g_at'-'38508_s_at'- 

'41382_at'-'34640_at'- '35363_at'- '1224_at'- '36515_at'- '40868_at'-'31513_at'-'35352_at' 
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Prediction accuracy metrics values calculated for each dataset model (Table 4) show the efficiency of our 

method, in which, whenever R2 is maximized and RMSE is minimized, we get a good correlation between 

real and predicted values as it is shown in figure 2: 

Table 4. Prediction accuracy metrics values 

Figure 2. Real and predicted values correlation 

In order to prove the quality of the optimal selected subsets, three classification methods were used. 

Classification rates values presented in table 5 show the efficiency of using these subsets (ii) than using all 

genes (i), whatever the induction method used. 

SVM Symbolic regression Decision tree 

i ii i ii i ii 

Prostate cancer 94.1176% 97.0297% 93.1373% 97.0297% 83.3333% 89.1089%

Lung cancer 98.032% 99.0291% 89.8551% 99.5146% 97.1014% 96.1165%

Table 5. Classification rates values 
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EVALUATION METRICS 

R2  : Correlation 

Coefficient 

RMSE: Root Mean-

Square Error  
MSE: Mean 

Square Error 

SSE: Sum of 

Square Error 

MAE : Mean 

Absolute Error 

MAXE : 

Maximum Error 

PROSTATE CANCER 0.9553 0.2114 0.0447 4.1111 0.1639 0.5225 

LUNG CANCER 0.9264 0.1537 0.0236 2.9591 0.1133 0.5563 

(a) Prostate Cancer (b) Lung Cancer (a) Prostate Cancer (b) Lung Cancer 
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1 Introduction 

For remote sensing applications, classification is an important task where the pixels in the images 

are classified into homogeneous regions; each one of them corresponds to some particular landcover 

type [1]. In classification image, a distinction is often made between supervised and unsupervised 

methods. Training samples are required by supervised algorithms to perform the classification. It is 

frequently the analyst who gives these data. By contrast, the unsupervised classification (clustering) 

needs fewer interactions with the analyst; the most necessary one is the image regions number which 

requires in many cases multiple runs for their selection [2]. A number of different techniques has 

been already suggested to have regions number automatically but until now no global method is 

adopted and the choice of regions number by multiple run is the mostly used [2]. 

Clustering is defined as a process based on specific characteristics of a data set and oriented to 

partition this data set into a proper number of groups [3]. In other words, the aim of clustering is to 

find the optimal partition of a specified n data points into c subgroups, such that the inter-class 

distance is as far as possible whereas the intra-class distance is as close as possible [4]. many 

clustering algorithms have widely been used to solve remote sensing images classification such as 

K-means, Fuzzy C-means (FCM), ISODATA [4]. To achieve their goal, clustering methods try to 

optimize an evaluation function, and use cluster validation indexes for evaluate the quality of 

classification [5]. Some hybrid image segmentation methods combine two or more above 

approaches and some others methods used multiobjective algorithms [6] [7]. 

Biological systems have natural capability to adapt to changes by learning, it’s evolving, resiliant 

and robust. Bio-inspired algorithms (BIAs) are inspired by the behavior observed in these biological 

systems, and are increasingly used in solving problems in virtually any area in between image 

processing [8]. There are a lot of branches of BIAs, the most known examples are swarm 

intelligence (SI), evolutionary algorithms (EAs), artificial neural networks (ANNs) and bacterial 

foraging algorithms (BFAs) [9]. In general, methods in BIAs used collective intelligence which is a 

highlevel phenomenon that emerges naturally from the interplay of collaboration and competition of 

many individuals of a population. It is usually defined as the ability of a group to solve problems 

than its individual members cannot solve on their own [10]. BIAs has drawn considerable research 

interests in the area of image processing. In [8] the authors present a survey of scientific paper 

related to BIAs applied in image processing and specially for image segmentation; feature 

extraction; image enhancement and image registration. Hence, the authors in [8] concluded that 

BIAs Applications were highly growing in number between 1995 and 2010. Also from 130 papers 

on BIAs algorithm studied by [8], 80 papers were applied in image processing. Most of the 
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researches were centered in the area of image extraction (47%) and image segmentation (31%). Only 

a small number of researches were done in image enhancement (13%) and registration (9%). 

BIAs algorithms are usually considered as clustering based methods. In the literature, we find an 

intensive research by scientists using different BIAs algorithms as, genetic algorithms, ant colony 

optimization, artificial immune system, artificial bee colony, and particle swarm optimization 

[8][11]. We find also, efficient hybrid optimization algorithms and multiobjective algorithms [6]. 

Cuckoo Search is a bio-inspired meta heuristic algorithm that simulates the aggressive reproduction 

strategy of some cuckoo species [9]. This method is very used in solving optimization problems and 

gives good results in remote sensing images classification [12]. 

In this paper, a new version of cuckoo search algorithm using kernel distance and fuzzy logic is 

proposed for unsupervised satellite image classification. The fuzziness logic will be employed to 

overcome the problem of incertitude and imprecision. The use of  Gaussian radial basis function 

(GRBF) aims to enhance robustness against noise and ability to classify complicated data structure . 

The proposed CS algorithm is adopted to find K cluster centers from the data set by optimizing a 

fitness function. Hence, each cuckoo i (nest, solution) is represented by a vector Kxl, where l 

represents the feature space dimension of each center. As an example we can take l=3 when using 

radiometric values of a pixel (red, green, blue).Thus, mathematically speaking, i={Ci1, Ci2,...,CiK} 

where CiK is the center of the Kth cluster.  Concerning the Fitness function, a panoply of cluster 

validity indices exist in literature and are used as objectives functions for bio-inspired algorithms in 

image segmentation. In this work, the well known Jm index is considered as a fitness function. This 

choice is justified by the fuzziness nature of this index, and the good results obtained with other bio-

inspired algorithms [13] [1]. The Jm index is defined as follows [14]: 
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Where: 

m: real number greater or equal than 1(1<=m<)  

uij: degree of membership of a pixel xi in the cluster j.

N: number of items to be clustered in the data set. 

K: number of clusters. 

cj: jth cluster center. 

xi: ith data set item. 

The kernel mapping on the Jm index using the Gaussian function is introduced in the purpose is to 

calculate the clustering quality after mapping the data into a high dimensional space: 
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Comparisons with standard CS and other bio-inspired algorithms were performed on different data 

sets. Experimental results confirm the effectiveness of the proposed approach. 
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1 Introduction

Image and video processing led to advances in important research areas. New sensors and intelli-
gent equipments capable of capturing, storing, editing and transmitting images accelerate decision
processes, enabling more robust strategies. The time to obtain a true information and process it
is directly responsible for the success of these operations. A slow search process may delay de-
cision taken until recorded data become insufficient or even inefficient at that moment [6]. An
airplane pilot observes the environment to avoid any possible collision. Similarly, a plane that uses
an automatic guidance system acquires environment information to decide path changes due to
random objects in its way [11]. Target recognition and tracking using image sequences can be
used to provide solutions for surveillance and monitoring systems, guidance [4], remote biometrics
authentication [3], fire control, among many other applications.

Template matching (TM) is one of the most used techniques for finding patterns in images [2, 8].
It consists basically of finding a small image, termed as the template, inside a larger image. Among
the methods used to evaluate the matching process, Pearson’s Correlation Coefficient (PCC) is
widely used because of its invariance to global linear brightening changes [10], but this task is
computationally very expensive, especially when using large templates with an extensive image set
[13]. In order to find the maximum correlation point between the image and the template, we used
Artificial Bee Colony (ABC), one of the swarm intelligence strategies. ABC is an optimized search
strategy [1], inspired by the bees foraging behaviour.

This work proposes an implementation of the template matching by an embedded system
through a codesign methodology, running ABC search optimization in software, while the required
computation of PCC in hardware via a dedicated co-processor. In order to evaluate the proposed
design, the processing time obtained by the software-only implementation and that obtained by
the codesign system are compared.

The rest of this paper is organized into five sections. First, in Section 2, we present the template
matching, correlation and ABC concepts as they are used in this work. Then, In Section 3, we
describe the proposed hardware. In Section 4, we present the results obtained with and without
the coprocessor. Finally, in Section 5, we draw some conclusions and point out some new directions
for future work.

2 Basic Concepts

Template Matching is used in image processing to determine the degree of similarity between two
images of the same size. In the present work, TM compares a pre-defined pattern, called template,
to pieces of a bigger image in order to recognize its incidence. The similarity evaluation considers all
the possible pixels of bigger image, then the set of pixels, that provide the highest correlation degree,
is identified as the location of the pattern inside the image. Pearson’s Correlation Coefficient, a
dimensionless number that means the normalized cross correlation, measures the similarity between
these images and it can be computed as defined by equation 1:
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PCC(A,P ) =

N∑
i=1

(pi − p)× (ai − a)

√
N∑
i=1

(pi − p)2 ×
N∑
i=1

(ai − a)2

, (1)

wherein pi is the intensity of the pixel i in the template P ; p is the average intensity of the pixels
of the template; ai is the intensity of the pixel i in the patch A from the analyzed image; a is the
average intensity of the pixels in the patch of the image A. Note that template P and the patch
A of the image must have the same dimensions. The PCC always assumes real values in [−1,+1].
Coefficient +1 means a perfect positive correlation of the compared variables while coefficient −1
means a perfect negative correlation of the compared variables.

In ABC, the food sources in the search space represent possible solutions of the problem and
the amount of nectar available is associated to the quality of the solution, defined by the objec-
tive function. This strategy mimics activities of communication, task allocation, swarm placement
choice, breeding and reproduction, search for nectar and feromine diffusion. Three types of bees
are defined: employed, onlooker and scouts. The employed bees are responsible for the routes of the
food sources and inform other bees about the quality of the source food. The onlookers wait, in the
hive, for new information from the employed ones. The scouts search for new food sources, regard-
less from others already known. The number of solutions is the quantity of scouts and onlookers
together.

An artificial employed bee chooses a food source according to the probability Pi, related to the
source, defined by equation 2:

Pi =
fiti

SN∑
i

fitn

, (2)

wherein fit represents the amount of nectar of the i-th source and SN is the amount of food
sources, which corresponds to the total number of bees. A new neighbouring source is defined,
based on an old one, using equation 3:

vij = xij + φij × (xij + xkj), (3)

wherein k and j are chosen so that k ∈ [1, 2, ..., SN ] and j ∈ [1, 2, ..., D], where D is the number
of dimensions of the search space. Position k is chosen randomly, but different from i. Term φij
is a random number in the interval [−1, 1], that controls the choise of sources nearby xij and
represents the visual comparison done by a bee between two sources close to each other. If xij and
xkj are different, xij will vary according to the magnitude of the difference. When it is close to the
optimum solution, the size of this step tends to be small.

The food sources discarded by the bees are sustituted for new ones through the employed bees.
In the ABC strategy, a source will be abandoned if it does not have its quality improved by its
neighbour during a predefined number of cicles. For a source xi and j ∈ [1, 2, ..., D], the employed
bee finds a new food source according to equation 4:

xji = xjmin + rand(0, 1)× (xjmax + xjmin). (4)

After each candidate position vij for source is proposed and visited by a bee, its performance is
compared with the old one. If better then it is used and the other one forgoten, otherwise the old
one remains in memory. This means a greedy mecanism for the selection operator between sources
[1].

The ABC strategy, presented in algorithm 1, uses the number of food sources (SN), which is
equal to the number of bees, either employers or onlookers, the limit value of the search space
(D) and the maximum number of cycles (MNC). In the algorithm, initially, the food sources are
visited by the employed bees and evaluated through the objective function. If a new food source
is found nearby with a better value, it replaces the old one, otherwise the new one is rejected.
Employed bees share this information with onlooker bees and these choose the source according
to the probability of finding food there, based on the information provided by the employed bees.
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The onlooker bees are also capable of finding new food sources near the one visited and adopting
it, if it is better than the previous one, otherwise it is rejected.

Algorithm 1 ABC Search Algorithm

Initiate the food sources xij , i = 1 ... SN and j = 1 ... D
while CycleNumber < MNC do

Compute vij
Evaluate the new solutions by objective function
Apply the greedy selection process
Compute Pi

Compute vij , depending on Pi and evaluate them by the objetive function
Apply the greedy selection process
Find the solution rejected by the employed bee
Substitute the rejected source, if there is one, by a new source xij randomly generated by
Equation 4
Store the best solution (source) found so far

end while
Return best solution

3 Codesign Architecture

The codesign approach is a methodology to develop an integrated system using hardware and soft-
ware components, to satisfy performance requirements and cost constraints [9]. The final target
architecture often has software components executed by a soft processor that is aided by some ded-
icated hardware components developed especially for the application. PCC is the most expensive
computation of the template matching process and the choice for hardware implementation, as a
coprocessor. The inherent parallelism of the hardware gives an advantage to improve the process-
ing time, allowing a real-time execution. The search process for the location with the maximum
correlation degree is implemented by ABC, executed as a software by a general purpose processor.

Figure 1 presents the proposed architecture for the coprocessor responsible for the correlation
computation for two given images, as defined in equation 1. The architecture was designed to
operate in pipeline and is composed of three blocks, which correspond to each one of the three
pipeline stages. During the rising edge of the clock signal, the coprocessor receives three data:
data_p, which is a 1-byte pixel from the template; data_ac, which is a 1-byte pixel from the image
to be compared; and data_am, which is a 1-byte pixel from the next image.

All the images applied to the comparison process are 64x64 pixels, consisting of a total of 4096
pixels. The computations are performed 1 block at a time and the obtained results are passed on
to the next block at every synchronism pulse. This pulse is generated by component synchro at
every 4103 clock cycles. The coprocessor provides the value of the PCC (result), as 32 bits two’s
complement; a flag, indicating the end of operation (flag_end); an error signal (error), showing
whether the result is valid, in case of a division by zero.

Block 1 represents the pipeline first stage and is responsible for computing the pixel average
of the images to be compared. Block 2 represents the pipeline second stage and is responsible for
computing the three sums of equation 1. This block consists of two components subt_A2, three
components mult_CLK and three components sum_A2. Component subt_A2 performs the subtrac-
tion in two’s complement of the image pixel’s intensity of the averages from Block 1. Component
mult_CLK performs, during one clock period, the multiplication of the results provided by com-
ponents subt_C2. Component sum_C2 executes the sum of the products provided by components
mult_CLK, in two’s complement.

Block 3 in figure 1 introduces the pipeline third stage, and implements the main multiplication,
the square-root and the division of equation 1. It is composed by: component mult_CLK, which
performs the multiplication of the denominator in equation 1 in one clock period; component SQRT
to calculate the square-root operation; and component div_frac_C2, which performs the division
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result with 2−24 precision. The latter provides the output signals of the coprocessor. The operation
of this block is controlled by a finite state machine (FSM), which coordinates the correct sequence
operation of the block’s components. A very effective method to calculate the square root was
developed by ancient Babylonians [7]. Based on this, called Babylonian, the component SQRT in
Block 3 has been implemented, in hardware, using an iterative process of N steps, that is set
according to the required result precision. Component div_frac_C2 in Block 3 implements the
division calculus in hardware to obtain the required result.

The three blocks have output registers that are loaded only when the stage task is completed.
At a synchronism pulse, the components subt_C2, mult_CLK and subt_C2 are reset and the FSM
returns to its initial state.
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4 Performance Results

Figure 2 shows the images used in this work [5] and the corresponding templates, highlighted by
the inner square. All experiments are for 1000 template searches performed on each image. The
results are for average processing time and success rate. The correlation for each pixel is calculated
extracting a patch, of the same size as the template, and computing the corresponding PCC at its
center. It is noteworthy to point out that the limits of the main image are completed with zeros.
The objective is to find templates using TM in less than 33ms, enough time to keep a tracking
rate for videos of 30fps, with success rate better than 95%.

(a) Cars – I1 (b) Pickup – I2

(c) Sedan – I3 (d) IR1 – I4

(e) IR2 – I5 (f) IR3 – I6

(g) Truck – I7 (h) Rcar – I8

Fig. 2. Reference images used in the tests

The aim is to simulate video tracking, in which the frame sequence during the process receives
the position of target found on the last frame and starts the new search around it. Besides that,
the adjustment of the window size proportionally to the target’s speed helps to enhance the success
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rate and the processing time during tracking, because a small variation of the target position in
two consecutive frames allows using a smaller search window.

The proposed system was evaluated using three scenarios, while keeping the ABC running by
the embedded processor: PCCSO, in which the PCC is also executed by the embedded processor;
PCCSH , in which the PCC is calculated by the coprocessor in serial mode; PCCPH , in which the
PCC is calculated by the coprocessor in pipeline mode. The synthesis was implemented using the
Smart Vision Development Kit rev 1.2 (SVDK) of Sensor to Image [12] and Xilinx PicoZed 7Z015
System-On-Module rev. C. It required 11% of flip-flops, 39% of LUTs, 25% of buffers and 69% of
block RAMs. Due to synthesis time constraints, the coprocessor ran at 25MHz.

The ABC algorithm was configured with eight bees, which correspond to the number of food
sources, and the number of iterations MNC with 1, which corresponds to the exhaustion of on
source. Figure 3 shows the results yield by the system without the coprocessor. Figure 4 shows the
results yield by the system with the coprocessor in serial mode. Figure 5 shows the results of the
system with the coprocessor in pipeline mode, using a window of 101 x 101 pixels, while figure 6
of the same system using a window of 51 x 51 pixels.
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Fig. 3. Results for ABC without the coprocessor
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Fig. 4. Results for ABC with the coprocessor in serial mode

The results obtained were compared to those previously obtained using PSO as the optimization
search strategy [14]. Concerning the software only implementation, figure 7 shows that any of the
strategies achieved the required processing time (33ms). Figure 8 shows that only PSO achieved a
good success rate and the others only in some cases, but no better than PSO.
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Fig. 5. Results for ABC with the coprocessor in pipeline mode, using a window of 101 x 101 pixels
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Fig. 6. Results for ABC with the coprocessor in pipeline mode, using a window of 51 x 51 pixels
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Concerning the use of the coprocessor in serial mode, figure 9 shows that ABC achieved the
required processing time, but PSO only in some cases. Figure 10 shows that PSO achieved the
required success rate in most of the cases, but ABC did not in all cases.

Figure 11 shows that both strategies achieved the required time, while PSO yield smaller times
than ABC. Figure 12 shows that PSO yield better success rate in all cases, while ABC did not
performe well in a specific case (I5).

5 Conclusion

In this work, we proposed an implementation of the template matching by an embedded system
through a codesign methodology, running ABC search optimization in software, while the required
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Fig. 12. Success rate with coprocessor in pipeline mode and a window of 101 x 101 pixels (%)

computation of PCC implemented in hardware via a dedicated coprocessor. In order to evaluate
the proposed design, the processing time obtained by the software-only implementation and that
obtained by the codesign system were compared to previous results obtained when using PSO as
the search optimization. The proposed codesign system showed to be capable of achieving real-time
execution for object tracking.

The results showed that the sofware only implementation is not viable for object tracking,
yielding results greater than 33ms. On the other hand, the introduction of the coprocessor improved
the performance of the system, yielding processing times smaller than 33ms. When using the
coprocessor in serial mode, ABC yield smaller processing times than PSO, while when using the
coprocessor in pipeline mode, PSO yield smaller processing times than ABC. It is our intention
to investigate the behaviour of the codesign system in the presence of other swarm intelligence
techiques, such as Bacterial Foraging Optimization Algorithm (BFOA), Firefly Algorithm (FA),
Fireworks Algorithm for Optimization (FWA).
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Abstract. In this paper we propose a parallel model of bees swarm optimization metaheuris-
tic to solve the molecular docking problem. This solution is based on the MapReduce model,
we use the MapCG framework to implement this model on graphics processing card GPUs.
MapCG was developed to simplify the programming process on GPU and design portable
application independently of the hardware architecture. Our solution can run sequentially
on CPU, or in parallel on GPU without changing the code. Experiments when docking a
set of protein-ligand complexes show that our solution achieves a good performance. Indeed,
the parallel implementation using MapCG on GPU gains an average speedup of 10x with
respect to a single CPU core.

1 Introduction

Molecular docking methods play an important role in the field of computational chemistry and
biomedical engineering [1], they are frequently used to predict the binding orientation of small
molecule to their protein target in order to predict the affinity and activity of the small molecule
measured by a scoring function [2] . Molecular docking gives detailed description of protein-ligand
poses in chemical details, provides information on possible binding site, bound conformation and
binding strength, which is referred to as binding mode [3]. In protein-ligand docking, an optimiza-
tion algorithm (Research algorithm) is used to find the best binding pose of the ligand against a
target protein by traveling through the search space. This algorithm plays a central role in deter-
mining the docking accuracy [4]. The scoring function models chemical interactions and determines
the free energy for given poses [5], it gives information about the stability of protein-ligand complex.

Through profiling, in docking simulations most of the CPU time is spent in the evaluation phase
(Scoring function ) of the metaheuristic [6]. In this phase, the calculation of the soring function
consumes more than 80 % of the total execution time and considered as a big challenge in the
performance of the metaheuristic. A good solution for this bottleneck is the parallelization of this
calculations on the GPUs in order to speedup the docking process and face this challenge [7].

Graphics Processing Units (GPU) have been playing an important role in the general purpose
computing field recently. The common approach to program GPU today is to write GPU specific
code with low level GPU APIs such as CUDA [8]. Although this approach can achieve very good
performance, it raises serious portability issues: developer are required to write a specific version
of code for each potential target architecture. It results in high development and maintenance cost.

A good solution for this issue is to use frameworks which facilitate the programing task and
provide a portable code which is independent of hardware features.

In this paper we propose a parallelization of BSO based metaheuristic for molecular docking
problem with MapCG framework [9], this framework in its turn is based on MapReduce [10] pro-
graming model which facilitates the task for parallel programming, the aim is to propose portable
application which can run on CPUs or GPUs, or in both CPU and GPUs.

The remainder of the paper is structured as follows. In section 2, we present the background
needed to understand the remaining sections. To that purpose, we first briefly introduce the MapRe-
duce model which we have chosen as the parallel model, then we introduce the MapCG framework
used to implement this model, and finally we summarize some elements of BSO metaheuristic.
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In section 3 we introduces our GPU parallelization strategies and in section 4 we give details on
experiments and discuss the obtained results. Finally, in section 5 we summarize the results and
present some concluding remarks and work perspectives.

2 Background

2.1 MapReduce

MapReduce is a parallel programming model introduced by Google for large data processing on
distributed systems. Google used this framework for the purpose of serving Googles Web page
indexing, it substitutes earlier Google’s indexing algorithms. Developers find the MapReduce model
easy to use and beneficial to create parallel programs without any worries about inter-machines
communication. It facilitates the task of the the programmer. The user defines the computation in
terms of a Map and a Reduce functions, and the associate runtime system accordingly parallelizes
the computation across different nodes of cluster or across different CPUs and GPUs cores of the
same machine, this runtime system deals with machine collapse by fault tolerance mechanism due
to its distributed system nature, it also takes care of the inter-machine communication to better
manage the resources. [11].

The Map and the Reduce functions are written by the user, The Map allows to divide and
distribute the work on different nodes of the cluster and produces a set of intermediate key/value
pairs for each data read. The associated library puts together all intermediate values which have
the same intermediate key K and passes them to the reduce function. The reduce function gets
the intermediate key provided by the Map function and all values for that key K. It incorporates
these values together to form results with possibly one output[10].

In general, here are the steps to follow to write a MapeReduce program:

1- Choose an approach to split the data so that it can be parallelized by the Map.

2- Choose a good key to use for the problem.

3- Write the program for Map function.

4- Write the program for the Reduce function.

Fig. 1 explains an example of text treated in parallel with the MapReduce Model, the aim is to
find the number of occurrences of words in a this text file. First, the lines of the file are split into
blocks. Then, in the ”Map” phase, keys are created with an associated value, in this example a key
is a word and the value is the number 1 to indicate that the word is present once. Then, all the
identical keys are grouped together (same words).Finally, and in the Reduce phase, a treatment
is performed on the all values of the same key (in this example, the values are added together to
obtain the number of occurrences of each word).

put out
out put

put away

put out

put away

out put

Data Splitting Reduce

key  value

put  1
 out 1

put     1
away  1

out  1
put 1

 

Tri

out  1

put  1
 put  1
 put  1

out  1

away 1

Map

away 1

out  2

put  3

Result

put  3
out  2

away  1key  value

key  value

Fig. 1. An example of a text file treated with MapReduce Model
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2.2 MapCG

MapCG is a framework based on MapReduce model, It allows programmers to write a parallel
program that can be executed on CPU and GPU, the programmer only need to write one version
of program, the program contains esentialy the Map and Reduce functions. The framework gener-
ates automatically the CPU and GPU versions of the Map and Reduce functions by source code
translation, and then it uses the MapCG runtime library to execute them on CPU or/and GPU,
this operation ensure portability with a high level of abstraction [8].

Figure 2 shows the MapCG framework architecture. the later contains two parts. The first part,
provides the programmers a unified, high level parallel programming environment which allows
him to write a MapReduce code once. While the second part represents the MapCG runtime
which executes MapReduce code efficiently on different platforms, and bridges the gaps of different
hardware features.

In the execution step the input data is split by the Splitter() function into pieces, then these
pieces are passed to the Map function. The Map function process the data and emits intermediate
pairs ( key/value) using MapCG emit intermediate() function. The intermediate pairs are then
grouped and passed to the Reduce function, which emits data using the MapCG emit() function.
The data emitted by Reduce can then be obtained by invoking the MapCG get output() function.

A hash table is used to group the key/value pair on GPU, it is a difficult to implement this
table on GPU, because the data must be dynamically allocated. for this purpose MapCG use its
one memory allocation system to dynamically allocate memory on GPU and use closed addressing
hash table. An other problem is the concurrent insertion issue, MapCG framework uses lock-free
algorithm to solve this problem, This algorithm guarantees that the insertion never gets blocked
by any particular thread [12].

Application Written in
MapReduce

MapCG API

OpenMP

MapCG
Runtime

Multi-Core
CPUs

MapCG
Runtime

CUDA

GPU

Fig. 2. MapCG architecture overview

2.3 Introduction to BSO Bees Swarm Optimization

The metaheuristic BSO proposed in [13] is inspired by the collective bees behavior. It is based
on a swarm of artificial bees cooperating together to solve a problem. First, a bee named InitBee
settles to nd a solution presenting good features. From this rst solution called Sref we determine a
set of other solutions of the search space by using a certain strategy. This set of solutions is called
Search Area. Then, every bee will consider a solution from the Search Area as its starting point
in the search. After accomplishing its search, every bee communicates the best visited solution to
all its neighbors through a table named Dance table. One of the solutions stored in this table will
become the new reference solution during the next iteration. In order to avoid cycles, the reference
solution is stored every time in a taboo list. The reference solution is chosen according to the
quality criterion. However, if after a period of time the swarm observes that the solution is not
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improved, it introduces a criterion of diversification preventing it from being trapped in a local
optimum. The diversification criterion consists to select among the solutions stored in taboo list,
the most distant one. The algorithm stops when the optimal solution is found or the maximum
number of iterations is reached.

3 Methodology

In this section, we present the design and implementation of the parallel strategy of BSO meta-
heuristic. We first describe the overall design with MapReduce model, and then present the imple-
mentation with MapCG framwork on the GPU.

All the BSO search algorithm steps such as the determination of the reference solution, the
determination of the regions, the neighbor search, all those steps are executed sequentially on the
CPU because their complexity is negligible compared to the evaluation step ( the scoring function).
the later is parallelized using the MapReduce model in which we calculate the free energy on the
GPU efficiently by evaluating several solutions in parallel with MAP workers. The main idea is to
Maper the dance table which contains solutions into several pieces, then chose the best solution
within the all solutions found in the first step by the reduce function.

Fig.3 explains our parallel approach details, we proposed to parallelize the BSO algorithm,
exactly the evaluation step, initially the dance table generated by the neighborhood step is split
into several pieces Mi (Maper i) using the split function provided by the MapCG framework, the
table dance contains all the solutions generated for on iteration. The number of Mi is determined by
this function split based on GPU capacity (number of cores) and data size. Each piece Mi is passed
to a map function (a map worker) to evaluate the solutions of each piece. During processing, each
map function produces intermediate pairs (key, value). The key represents the number of Mi, and
the value represents a solution S which contains the position, the orientation and the conformation.
We added two elements to the vector of each solution: an index of the solution, and the energy
associated for this solution calculated during this step. A solution S is represented as follows:

S = (Index, Translation, Orientation, Rotation, Energy).
These pairs (key, value) are sent by the intermediate function to the reduce function. In this

reduction step the MIN function is applied to define the best solution with the smallest energy
value of each piece Mi using the reduce function. Finally, the pairs generated during the reduction
step are emitted by the emit function which calls the get output function in order to obtain the
solution that has the best energy value for all Mi pieces by choosing the min of the of the different
pairs energy.

The pseudo code of the map and reduce functions is given in Algorithm 1:

Algorithm 1 The Map and Reduce pseudocode for the evaluation step BSO

1: Map (String: Key, String: Value) :
2: count i [K]
3: for i = 0 to M i do
4: // Mi is a subset of solutions
5: Evaluate (Si) solutions
6: end for
7: emit intermediate(...)
8: Reduce (String: key, Iterator * value)
9: count i [K]

10: for j = 0 to K do
11: Choose the solution with minimum energy()
12: end for
13: emit(count i)

4 Experiments and results

This section shows the experimental results. We compare the performance of the BSO algorithm
implemented in sequential with the parallel version of implemented with MapCG framework.
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Fig. 3. Parallel BSO design with MapReduce Model

First, we describe the dataset and the environment used for the evaluation before we show the
experimental results. We use GeForce GT 740M card, this GPU is a 1.03 GHz processor with 384
cores and 2 GB of memory size. For the CPU side we use Intel Core i5 model, which is 4 GHz
processor with 4 cores. On the software side, We use C++ with MapCG framework, we run this
experiments on Linux Mint 17.1 64 bits which was chosen for its stability and performance.

The results of this experimentation depend on two factors, the size of the data (large, medium,
or small) and the number of iterations of the BSO Metaheuristic. For the size of data we have two
elements that increase the complexity and therefore affect the results of our experimentation: First
the number of flexible residues on ligand which is known as degree of freedom. Then, the number
of atoms in the protein and the ligand, to calculate the energy of interaction between the ligand
and the protein we must calculate the energy between each atom of a ligand with each atom of
the protein for n iterations.

The number of solution generated depends on the size of the vector which represents the
solution. the number of variable for the Position and Orientation fields is constant. However, it
is variable for the rotation bounds field (flexible residue). So the number of solutions depends on
the number of the flexible bounds in some residues, this later will vary the number of regions
(bees) and the population generated by BSO search algorithm. Table 1 describes the population
size according to the number of flexible residues bound, here the number of iterations is fixed at 3
iteration.

For the benchmark we use a set protein called Cutinase and a ligand called 3QPApropre from
RCSB protein data bank (lien) ”http://www.rcsb.org/”. The protein has 63 atoms while the ligand
has 40 atom and 4 flexible bounds. In this experiment we vary the number of iteration of the BSO
algorithm and calculate the execution time for the sequential and parallel version of BSO, then we
calculate the speedup obtained with the parallel version on GPU with respect to the sequential
execution on CPU.

Table 2 show that the Parallel BSO algorithm outperforms the sequential algorithm, especially
for large data sizes where we evaluate a huge number of solutions. We get better occupancy of the
GPU when we increase the number of iteration. We obtained a speedup of 10 X with respect to
the sequential algorithm.

In our tests we vary the number of flexible ligand bound, and we fix the number of iterations of
the BSO algorithm to 3, we get the following execution times in Table 2. Indeed, the performance
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Table 1. Population size according to data size.

Degree of freedom regions size dance table size

2 192 36288
4 384 145452
5 480 226800
6 576 326592

of the parallel algorithm with MapCG framework on GPU is better than the sequential algorithm
on CPU, especially for a large data size, in which evaluate several solutions.

Table 2. performance comparison between sequential and parallel BSO and Speed Up.

Data Size sequential parallel Speed Up

small 140.91 15.51 9.08
medium 550.34 60.21 9.15
large 1236.23 115.51 10.7

5 Conclusion

In this article we proposed a new parallel approach for BSO based metaheuristic to solve the
molecular docking problem. This approach is based on Map/Reduce Model. We parallelized and
implemented the calculation of the fitness function of BSO on GPUs architecture with MapCG
Framework. this framework allow us to write one version of code which can be executed on both
CPU and GPU without changing any line of code. The results show a total speed-up exceeding 10x
for the evaluation stage with respect to one CPU version, The MapsCG framework and the Map
Reduce model are a potentially fruitful area for future research in meta-heuristic parallelizing on
GPUs and CPUs, and a good tool to accelerate the docking process which can help in drug design
speedup process.
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One-Class Subject Authentication using Feature Extraction
by Grammatical Evolution on Accelerometer Data

Abstract. In this study Grammatical Evolution (GE) is used to extract features from
accelerometer time-series in order to increase the performance of a Kernel Density Estimation
(KDE) classifier. Time-series are collected through nine wrist-worn accelerometers assigned
to as many subjects. The goal is to distinguish each subject from all the others in a one-
class classification framework. GE-evolved solutions, referred to as feature extractors, are
thoroughly analysed. Each solution is a function able to target a specific subsequence of
a time-series and reduce it to a single scalar. The choice of subsequence and method of
reduction are represented by a flexible grammar. In this way a large time-series can be
summarised to an arbitrary number of features. Results show that the proposed evolutionary
algorithm outperforms two strong baselines.

1 Introduction

In the field of subject authentication the aim is to confirm the identity of an individual. There
are several authentication technologies and applications [22] however in this study we are inter-
ested in accelerometer data based subject authentication. In other words, we wish to develop a
method which confirms that the accelerometer data produced by a source device corresponds to
the individual to which the device is assigned.

In clinical research, scientists would like to use accelerometer data for monitoring the efficacy
of treatment options on movement disorders or the impact of drugs on subjects’ free living activity
levels [14]. However, first they are in need of classification models to confirm that a given device
is worn only by the intended subject for the whole trial period. Both errors and misconduct could
invalidate studies of considerable cost and duration. In addition, accelerometer data are used to
perform activity recognition [20] but this application is not investigated in this study.

Accelerometer data come as a sequence of time-ordered real values, thus the problem we treat
falls within the time-series classification domain: given a set of accelerometer time-series we want
to be able to separate those that are generated by a specific subject from those that aren’t. We
address this problem as a feature-based time-series one-class classification problem.

In one-class classification we aim to learn a concept by only using examples of the same con-
cept [13]. As a matter of fact, to distinguish an apple from another type of fruit humans do not
need to be trained on all the types of fruit of the planet. It is sufficient to see a few examples of
the “class” apple to learn what is an apple and separate it from what is not. In this study we want
to separate the accelerometer time-series generated by a subject from those that aren’t; we infer a
suitable decision rule from a set of accelerometer time-series all coming from that one subject.

In related work (citation redacted) we propose a feature-based time-series classification method
which shows good performance. A set of 25 features is manually selected from the statistical and
the time-series domains. An accelerometer time-series recorded over an entire day is divided into
24 equally sized subsequences (one per hour). The 25 features are extracted from each subsequence
and collected in a feature vector (of length 25×24) then used for classification. This approach,
although effective, shows some limitations. For instance, how can we know in advance in how
many subsequences it is better to divide a time-series? How can we know if we need to focus on a
single subsequence that spans from a to b or on the entire time-series? Again how can we know if
for a given subsequence [a : b] it is important to know its mean value or the result of a less intuitive
function like log(mean(sin(x))?

These considerations justify the need for a flexible feature extraction method for time-series
classification. In terms of flexibility Grammatical Evolution (GE) [18] stands out as a powerful
learning framework. In fact, GE allows us to set the general rules for the creation of suitable
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solutions in a bespoke grammar. Therefore, a grammar guided intelligent search leads to the devel-
opment of open-ended solutions which can allow the discovery of subtle or complex relationships
in the mapping from data to class labels that would be difficult for humans to identify.

The purpose of this work is to evaluate strengths and weaknesses of an automated feature-based
time-series one-class classification algorithm implemented through GE. In practice, we use GE to
create one or more feature extractors each of which can select a subsequence of a time-series and
reduce it to a single scalar (i.e. a feature). A subsequence is reduced to a scalar thanks to a symbolic
model composed of functions which naturally “synthesise” a series of numbers into a single one
e.g. the mean. In this way a time-series can be reduced to an arbitrary number of features. Such a
feature-based representation is meant to maximise the performance of a Kernel Density Estimation
(KDE) classifier in the solution of the aforementioned subject authentication problem.

All the features are evolved sequentially. The evolution of the first feature is driven by the
search for better classification performance, in terms of AUROC. Subsequent features are evolved
according to two objectives: the classification performance to be maximised, and the average co-
efficient of determination, R2, with previous features to be minimised in order to reduce linear
dependencies between features. This algorithm shows an excellent classification performance in
terms of AUROC using only two features.

The layout of the paper is as follows: related work is presented in Section 2. Data is described
in Section 3. Section 4 describes the evolutionary system, and the grammar in use. The experiment
design is illustrated in Section 5. Results are discussed in Section 6. Finally, some conclusions are
drawn in Section 7.

2 Related Work

A time-series is a collection of equally spaced measurements over time. Such data are extremely
common across a variety of scientific fields [6]. There are three major approaches to time-series
classification: 1) feature-based classification, in which a time-series is summarised in a feature
vector; 2) distance-based classification, where one or more distance functions are used to measure
the distance between two time-series; 3) model-based classification, where the focus is on the
underlying model generating the time-series [24].

Feature-based methods are less sensitive to the amount of noise in the data, facilitate working
with time-series of large size, do not require all time-series to have the same length as long as the
same number of features is extracted, and allow highlighting of data local and global properties
[17, 23]. However, feature extraction for time-series classification is a domain-specific and time
consuming process which requires a long trial and error procedure, especially when a new problem
is addressed [5]. Nonetheless, the choice of features is central to the feature-based time-series
classification problem since it can make the difference in terms of classification performance [10].

While some of the information contained in a time-series can be redundant/irrelevant and neg-
atively affect the predictive performance of learning models [1], how to divide a time-series in a set
of highly descriptive subsequences is not known a priori [2]. The use of equally sized subsequences
is an oversimplified approach to this problem hence a dynamic method is preferable [4].

GE [18] is a grammar-based approach to Genetic Programming (GP) [15] which evolves human-
readable code according to rules specified by a grammar. It can be useful when the modeler has a
weak understanding of the relation between the explanatory and the dependent variable [3].

GP is used for feature selection in EEG signals classification [11], speaker verification [16] and
selection of the best tuple feature extractor/classifier for fault detection [12]. GE is used to create
a non-linear mapping of pre-existing features for fetal heart rate classification [9]. Although related
to feature extraction feature selection is a different problem. GP is also used for feature extraction
in image classification [21] which is a different application domain.

In a related article considering feature-based time-series classification [5], instead of evolving
a population of solutions a single one made of a set of grammar-generated feature extractors is
maintained. Each feature extractor reduces a subsequence of a time-series to a single scalar. This
hill-climbing algorithm does not make use of any crossover operator but allows modification to
the current solution (inclusion, dismissal, mutation of feature extractors) only if changes increase
classification accuracy or cause a negligible change in accuracy but a decrease in runtime [5].
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To the best of our knowledge the present study represents a novel population-based GP ap-
proach to the feature-based time-series one-class classification problem and the subject authenti-
cation problem from accelerometer data.

3 Preliminaries

This section introduces the dataset in use (Section 3.1), the data preparation steps (Section 3.2)
and the training, validation and test sets design (Section 3.3).

3.1 Dataset Description

Data are collected through wrist-worn tri-axial accelerometers able to measure linear acceleration
within a range of ± 16g per axis1. The magnitude of the acceleration along the three axis is
calculated as the square root of the sum of the square of the single accelerations and rounded
to the closest integer. The time-series object of this study are indeed a sequence of magnitude
values at the resolution of one data point per minute over an entire day (24 hours). A graph of
magnitude recordings for one typical day is shown in Figure 1. All the variables recorded are shown
in Table 1. ID is the subject unique and anonymous identifier. Axis 1,2,3 show acceleration along
the respective axis.

A sample of 9 volunteers (not enrolled in a clinical trial), composed of 3 females and 6 males,
is required to wear the mentioned device for a period of approximately 40 days in free living
conditions. All the participants are office workers based in the same location and working from
Monday to Friday. Only weekdays are used in this study because weekend days are relatively few.

ID Subject 1

Date 2016-03-21

Weekday 0

Hour 11

Minute 36

Axis 1 168

Axis 1 544

Axis 1 563

Magnitude 801

Table 1: Dataset variables.
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Figure 1: Magnitude recordings for one day for one subject.

3.2 Data Preparation

The algorithmic implementation in use requires a full day of recordings i.e. each time-series has to
contain 1440 observations (24 hours × 60 minutes). The original dataset is filtered as follows:

– Time-series with a cumulative magnitude lower than 500,000g are removed. These time-series
predominantly contain ‘non-wear time’ i.e. time when the device is on but it is set down and
stationary. In such a scenario a device records only a long sequence of zeros. Note that this
does not exclude the possibility to find some ‘non-wear time’ in the remaining time-series.

– Some time-series may contain a sequence of missing values i.e. they contain less than 1440
observations. This is caused by the fact that from time to time it is necessary to download the
data from the limited internal memory of the device (4GB) and recharge its batteries. In order
to deal with this, when a sequence of contiguous missing values of size N is found it is filled
with a copy of the N values that precede it. The maximum length for a sequence of missing
values allowed is 90 minutes; if this limit is exceeded the time-series is discarded. This strategy
for handling the missing data may seem naive but it is adopted for its simplicity and because
it is required only two to three times per subject.

1 For further information see: http://www.actigraphcorp.com/.
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3.3 Training, Validation and Test Sets

After filtering the dataset as described in Section 3.2 the amount of time-series available is different
from subject to subject. The subject with the fewest has 23 of them. From those subjects where a
larger number is available, 23 are randomly selected.

For each subject, 18 of the 23 time-series are included in the training set, while the remaining
5 are included in the test set. Thus a training set of 162 time-series (18 time-series × 9 subjects)
and a test set of 45 time-series (5 time-series × 9 subjects) are obtained. A validation set is created
using a 2:1 split of the training data maintaining a constant number of time-series per subject.

4 Evolutionary System

The overall evolutionary system is described in Section 4.1. The grammar in use is discussed in
Section 4.2. The system is implemented in Python and relies on the PonyGE2 library [7]. The KDE
classifier uses Scikit-Learn [19]

4.1 System Overview

The evolutionary process involves one subject at a time, thus evolved features are specifically
developed to have a good classification performance for that one subject.

All the elements of a population of GE-evolved feature extractors are evaluated one at a time.
The evaluation process is depicted in Figure 2. A feature extractor is used to select a subsequence
of a time-series and reduce it to a scalar (i.e. a feature). This is done for all the time-series in
the training and the validation sets. A KDE classifier is fit on the feature-based representation of
the training set and than used to estimate the probability of each instance of the feature-based
representation of the validation set to belong to the target class. Estimated probabilities are used
to calculate the AUROC.

For the first feature, each feature extractor is assigned a fitness score (i.e. a measure of quality)
equal to the classification error: (1−AUROC score). Subsequent features are assigned a fitness equal
to the sum of the classification error plus the average coefficient of determination, R2, of the current
feature with previous ones. As an example, if we are evolving the 3rd feature, we first calculate the
R2 between the feature-based representation of the training set according to the current feature
extractor and each of the feature-based representations of the training set according to the feature
extractors previously evolved. Than we calculate the average R2 and sum it to the classification
error of the current feature extractor.

The system works to minimise the classification error (i.e. maximise the AUROC score) of the
current feature extractor, and to minimise the R2 with previous features in order to reduce linear
dependencies between features. When the evolutionary process is completed the feature extractor
with the lowest fitness is considered the final solution of the algorithm and tested on a portion of
unseen data. We use a KDE classifier because it is a simple and computationally efficient model,
however any other one-class classifier could be plugged into the system instead.

4.2 Grammar

A grammar in the Backus-Naur form, as shown in Figure 3, guides the creation of a feature extrac-
tor. The mapping starts from the production rule <f ext>. In <f ext> there are two production
choices both intended to select a subsequence from a time-series and reduce it to a single scalar.
A subsequence is selected using a lower bound (<lb>) and an upper bound (<ub>) randomly gen-
erated with uniform probability from the range [1 : 1440]. Since a requirement is that the lower
bound is below the upper bound, if this condition is violated they are swapped. If the lower bound
is equal to the upper bound than the latter is increased by 1.

As shown in Figure 4, once bounds are set a subsequence can be treated according to two
different strategies: Select and Select fold n times. The Select function picks up a subse-
quence and than applies a function <f> on it which causes the reduction to a single scalar. The
Select fold n times function picks up a subsequence and fold it in <n> sub-subsequences. A
function <f> is applied on each sub-subsequence that in this way is reduced to a single scalar.
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Figure 2: Evolutionary system summary: evaluation of a feature extractor. R2
k = 1

k−1

∑k−1
i=1 R

2(Fi, Fk).

<f_ext>::= Select(<lb>, <ub>, apply=<f>) | Select_fold_n_times(<lb>, <ub>, <n>, apply=<g>)

<p> ::= (<t>+<t>) | ... | Moving_Average(<t>, <n>)

<f>::= Mean(<t>) | ... | Entropy(<t>)

<g>::= Mean(<f>) | ... | Entropy(<f>)

<t>::= X | <p>

<lb>::= random[1, 1440]

<ub>::= random[1, 1440]

<n>::= random[1, 20]

Figure 3: Grammar structure. All the functions in use are listed in the text.

Figure 4: Subsequence selection strategies.

Resulting values are reduced to a single one thanks to a function <g>. If a subsequence can’t be
folded in <n> equally sized sub-subsequences the upper bound is adjusted according to |<lb>−<ub>|
mod <n>.

Both the production rules <f> and <g> include the same functions: mean, standard deviation,
variance, median, mode, skewness, kurtosis, max, min, sum, autocorrelation, mean absolute de-
viation and entropy. All these functions are included because they are able to reduce a selected
subsequence to a single value. Along with the functions in <p> these are among the simplest and
most commonly used functions in feature-based time-series classification [8].

The set of terminals is defined in <t>. It is possible to select a time-series X or a function
from the production rule <p>. All the functions in <p> do not alter the shape of the input they
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are provided with. In this set are included: four operators {+, −, ∗, /}, sine and cosine, logarithm,
square root, absolute value, remove linear trend, exponential smoothing, moving variance, moving
max, moving min, moving average.

5 Experiment Design

For each subject in the dataset we search for the best features that allow his/her authentication.
We sequentially evolve 5 feature extractors per subject, and we repeat this for 30 runs. The optimal
number of features required isn’t known a priori. However it is expected to depend on the quality
of the features and on the problem difficulty meaning that a subject can be authenticated more
easily than others.

An increasing number of feature extractors from 1 to 5 are tested on a portion of unseen data.
The training and the validation set used during the evolutionary process are merged in a new
training set. Both the new training set and the test set are reduced to a certain number of features
according to the number of feature extractors at hand. Considering that extracted features can
have different scales column-wise standardisation is applied by removing the mean and scaling to
unit variance. A KDE classifier with Gaussian kernel is fit on the training set and than used to
estimate the probability of the instances in test test to belong to the target class.

5.1 Baselines

GE-evolved feature extractors are compared with the results achieved by a high-performing manual
feature extraction method we developed in another work (citation redacted). A second baseline
is obtained by passing the entire time-series to the KDE classifier. Furthermore, two baselines
are used: 1) most frequent: which always predicts the most frequent label in the training set, 2)
uniform: which predicts with uniform probability at random among the labels in the training set.

5.2 Run Parameters

Evolution follows a generational approach with a population of 500 individuals for 40 generations.
The population is initialised creating random genomes with uniform probability. The genome has
length 250 multiplied by the number of features to be extracted. The maximum derivation tree
depth is set at 15. The rest of the parameters are as follows: tournament selection of size 5, int-flip
mutation with probability 0.01 per-gene, two-point crossover with probability 0.8, and no wraps
are allowed. Elitism is used to preserve the best individual of the population.

6 Results and Discussion

Results for the experiment described in Section 5 are reported in Table 2. Table entries represent
the average performance of 30 independent runs of the GE system discussed in Section 4 in terms
of AUROC for all the subjects included in our dataset and for all the number of features in the
range [1 : 5]. The table also includes the following lines:

– Maximum: maximum performance achieved per subject.
– Manual FE: performance of the manual feature extraction baseline.
– Raw Data: performance achieved by passing the raw time-series to the classifier.
– Uniform: classifier choosing class labels with uniform probability.
– Most Frequent: classifier always choosing the most frequent class label.

Results show how the discussed GE system allows higher performance in terms of AUROC than
all the baselines, including the manual feature extraction method we previously developed. While
Manual FE achieves an average performance of 78% AUROC using 600 features, the GE system
achieves an average performance equal to 87% AUROC using only 2 features. The gap between
the two approaches is equal to 9%, and it is greater if the maximum performance per subject
over the different number of feature is considered. In this case the GE system achieves an average
performance of 89% AUROC.
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In Figure 5 is shown the average AUROC score per subject and per number of features. Only
subjects 2, 6 and 7 are highlighted because for these subjects the classification performance in-
creases as more features are used. The largest improvement of 12% AUROC, between 1 and 5
features, is related to subject 2. This allows us to hypothesize that the present GE system might
benefit from a mechanism that keeps evolving more features until the classification performance
stops improving.

In Figure 6, using the first two features evolved from a randomly selected run to provide a
2D representation of data, we show the density estimation of the KDE classifier for subject 1 and
7. The GE system tends to concentrate the instances of the target class around the origin for
both features even though this is not explicitly required. This aspect shows that the proposed GE
system has the potential to work well using a “simple” radial basis function classifier which has
the advantage of requiring only a single hyper-parameter i.e. a distance threshold from the origin.

Subject

Features 1 2 3 4 5 6 7 8 9 Avg.

1 98 80 93 83 91 74 64 93 93 86
2 97 86 94 83 90 77 68 94 93 87
3 95 89 91 80 91 79 68 94 89 86
4 95 91 89 78 92 81 71 94 84 86
5 94 92 89 79 92 81 72 94 86 87

Avg. 96 88 91 81 91 79 69 94 89 86
Maximum 98 92 94 83 92 81 72 94 93 89

Baselines

Manual FE 94 89 69 67 86 83 65 58 90 78
Raw Data 78 38 78 60 76 64 62 73 66 66
Uniform 52 56 60 81 50 48 61 39 70 58

Most Frequent 50 50 50 50 50 50 50 50 50 50
1 2 3 4 5
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Table 2: Results and baselines - AUROC
scores.

Figure 5: Average AUROC score per subject and per
number of features.
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Figure 6: Density estimation of the KDE classifier for subject 1 and 7 using the first 2 features evolved.
The decision boundaries shown correspond to the best thresholds for these subjects.

6.1 Frequently Selected Subsequences and Functions

It is interesting to understand whether or not the GE system is preferring the selection of certain
subsequences and functions rather than others. Findings are shown in Figure 7 and 8.

In Figure 7, for each subject all the time-series in the training set are averaged and the resulting
time-series is presented in black. The red line is obtained by counting how many times a given
minute falls within a selected subsequence, over all the features extractors evolved for each subject.
Y-axes limits are set according to the maximum either in terms of Magnitude or Selection Frequency
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found. The first row from the top shows the selection frequencies we would observe if 10,000 lower
bounds and 10,000 upper bounds would always be drawn from a uniform distribution. Rows from
Sub 1 to Sub 9 show how evolution is driving the selection towards certain subsequences rather
than others for each subject. For instance, the hours between 6am and 9am are the most often
selected for subjects 1, 2, 4, 5, and 7 but not for the others. Evolution is not only over-selecting
certain subsequences rather others, but it is also completely ignoring large sections of the time-
series e.g. subjects 1, 2 and 7, in order to focus on restricted areas that enable better classification
performance.
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Figure 7: Most frequently selected subsequences per subject.

In Figure 8 we count how many times each function of the grammar is used in a GE-evolved
feature over all the features evolved for all the subjects. Counts are expressed as percentage of the
total. The average frequency selection is 3.7%. Results show that most frequently selected functions
are those that measures the central tendency of data and their variability: mean, standard deviation,
variance, and mean absolute deviation. In this set the sum function is included. Preprocessing
strategies seem to be important for classification performance; smoothing functions like exponential
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Figure 8: Most frequently selected functions over all subjects.

smoothing, moving average, moving max, moving min are frequently selected. Again, from the set
of preprocessing strategies three operators +, ∗ and the square root are selected more frequently
than the average. Of these, the + operator is the most selected function.

7 Conclusions

In this study a grammar-guided evolutionary system for subject authentication using accelerometer
data is presented. The GE system explores a solution space of feature extractors. Each feature
extractor is able to select a subsequence of a time-series and reduce it to a single scalar (i.e. a
feature). By choosing the number of features to be evolved a large time-series can be reduced to
an arbitrary number of features. Such a feature-based representation is used to authenticate nine
subjects in nine distinct one-class classification experiments thanks to a KDE classifier.

The proposed approach is intended to overcome some difficulties encountered in manual feature-
based time-series classification methods as discussed in Section 1 and Section 2. The core idea is to
relieve the modeler from making any assumptions on how to select subsequences of a time-series
and what features to extract from them. It is found that the GE system intelligently drives the
search of subsequences and features that enable high classification performance.

A peak in classification performance in terms of AUROC is found using just two features.
Results are compared with a manual feature extraction method we previously developed. The
current method not only uses two features as opposed to the 600 required by the previous one but
also it outperforms its classification performance by 9% (87% AUROC vs. 78% AUROC).

Acknowledgment

Acknowledgments

References

1. D. Bacciu. Unsupervised feature selection for sensor time-series in pervasive computing applications.
Neural Computing and Applications, 27(5):1077–1091, 2016.
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Abstract: In this paper, a heuristic approach is developed to minimize the total traveling distance within a single-

floor standalone clinical laboratory respecting physical, technical and organizational constraints for facility layout 

problem. This approach proposes various efficient solutions to provide decision makers number of alternatives to 

opt from. To evaluate the applicability and efficiency of the proposed approach, facility layout of a real standalone

clinical laboratory is specified through the algorithm. The output presents feasible and satisfactory results. 

Keywords: facility layout problem, heuristic algorithm, clinical laboratory design, healthcare 

1 Introduction 

Standalone clinical laboratories are mixed systems comprising machines and operators which aim to 

analyze patients’ samples in the form of tubes. A lot of movements take place in such an environment 

by the operators to move the racks of tubes among different points and to check the test results on 

validation consoles. Efficient physical placement of instruments in a standalone clinical laboratory not 

only reduces walking time and distance of the staff within the organization but also provides a 

convenient working environment by respecting technical and organizational constraints. The physical 

arrangement of facilities within a system is one of the significant design problems which has a great 

effect on the efficiency and productivity of the system.  This problem is known as Facility Layout 

Problem (FLP) and has been broadly investigated in the literature [1]. Quadratic Assignment Problem 

(QAP) presented by Koopmans and Beckman is one of the earliest efforts to specify the best position 

of each facility within a system through assigning the facilities to the pre-specified locations with equal 

sizes [2]. Heragu proposed nonlinear mathematical models to formulate the FLP considering facilities 

with equal or different areas [3]. Many variations of the FLP have been introduced in [4]. Complexity 

of the layout problem is known as NP-hard indicating that exact algorithms are not efficient for medium 

and large scale instances [3]. Hence, many construction and improvement heuristic algorithms as well 

as meta-heuristic algorithms have been addressed ([5], [6], [7] and [8]). Construction algorithms are 

used to create an initial solution while improvement algorithms are applied to improve an initial 

solution.  

This study presents a great endeavour to provide efficient, feasible and applicable alternatives for layout 

design problem of standalone clinical laboratories respecting the main needs appreciated within such 

organization. In this paper, a heuristic approach is proposed to deal with the problem of layout design 

of a standalone clinical laboratory. The rest of this paper is organized as follows: the problem is 

described in section (2) introducing the significant characteristics of the layout design of a standalone 

clinical laboratory. Section (3) presents the proposed heuristic approach. In section (4), a real clinical 
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laboratory is considered as a case and its layout is designed through the proposed approach. Section (5) 

ends the paper with conclusion and future perspectives. 

2 Problem description 

Generally, facility layout problem deals with the physical arrangement of facilities within an area. 

Physical arrangement of facilities comprises the specification of location and orientation of each facility 

to optimize one or more objectives respecting different types of constraints. Specifically, the layout 

design problem of a standalone clinical laboratory is defined as the specifying the location and 

orientation of each instrument within the laboratory area to minimize the total traveling distance 

satisfying physical, technical and organizational constraints. Hereafter, the layout design problem of 

standalone clinical laboratory is described with more attention to details. 

2.1 Definitions and problem assumptions 

In this section, related definitions and problem assumptions are discussed in the form of two classes: 

laboratory area-related and facility-related definitions and assumptions. 

2.1.1 Laboratory area-related definitions and assumptions 

- Laboratory area is a single-floor place where facilities are arranged. This area is given and can have 

any shape either simple or complex polygons. To create a real-shape laboratory area, a discretized

rectangular area is first considered. Then, extra places are removed to obtain the real shape.  

- Position of occupied areas within the laboratory area boundaries is given. In better words, positions 

occupied by pillars, pre-located facilities, etc. are known, so that no other facilities can be placed there. 

- Entrance is a place where tubes enter to the laboratory. Location of the entrance is given. Entrance can 

be any place among the laboratory area boundaries or even any place in the middle of the laboratory. 

Generally, for the case where entrance is located in the middle, pneumatic system is used to deliver the 

arriving tubes.  

Figure 1 presents an example of a discretized laboratory area where facilities can be only placed on 

white cells indicating free places. 

Figure 1. Example for a laboratory area 
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2.1.2 Facility-related definitions and assumptions 

- Facility is a general term referring to workstation, machine, instrument, workbench, etc. In this study, the aim is 

to efficiently arrange facilities with different sizes within the laboratory area. 

- All facilities are considered rectangular with known dimensions. Each facility is discretized based on the 

discretization scale so that, a facility may occupy one or more free places within discretized laboratory area. Once, 

a facility is placed within the laboratory area, a cell is considered as the connecting point (I/O) of the facility with 

the other facilities (called centroid).  

- A clearance is defined for each facility. This clearance is simply added to the size of the facility. 

- Orientation of each facility is not known as a priori and is determined by th algorithm. It is worth noting that 

only two orientations are possible for a facility: horizontal or vertical. 

-  Each facility is associated with a discipline implying that facilities with the same discipline must be placed 

adjacent enough in one site in a way that at least each facility is neighbour with a facility with similar discipline.  

- Distance between centroids of any two facilities is rectilinear distance (Manhattan distance) as it fits more 

realistic while presenting staff movements between facilities inside the laboratory. Rectilinear distance is 

computed for two 𝑝(𝑥, 𝑦) and 𝑝′(𝑥′, 𝑦′) points as: 𝑑𝑝𝑝′ = |𝑥 − 𝑥′| + |𝑦 − 𝑦′|.

- Relationship between each pair of facilities is demonstrated by a quantitative asymmetric flow matrix. In this 

study, values of this matrix could present the average number of tubes transported from one point to another or 

the average number of time that an operator travels between two points.     

2.2 Objective function 

The objective is to arrange all facilities within the laboratory area in a way that total traveling distance 

among facilities is minimized. Total traveling distance among facilities is calculated by equation (1): 

∑ ∑ 𝑓(𝑒, 𝑒′) ∗ 𝑑(𝑐𝑒 , 𝑐𝑒′)𝑒′∈𝐸
𝑒′≠𝑒

𝑒∈𝐸           (1)

Where, 𝐸 is a set of facilities; 𝑒 and 𝑒′ denote the facilities as the members of 𝐸; 𝑐𝑒 and 𝑐𝑒′ imply the

centroids of facilities 𝑒 and 𝑒′, respectively; parameter 𝑓(𝑒, 𝑒′) denotes the flow between the facility

pair (𝑒, 𝑒′); parameter 𝑑(𝑐𝑒 , 𝑐𝑒′) denotes the distance between the centroids of facility pair (𝑐𝑒 , 𝑐𝑒′).

2.3 Problem constraints 

In this study, problem constraints are discussed in three groups: physical, technical and organizational 

constraints. Hereafter, each of these constraints is presented: 

- Physical constraints imply that overlapping is not acceptable between each pair of facilities and 

between each facility and a pre-occupied place.  

- Technical constraints deal with the required clearance for each facility which must be respected from 

technical or safety point of view.  

- Organizational constraints deal with the adjacency of facilities with similar discipline in the proposed 

layout; hence, it is also called ‘adjacency constraints’. According to this constraint, all facilities of the 

same discipline must be placed adjacent enough in one site of the laboratory area in a way that at least 

each facility in neighbour with a facility with similar discipline. Unlike two other constraints which are 

mostly common for most of facility layout problems, this constraint is originated from the clinical 

laboratory organization.   
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3 Resolution approach 
 

Since facility layout problem lies in NP-hard class in terms of problem complexity, mathematical 

programming approaches are not efficient for large-scale problems. Hence, in this study, a heuristic 

approach is developed to tackle facility layout problem in a standalone clinical laboratory. This heuristic 

has been inspired from Computerized Relationship Layout Planning (CORLAP) algorithm. CORELAP 

is a qualitative construction algorithm by which an initial solution is proposed for FLP [3]. In this study, 

an enumerative construction method is firstly applied to reach initial efficient solutions. This method is 

the integration of a construction method inspired from CORELAB and a type of Branch and Bound 

(B&B) algorithm. Secondly, initial solutions are compared with the best available solution and 

consequently, certain number of diverse solutions are excerpted which look differently in the 

arrangement. Finally, selected solutions are improved through 2-opt algorithm. In brief, the proposed 

approach is constructed based on the following three steps: 

- Generation of initial solutions 

- Selection of diverse solutions  

- Improvement of the selected solutions 

Steps of the proposed heuristic approach is described in the following steps with more attention to 

details.  

3.1 Generation of initial solutions 
 

Basically, generating initial solutions includes two phases: (I) facility sorting, (II) facility placement.   

 

3.1.1 Facility sorting 

The first step is to sort the list of all facilities to specify the order of their placement in the laboratory 

area to build the layout. Basically, this order follows the way material (tubes, information) flows 

through the system. Here, information flow implies the test results communicated between the analyzers 

and the corresponding validation consoles and causes operator movement between them. Subsequent 

rules are used to characterize this order: 

1. Facility ‘registration’ lies always in the head of the sorting list. 

2. Considering the latest facility added to the sorting list, facility which has the most connections (from 

and to) with the previous one is then selected. If no connection is found, rule 3 is triggered. 

3. Facility with the highest Total Closeness Rating (TCR) is selected. Term ‘TCR’ has been introduced 

in CORELAP algorithm [3] and it is computed from the flow matrix, as the sum of input and output 

flows for each facility. In a case of a tie, a facility is selected randomly.  

4. Rules 2 and 3 are iterated until all facilities are sorted.  

After sorting phase, facilities are selected one after another from sorting list and placed within the 

laboratory area respecting the existing constraints.  
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3.1.2 Facility placement 

This phase is composed of a construction algorithm combined with a B&B method. The aim of this 

combination is to generate diverse initial solutions to provide decision makers different alternatives. 

Following rules must be respected in order to achieve feasible efficient solutions: 

1. Facility ‘registration’ which is always first in the sorting list is placed next to the entrance. In fact,

‘registration’ is a place where arriving tubes are registered to the Laboratory Information System (LIS). 

2. Once facilities are placed, a neighbourhood is created around the located facilities. This

neighbourhood area indicates the possible places to put the centroid of the new coming facility into the 

layout. Regarding the type of new coming facility, the existing neighbourhood may be reduced to the 

free places which are next to the pre-located facilities with the same discipline to meet the adjacency 

constraints. For each place of the neighbourhood, a score is computed considering distance and flow 

between the new coming facility and the other already placed ones. Note that, the lowest score shows

the best place to locate the centroid of the facility.  

3. The neighbourhood of the selected place is searched to verify if there is enough space to room the

facility or not. If there is sufficient room, then, the facility is placed and the required places are occupied. 

Finally, the score of the partial solution is updated. Note that this score is the value of the objective

function.  

4. Rules 2 and 3 are iterated until all facilities are placed within the laboratory area.

In order to generate more initial solutions, the aforementioned placement algorithm is integrated with a 

B&B method. To do so, instead of placing a facility’s centroid in the best place of the neighbourhood 

in rule 2, set of suitable places among the neighbourhood is selected, far enough from one another to 

maintain diversity and to control combinatorial expansion of the tree of possibilities and then, from all 

of these potential places, a partial solution is created. Different parameters control the expansion of 

partial solutions enumeration. The first one is the number of possible places in the neighbourhood from 

which the solution can be extended. The second one is the minimum distance between two selected 

possible points to do the extension. Furthermore, once a place is selected to locate the centroid of the 

facility, the facility may take horizontal or vertical orientation. Score of each generated partial solution 

is computed through equation (1). All the generated partial solutions are extended from the best to the 

worst one until either they reach to a final solution or terminate with one of the stop criteria. Partial 

solution expansion is stopped for a branch (the branch is cut) if the score of this solution is worse than 

another existing solution with more facilities. In addition, once not enough space is available to fit the

new coming facility, the branch is terminated.  

3.2 Selection of diverse solutions 

Most of the generated initial solutions look similar. To provide decision makers efficient solutions with 

more diversity, solutions are compared based on a diversity measure. This measure is defined as the 

sum of distances between gravity centers of each discipline in two different solutions.  

To avoid comparing each pair of solutions, the best solution is automatically selected. Then, from the 

second best to the other solutions, solutions which are diverse enough compared to the ones already 

selected are excerpted. These comparison and selection actions continue until all solutions are

investigated.  
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3.3 Improvement of the selected solutions 

 

In this step, all the selected solutions are improved through a 2-opt algorithm. This algorithm deals with 

swapping facilities with equal sizes. In better words, only facilities which occupy the same number of 

free cells within the discretized laboratory area can be swapped. A swap is acceptable if it leads to a 

solution with better value for the objective function. All possible swaps are done until no more swap is 

possible. 

To maintain the discipline adjacency constraint without checking all facilities neighbourhood for each 

swap, for each discipline, a graph of adjacency is maintained. Each facility of a discipline is a node of 

this graph and the adjacency between facilities is an edge between the two associated nodes. When 

switching facilities from different disciplines in the laboratory, the associated graphs are modified. 

Fulfilment of the adjacency constraint among the facilities of a similar discipline is verified through 

checking if the associated graph is still connected or not, once a swap is made.  

4 Experimental results 
 

To verify and validate the proposed heuristic approach, the layout of 46 facilities within a real laboratory 

with an area of about 300 square meter is designed. Figure 2 presents the area of the studied laboratory. 

In this figure, black rectangles show the forbidden or pre-occupied areas where no facility can be placed 

and the red square presents the entrance. Facilities lie into eleven disciplines with unequal sizes.  

To apply the proposed heuristic approach, laboratory area and all facilities are discretized with the scale 

of one meter. Experimental results show that the proposed heuristic is able to provide diverse efficient 

solutions within a few seconds. The best solution found for this problem is presented in figure 3. This 

solution proposes a dense layout leaving free space around to allow decision makers to expand corridors 

and clearances with minimal loss in relative placement quality. As the solution presents, all facilities of 

a same discipline are neighbours which seals on the adjacency constraints fulfilment.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Area of the studied laboratory 
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5 Conclusion and perspectives 

In this study, a heuristic approach in which a construction heuristic is integrated with a B&B method is 

developed to tackle facility layout problem in a standalone clinical laboratory. This approach aids to 

provide efficient and diverse solutions respecting physical, technical and organizational constraints. To 

evaluate the efficiency of the proposed approach, the layout of a real clinical laboratory is designed 

where 46 facilities must be placed within an area with pre-occupied places. The results present a feasible 

and a satisfactory design from the experts’ point of views. 

Figure 3. Best solution of the case study 

Applying the proposed approach with different discretization scales is an interesting future research as 

in one hand, less discretization scale brings more details into design; but, on the other hand, it increases 

problem complexity and probably makes the problem expensive to be solved. Furthermore, as the 

proposed approach provides various number of efficient solutions in terms of total traveling distance, a 

computer simulation model is proposed to be applied in order to precisely evaluate the selected solutions 

in terms of other key performance indicators (KPIs) disregarded in this study. Such simulation model 

can be spotted as a complementary tool for decision making on the layout design.  
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Abstract 
The industrial interest for the geometric optimization of blow moulded parts has been increasing 

over the last few years. Usually, the blow moulded part is divided into several sections, which have their 
thicknesses minimized thereafter. The quality of the optimized sections is limited by the shape of the 
container, and, because of that, sub optimal solutions are obtained. The present paper seeks to determine the 
optimal thickness distribution of blow moulded containers as function of geometry. The adopted 
methodology is based on the use of neural networks and finite element analysis. Neural networks are 
stochastically evolved, and they can consider several objectives at the same time, such as cost and quality. 
Numerical simulations are carried out using the commercial Finite Element Method (FEM) software. They 
are used to determine the mechanical behaviour of parts that underwent optimization processes. The 
methodology adopted in this work is applied to the design of an industrial bottle for applications such as the 
production of jars, bottles and similar containers. The ability of identifying critical zones regarding the 
mechanical behaviour of the part and of distributing material to minimize its worseness is present in the 
work.  The developed methodology accounts varying thicknesses along the wall of the container. The results 
obtained in this work prove its validity and usefulness. The followed methodology is generic and can be 
applied to blow moulded containers with other geometries.  

1 Introduction 
Blow moulding is a widely used industrial process for the manufacturing of hollow plastic parts. The 

main applications of the blow moulding process are the production of jars, bottles and similar containers. 
These containers are widely used across the world, mainly to store beverages for human consumption, but 
also to contain cosmetics and oil. In the blow moulding process, a previously molten material is placed into 
a mould and inflated with gas, whose pressure forces the material to expand, allowing its shape to match that 
of the mould. The costs of raw materials represent a relevant fraction of the total costs of blow moulded 
products. Thus, the minimization of material usage leads to cost reduction and increases competitiveness of 
manufacturing companies. Achieve this goal requires a trade-off between production costs and quality 
criteria. In fact, reducing the amount of material may worsen significantly important product properties. 

The common trial-and-error approach is tedious and inefficient when the aim is to optimize product 
development. It can lead to a significant waste of time and energy. Moreover, the originated results are very 
dependent on expert experience. The use of Computer Aided Engineering (CAE) has become increasingly 
popular to support engineering tasks. Computer simulations and optimization can help to reduce the number 
of empirical trials, thus saving time and money. Numerical approaches have a long history of use in blow 
moulding design. These approaches include Finite Element Methods (FEMs), gradient-based and stochastic 
search techniques, and neural networks. 
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The aim of this work is to apply multi-objective optimization using neuroevolution techniques, 
developed on a previous work, to optimize blow moulding designs. This methodology will be used to 
optimize the preform thickness profile of an industrial bottle before blowing. 

This paper is structured as follows. The next section (section II) reviews existing works related to 
the optimization of blow moulding. Section III formulates the optimization problem addressed in this study. 
Section IV describes the developed algorithm.  Section V presents and discusses the results of experimental 
study. Section VI concludes and outlines some possible future work. 

2 Related work 
Neural networks are often used to build a model that describes an underlying process from collected 

experimental data or to replace computationally expensive function evaluations during optimization. Some 
of the first studies about neural networks showed its ability to describe the blow moulding process with high 
accuracy. In the work [1], a neural network was used to predict the thickness distribution of the wall using 
the preform thickness distribution. The diameter and thickness swells of the preform in the blow moulding 
process based on extrusion were predicted from several operation parameters in [2]. Neural networks with a 
topology obtained empirically and trained by backpropagation were used to model a preform extrusion 
process [3]. The approach is based on experimental data. Two models were developed therein: one to predict 
the preform length at a certain time step based on temperature and extrusion flow rate, another to predict the 
thickness swelling of 20 points along the preform during its extrusion process for given parameters, such as 
temperature, extrusion flow rate and preform length. In [4], a Radial Basis Function (RBF) neural network 
was used with the aim of building a model for the internal and external temperature profiles of the preform 
related to power settings of infrared lamps in the heating oven. 

Regarding the optimization of blow moulding process, two main problems can be identified. The 
first is to determine an optimized wall thickness distribution of the final container. The second concerns 
finding the shape of the preform with the aim of producing a container with a desired thickness distribution, 
defining appropriate process parameters. Optimization of thickness distribution is typically carried out by 
dividing the preform or container into several sections and optimizing the thickness of each section 
independently. In [5], the optimal preform thickness distribution that yields a given uniform part thickness 
was searched for. In the work [6], a performance optimization approach that aims to find the part thickness 
distribution that minimizes the mass of the part, while complying with mechanical constraints was 
developed. 

Another problem which arose in blow moulding is concerned with process optimization, which aims 
at finding the optimal operating conditions for the minimization of the mass of the part and regarding the 
thickness distribution found by performance optimization.  

In [7], the authors presented an approach to optimize the stretch blow moulding process. The main 
objectives were to establish the optimal preform geometry, in terms of thickness and shape and the optimal 
operating conditions to produce a container with a target thickness distribution. In the studies presented 
above, optimization was performed by gradient-based search methods. These methods present good 
theoretical properties and fast convergence as their main advantages. However, gradient-based methods are 
essentially local search techniques, which mean that their performance is highly dependent on the provided 
initial point.  

Evolutionary algorithms (EAs) made possible to overcome limitations that are associated with 
traditional optimization methods. EAs are stochastic search methods that typically work by achieving a 
solution by processing a population. These algorithms allow performing global search without the need of 
using gradient information. In [8], a Genetic Algorithm was used to find the optimal thickness distribution 
for preform, regarding 25 positions distributed uniformly along the preform, with the aim of producing a 
blow moulded bottle with the required wall thickness distribution. A neural network was used to compute an 
approximation of the objective function implying to minimize the deviation from the target bottle 
distribution. This allowed obtaining the relationship between preform thickness distribution. The preform 
thickness distribution was built based on the results of FEM simulations for varying preform thickness 
distributions. In [4], a Particle Swarm Optimization (PSO) was used to adjust parameters of RBF network, to 
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fit experimentally collected data.  The next step was to apply an improved PSO method to obtain appropriate 
lamp settings and reducing energy waste. To obtain a target wall thickness distribution, the preform 
geometry was optimized in [9]. In [10], preform geometry optimization also includes the optimization of 
processing parameters. A common feature of the presented works that limits the applicability of the 
discussed approaches is that a container to be optimized is divided into several sections, and uniform 
thickness is defined within each section. A proper division may not be straightforward and is highly 
dependent on the container geometry. Poor results can be obtained if sections are unsuitably defined. 
Moreover, such approach can lead to discontinuities in joints between sections. The main contributions of 
this paper are the application of a regression model as a function of the container geometry to find the 
optimal thickness distribution and the solving the problem using a multi-objective neuroevolutionary 
algorithm. 

3 Problem formulation 
The aim of this study is to develop a methodology for the optimization of material usage in blow 

moulded objects. This topic is a major concern for industry, due to significant influence of costs of raw 
materials on the total production costs. The specific industrial bottle studied in this work has a diameter of 
395 mm and a height of 625 mm. The material is PET with mass density of 1.15×10-9 kg/m3 and Poisson’s 
ratio of 0.4. 

Due to the complexity of the manufacturing process, the optimization was broken down into 
different steps. In the first step, given the geometry model of bottle, its optimal thickness profile was 
determined by optimizing the wall thickness distribution and mechanical properties [11]. This was 
performed by considering the bottle subjected to an inflation pressure of 2 MPa setting the minimum and 
maximum allowable values of the wall thickness to 1 and 5 mm, respectively. The second step is considered 
in the present study. It consists of determining the optimal thickness profile of the preform to the bottle with 
the desired thickness profile is obtained as the result of the preform inflation in the blow moulding process.  

Figure 1 shows the process to be simulated and optimized. The figure outlines major steps in the 
injection blow moulding. First, the molten polymer is injected into a heated preform cavity that is clamped 
around a blowing rod that forms the internal shape of the preform. Then, air at a certain pressure is 
introduced inside the heated preform to force the material to acquire the internal shape of the mould, which 
corresponds to the desired shape of the bottle. As the optimal thickness profile of bottle was determined, the 
goal of this study is to find the optimal thickness profile of the preform that will produce the desired bottle 
because of the process shown in Figure 1. It might be possible to note that the optimization goes in the 
opposite direction to the steps of blow moulding process. 

Fig. 1. The injection blow moulding process. 

Figure 2 shows the geometry model of the preform and mould used in this study. The problem 
consists of determining the wall thickness distribution of preform to the injection blow moulding shown in 
Figure 1 will results in the bottle with the given thickness profile. Using the finite element model, we 
address this problem by multi-objective optimization. The variables to be optimized are the thickness values 
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in the nodes of the FEM of preform while the objectives correspond to the deviation from the desirable 
thickness values in the nodes of the bottle mesh. 

Fig. 2. Geometry model of preform to be inflated and mould. 

The objectives to be minimized can be formally defined by equations (1) and (2). 

(1) 

(2) 

where  is the number of nodes in FEM of bottle, for ,  is the value in the -the node of the 
target thickness distribution that was obtained on the previously optimization works, which consists in the 
best final parts profile taking account the maximization of mechanical behavior and minimization of final 
weight, and   is the thickness value resulting from using injected blow molding with a given thickness 
profile of preform. These objectives are calculated by collecting results from computer simulations 
performed using ANSYS Workbench, the commercial Finite Element Analysis software. 

4 Optimization methodology 
This section details on the methodology proposed for designing blow moulded containers with 

optimized wall thickness distribution. The main idea is to consider the wall thickness as a function of the 
container’s geometry. The achievement of this consideration depends on the capabilities of neural networks. 
Neural networks are used for the conversion of the coordinates along the wall into thickness values. This can 
also be considered as a regression model. Despite that, it is important to point out the difference between 
traditional regression and the proposed methodology. The traditional regression makes use of data points 
with known input and target values. In the proposed methodology, only the values of input variables are 
available, which limits the applicability of traditional gradient-based methods to learn the parameters of the 
neural network. 

To achieve the desired behaviour, the parameters of neural network must be adjusted. As the 
applicability of traditional methods based on gradients is limited, neuroevolution approach is adopted in this 
work. Neuroevolution refers to the use of evolutionary algorithms to evolve neural networks [12]. Although 
neuroevolution provides the potential to evolve both the parameters and the topology of neural networks, in 
this study we keep the topology fixed when evolving the parameters (weights and biases).  

The main steps of the approach are given by Algorithm 1. It is based on SMS-EMOA [13], which in 
its turn is a popular state-of-the-art algorithm for evolutionary multi-objective optimization that proved 
effective in several studies and real-world application. The algorithm starts by initializing a population of 
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individuals. Each individual in the population is represented by a real-valued chromosome that encodes the 
parameters (weights and biases) of a neural network. Each time a new individual is generated it is sent for 
evaluation. The evaluation procedure comprises decoding the individual’s chromosome into the neural 
network, calculating the thickness profile of the preform and computing the values of objective functions 
which reflect the individual’s performance.  

The notion of the thickness profile refers to the values of wall thickness in any location of the 
preform. Figure 3 graphically illustrates the idea behind the calculation of the thickness profile of the 
preform. The coordinates of each mesh node in the finite element model are fed into the neural network. The 
output is the thickness at the corresponding nodal location. This way, propagating the coordinates of all the 
mesh nodes through the neural network originates a thickness profile of the preform. 

Fig. 3. Thickness profile calculation. 

The initialization procedure is followed by a steady-state variant of the evolutionary process (lines 
11-22), meaning a single offspring is produced in each generation, that is performed to evolve the initial 
population of solutions. It encompasses three major steps: selection, variation and replacement. Selection 
aims at selecting a pool of promising parent individuals (R) for producing offspring. This study uses a 
simple uniform selection, where each population member has equal chance to be selected. Evolutionary 
operators are then applied to the parents, to produce offspring in the variation procedure (lines 15-18) where 
a new offspring is generated, evaluated and added to the population. 

Variation plays a crucial role in the exploration of the search space. As a real representation of the 
chromosome is used in this study, a Differential Evolution (DE) operator is employed for producing 
offspring. It is a simple yet effective evolutionary operator. DE generates a new solution q by exploiting the 
differences between solution vectors in the population. It can be described by equation (3). 

(3) 

for , where  is the probability of crossover and  is the scale factor and . 
Thereafter, a Polynomial Mutation (PM) is applied to introduce additional variations to ensure the 
exploration of new regions of the search space. This operator gives a higher probability that a new solution 
is closer to rather than far away from the previous solution. It can be defined by equation (4). 

(4) 

with the value of  being given by equation (5). 

(5) 

For j=1,…, n, where lbj and ubj are the lower and upper bounds, rj, uj ~ U(0,1), whereas [0,1] 
and m>0  are control parameters (a probability of mutation and a distribution index, respectively). 
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Algorithm 1 Neuroevolution 
1: Input: , 
2: // initialization 
3: 
4: 
5: for 
6: 
7: 
8: 
9: 

10: end 
11: while 
12:     
13:  // selection 
14: 
15:  // variation 
16: 
17: 
18: 
19:      // replacement 
20:     
21:     
22: end 
23: Output:  

The replacement procedure (lines 19-21) aims at forming a population of the next generation by 
removing a worst performing individual thereby keeping the population size equal to the predefined value. 
In doing so, it relies on the concept of survival of the fittest from natural evolution. Because the proposed 
neuroevolution is designed to deal with multiple objectives, this procedure must ensure the convergence and 
diversity of population. These two requirements are known to be somewhat conflicting in nature. The 
adopted replacement strategy relies on the concept of Pareto dominance to provide convergence and the 
hypervolume measure to ensure diversity. In the beginning, the population is sorted using the non-dominated 
sorting procedure so as to find individuals in the last non-dominated front ( . Then, the one with the 
smallest hypervolume contribution in  is removed. This relies on the notion of hypervolume. For a set of 
objective vectors in , the hypervolume can be defined as the Lebesgue measure  (or  measure) of the set 
of objective vectors that are dominated by   but not by a reference point ( , i.e., 

. (6) 

In this study, when computing the hypervolume, we use the normalized objective values that are in 
the range [0,1] the reference point of r = 1. The result of the process described above is expected to be a set 
of neural networks representing different trade-offs between the defined objectives, with each neural 
network giving the design of preform in terms of the wall thickness distribution. 

The implementation of the proposed methodology makes use of the two commercial software: 
ANSYS and MATLAB. An illustration of the overall software interaction is shown in Figure 4. The 
optimization program that is outlined in Algorithm 1 is implemented in MATLAB. It aims at finding the 
parameters of the neural network that produces the thickness profile of the preform so as to optimize the 
objectives defined in (1) and (2). These objectives includes both the thickness profiles of the preform and 
bottle. The latter is obtained by a computer simulation performed using ANSYS, the Finite Element 
Analysis software. ANSYS workbench is run in a batch mode, as a result of being invoked by the MATLAB 
optimization routine each time a new solution needs to be evaluated. The communication between the two 
software programs is established through text files. 
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Fig. 4 - Flow chart of the optimization methodology. 

5 Computational experiments 
The numerical simulations based on finite element analysis were carried out by ANSYS workbench. 

Due to high a computation cost, the optimization was performed under a limited computational budget. The 
neuroevolution algorithm was run for 3000 function evaluations with the population of 50 individuals, the 
crossover probability of CR=1, the scaling factor of F=0.5, the probability of mutation of pm=1/n (where n is 
the chromosome length) and the distribution index of m=20. 

Figure 5-A) depicts the evolution of the hypervolume throughout the generations. The proposed 
neuroevolution gradually drives the population of solutions to better regions of the search space improving 
the thickness profile of the preform in terms of the defined objectives. It also can be seen that a major 
improvement takes place in early generations whereas the later generations are mostly spent for fine-turning. 
This is a common feature of evolutionary search, and this result suggest that integrating a local search 
procedure is a valid way for future improvement. Figure 5-B) shows the set of obtained nondominated 
solutions. The obtained solutions represent different trade-offs between the objectives. Thus, the solution 
with the minimum average error is found for a larger deviation in the individual node, whereas the solution 
with smaller maximum error corresponds to a larger mean error. The two solutions on the extremes of the 
trade-off curve are highlighted and used for further analysis. 

A) B) 
Fig. 5. A) Evolution of the hypervolume; B) Nondominated solutions after 60 generations. 
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In Figure 6 it is possible to see graphical Finite Element results, taken from ANSYS simulation. The 
global thickness results vary from 1.60×10-4m to 2.227×10-3 m. However, the side walls of the model present 
values within the range of 1.00×10-3 m approximately. 

Fig. 6.  Graphical thickness results for the solution . 

The thickness distribution of the FEM models was obtained for both the preform (Figure 7) and the 
bottle (Figure 8). Results were collected throughout 110 nodal points from the walls of the model along a 
vertical line. The y coordinate (vertical axis) has the maximum value at the top end (bottleneck), and the 
lowest value at the bottom of the model. The position number increases with decreasing y coordinate, i.e, in 
the direction from the top to the bottom of the model. Same nodal points were used for both the preform and 
the bottle model, although their coordinates change during inflation.  

A) B) 
Fig. 7. A) Thickness distribution of the bottle for ; B) Thickness distribution of the bottle for . 

Figures 7 presents the thickness distribution for both solutions (S1 and S4), and the target solution 
obtained in previous work (t0), is close to 1.0 for positions from the beginning until position 80, although 
slightly increasing. The thickness t0 increases sharply thereafter. Both thickness distributions obtained in the 
present work shows similar behavior to t0  after 40th position, while from positions 0 to 50 presents some 
discrepancy. This can be explained by the fact that the previous work used a uniform internal (static) 
pressure as loading, while the present work is considers the inflation of the preform mold. As the mold is 
inflated, the air blows from the bottleneck until the bottom of the preform. As the bottleneck has no material 
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above, the thicknesses close to the free end will behave differently as the same ones in the t_0. For positions 
higher than 50, there is a better agreement between the two distributions.  

Figure 8 shows the wall thickness distribution of the preform. Both the solution S1 and the solution 
S4 represent a similar behavior and show very close values overall. Both S1 and S4 show a strict increase of 
the thickness with increasing y position. This reveals the ability of the optimization to distribute the material 
according to the established requirements. A small difference between the thickness profiles of the preform 
represented by these solutions may indicate only a slight conflict between the objectives.   

Fig. 8. Thickness distribution of the preform for   and 

6 Conclusions 
In blow moulding industry, the product competitiveness can be effectively increased by reducing the 

costs of raw materials. This study suggested a methodology to optimize the material usage in blow moulded 
products. This methodology aims at determining the optimal distribution of material as a function of the 
product geometry. Motivated by the universal approximation property, this function is approximated by 
neural network. The structure and parameters of the network are determined by neuroevolution. The search 
is performed addressing multiple objectives, minimizing the usage of material and the degradation of 
mechanical properties. This leads to a set of Pareto optimal networks representing different trade-offs 
between the objectives, which allows acquire a valuable information about design alternatives and enables a 
posteriori decision making. 

The application of the proposed methodology is demonstrated in a case study addressing the design 
of industrial bottle. Finite element analysis software was employed to simulate the response of the specific 
design to a static pressure. The obtained results indicate the importance of using proper search strategies and 
the ability of neuroevolution to optimize the thickness distribution under given conditions. Generality is a 
major advantage of the proposed methodology, as its applicability is independent of the bottle geometry.  

In future, the developed methodology will be extended to include the operating conditions and the 
physical properties of the material into optimization. 
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Abstract. Energy integration via heat exchanger networks (HEN) aiming for capital and operating costs 

minimization has been one of the most widely studied fields in the scope of process engineering. It is evident 

that heat recovering in industrial plants yields pollutant emissions mitigation. However, studies performing 

direct assessment on of the environmental impacts (EI) that HEN synthesis aids on reducing are relatively 

recent and therefore still scarce. This work aims to contribute to the area by applying a new superstructure-

based optimization model for HEN synthesis entailing both economic and environmental performances. In 

the new methodology, EI were assessed via Eco-costs, a strategy based on Life Cycle Assessment (LCA) 

and that translates EI into monetary values, rendering a single-objective model. The model considers 

different utilities and fuels and the environmental impacts they entail as well as the impacts originated from 

heat exchangers construction. The solution strategy used is based on a two-level hybrid meta-heuristic 

method, which uses a combinatorial optimization method (Simulated Annealing) for optimizing binary 

variables and a continuous optimization approach (Rocket Fireworks Optimization, a combination of 

Continuous Simulated Annealing and Particle Swarm Optimization) for the continuous variables. An 

industrial-sized case study was used with utilities produced using different energy sources. The problem was 

solved under four different conditions. In Case 1, only HEN-costs (HENC) are considered. In Case 2, only 

Eco-costs (EC) are considered. In Case 3, EC and HENC were considered as objective function. Case 4 

assumed a hypothetical scenario where EC was limited to a maximum value by a local environmental policy, 

so that a solution with minimal HENC had to be found constrained to such EC upper bound. Less 

environmentally damaging utility sources such as those using natural gas as fuel or cooling towers were 

favored in situations where EC were included. Moreover, the method was able to successfully handle the 

upper bound constraint in Case 4. 

Keywords : optimization, heat exchanger networks, metaheuristics, environmental impacts,

eco-costs, life cycle assessment  

1 Introduction 

Different fluid streams in industrial processes might require heating or cooling. Such temperature 

manipulation tasks are carried out in heat exchangers (HE). A HE can transfer heat from a hot stream to a 

cold one. If they are process streams, the demand for hot and cold utilities (e.g., steam and cooling water) in 

the process is mitigated. A set of HE performing heat integration in a plant is called a heat exchanger 

network (HEN). Given that industrial plants might encompass several streams requiring heating/cooling, the 

optimal HE allocation is a challenging task. HEN synthesis is among the most studied fields in process 

engineering, consisting of a mathematically complex problem both in the combinatorial and continuous 

domains.  

Different mathematical models based on superstructures have been developed and applied to a 

variety of case studies. One of the most important contributions for HEN synthesis based on mathematical 

programming is the stage-wise superstructure (SWS) [1]. That superstructure served as basis to other stage-

wise models such as the no-splits model [2] and the hybrid splits/no-splits model [3]. The model is relatively 
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simple, comprising all possible stream match combinations at all stages. Stream splits are possible, and each 

match is placed in a different stream branch. Heaters and coolers are placed at the end of cold and hot 

streams, respectively, providing auxiliary temperature manipulation.  

Several solution approaches have been used in the literature to identify optimal solutions for the 

HEN synthesis problem. Recently, metaheuristics have arisen as a strong tendency for achieving promising 

solutions to the problem, being applied in several works. Some important advantages of such sort of method 

are the relative ease of implementation, the possibility of using coding platforms that are free of charges and 

the simplicity in handling disjunctions and thermodynamic constraints for maintaining solutions feasible. 

Important works under that scope are worth mentioning. Ravagnani et al. [4] employed Genetic Algorithms 

(GA) with Pinch Analysis concepts. Silva et al. [5] used Particle Swarm Optimization (PSO) applied to the 

SWS model. Peng and Cui [2] solved a no-splits model with two-level Simulated Annealing. A hybrid GA-

PSO with parallel processing was employed to the SWS model by Pavão et al. [6], who later presented a 

hybrid SA-PSO method applied to a no-splits model [7] and hybrid SA with Rocket Fireworks Optimization 

(RFO, a combination of Continuous SA with PSO) used to solve the SWS [8]. Random Walk Algorithm 

with Compulsory Evolution was applied to the SWS model by Bao et al. [9] and Cuckoo Search Algorithm 

was employed to a no-splits model by Zhang and Cui [10]. 

For long, the discussions on the HEN synthesis field have had, on their majority, a strong economic 

bias. However, with the ever-increasing concerns on pollution and global warming, the debates began 

pointing towards the attainment of cleaner production processes. On that trend, Life Cycle Assessment 

(LCA) techniques arose as important methodologies for environmental impacts evaluation and 

quantification. Those concepts have been considered only recently in HEN synthesis works. López-

Maldonado et al. [11] presented multi-objective optimization framework considering environmental impacts 

and total annual costs (TAC). Those authors used the Eco-indicator 99 approach to quantify the 

environmental impacts associated to their solutions. The model used was based on the SWS with one 

additional branch per stage containing a heater/cooler. They used deterministic solvers in GAMS platform. 

Vaskan et al. [12] also used Eco-indicator 99, but performed analyses to different categories of EI with a 

dimensionality reduction technique. Those authors employed the SWS model and solved their models with 

deterministic solvers in GAMS. Ravagnani et al. [13] were the first to employ a metaheuristic approach for 

analyzing HEN regarding both the financial and environmental performances. The latter was quantified by 

the authors with SimaPro software. The MOO technique used was a modified PSO strategy. Pavão et al. 

[14] used a modified version of SA-RFO [8] to solve a SWS-based model. The ReCiPe approach was 

employed for the environmental impacts quantification. Mano et al. [15] used the Eco-costs technique, 

which translates EI into monetary values that can be summed to the HEN costs, entailing thus a single-

objective optimization model (which the authors solved with deterministic techniques in GAMS 

environment). The eco-costs are calculated based on hypothetical money amounts needed to prevent a given 

environmental impact. A database of such costs for several industrial processes, as well as the methodology

related information can be found in the website maintained by the Delft University of Technology [16]. 

According to Furman and Sahinidis [17], the HEN synthesis problem is NP-hard in the strong sense. 

Thus, considering both financial and environmental performances makes the problem even more laborious. 

Given such difficulties, HEN synthesis works that consider financial and environmental performances with 

deterministic techniques consider case studies with a small number of streams (e.g., three streams [12]; 

seven streams [11]). Pavão et al. [14], with their MOO metaheuristic, were able to approach larger cases (up 

to 15 streams). However, the SWS version used there could handle only one type of hot and one type of cold 

utility. Given the potential of SA-RFO to handle large-scale HEN synthesis cases, in this work a large-scale 

(20 streams) case study from the literature is adapted to comprise different utility types that are produced 

from different sources: two boilers burning different fuels producing steam at three different pressures and 

one hot oil supplier are responsible for auxiliary heating, while cooling towers, chillers and compressors are 

available to provide cooling water, cold water and compressed air for cooling tasks. The Eco-costs approach 

[16] used by Mano et al. [15] proved to be efficient, and the case study environmental performance is

analyzed here under that approach, avoiding the need for a multi-objective formulation. 
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2 Formulation 

The stage-wise superstructure model used here comprises additional stream split branches for each 

type of utility, at all stages, as illustrated in Figure 1. This figure also depicts that utilities may be produced 

using different sources, entailing different environmental impact values. These values depend, for instance, 

on the fuel or electricity source, and on a utility producing unit’s efficiency. 

Figure 1. Stage-wise superstructure with multiple utilities 

The objective function is a sum of monetary values: capital and operating costs and Eco-costs 

related to utilities and to HE construction. The utilities-related eco-costs (UEC) are calculated as follows: 
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where the cu and hu suffixes stand for cold and hot utilities, the EC prefix stands for eco-costs (e.g., 

the EChu variable are the eco-costs per hot utilities requirement in kW), the Int suffix stands for intermediate 

stages, Q prefix regards heat loads (e.g., QcuInt is the heat load of a cooler at an intermediate stage), 

QTcuEnd and QThuEnd are total cold and hot utilities required in end stages and FhQcuEnd and FcQhuEnd 

are fractions of that total that are provided by each of the available utility types. The indexes m and n are 

related to hot and cold utility types.  

Heat exchangers construction eco-costs (HECEC) are calculated as follows: 
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where ECA are eco-costs per square meter of heat exchangers area, the A prefix stands for areas, and 

z for the existence/absence of a given unit. Suffixes are analogous to those previously presented for Eq. (1).  

The single-objective optimization model is written as minimization of total annual costs (TAC): 

sconstraintHENts

HECECUECCCOCTACOPTHEN

..

}{min)_( 
(3) 

where OC and CC are yearly operating and capital costs, and their calculation by means of energy 

balances, design equations and feasibility constraints has been extensively detailed for analogous models in 

the literature [14]. 

3 Methodology 

The SA-RFO [14] strategy is a two-level HEN synthesis hybrid method. In the “outer” level of the 

method, SA is used to propose new topologies, while RFO optimizes continuous variables associated to that 

topology in a mutual feedback scheme, illustrated in Figure 2.  

Figure 2. SA-RFO block diagram 

Note that RFO is in fact a combination of two methods: a continuous SA and PSO. The former is 

likely able to achieve a promising solution. That solution is then incorporated to the PSO initial swarm,

which better explores that region and may find better solutions. 

4 Numerical example 

A case study is proposed here to test the methodology presented. It has 10 hot and 10 cold streams, 

and is based on an example proposed by Luo et al. [18]. Its original stream and economic data can be found 

therein. The version found in Ref. [18] has one type of hot and one type of cold utility. In order to provide a 

more realistic scenario for environmental performance analysis, a hypothetical set of utilities that can be 

commonly found in industrial plants is proposed. Two boilers are available: the first burning coal and 

producing high and medium pressure steam and the second burning natural gas and producing medium and 

low-pressure steam. For cooling, three types of utilities are available: water from cooling towers, water from 

chillers and compressed air. The energy source in those cases is electricity. Table 1 presents the new utilities, 

their costs and the associated eco-costs. In the table header, OT is the operating temperature range and h is 

the heat transfer coefficient. All eco-cost values were obtained by means of extrapolation from values 

contained in the eco-costs online database [16]. 
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Table 1. Case study utilities data 

Utility, unit, source Label OT (°C) h 

(kW/m
2
°C) 

Cost 

($/kW) 

Eco-cost 

($/kW) 

HP steam, boiler 1, coal HU1 265 2.0 120 292.88 

MP steam, boiler 1, coal HU2 200 2.0 80 275.65 

MP steam, boiler 2, natural gas HU3 200 2.0 100 1135.45 

LP steam, boiler 2, natural gas HU4 150 2.0 50 1059.75 

Cooling water, cooling tower, electricity CU1 30-40 1.5 10 9.89 

Compressed air, compressor, electricity CU2 30-40 1.5 50 993.83 

Cold water, chiller, electricity CU3 5-10 1.0 5 98.91 

Heat exchangers construction eco-cost: 7.91 $/m
2
 

This application was divided in four cases: 

(i) Case 1: only HEN costs are considered in the objective function during optimization, 

disregarding environmental impacts.

(ii) Case 2: only environmental impacts (i.e., eco-costs) are considered in the objective function.

(iii) Case 3: a summation of costs and eco-costs is considered. In that case, the optimization is 

supposed to yield solutions with a reasonable trade-off regarding financial and

environmental performance according to the eco-costs methodology.  

(iv) Case 4: a hypothetical situation where, due to an environmental policy, the HEN eco-costs 

cannot be greater than a given value. Such value is assumed as 4.5 million dollars per year. 

Thus, the optimization must find a solution with minimal HEN costs for a pre-fixed value 

for eco-costs.  

In Case 4, an additional upper bound constraint is included in the model. Solving the model with 

such constraint activated required additional coding to the SA-RFO method. The initial solution used in SA-

RFO runs is a “null” solution, i.e., no heat exchangers are present and heating and cooling are performed 

entirely via utilities at streams’ ends. When a topology is proposed by SA, the initial solution used in RFO is 

null as well: all heat exchangers present in that topology have zero heat loads, and all the temperature 

manipulations are carried out with utilities. It is thus likely that a null solution does not satisfy the upper 

bound constraint defined by the aforementioned environmental policy. A Boolean variable (UBvalid) was 

associated to the solutions (the current solution in SA or CSA, or a particle in PSO) containing information 

on whether such solution had at least once satisfied the eco-cost upper bound. If such condition is false, the 

optimization is carried out considering eco-costs only. If it is true, costs are set as the main objective. 

However, during the method iterations if a new solution assumes a value that violates the upper bound and

UBvalid is true, that new solution is automatically disregarded. 

The costs for the solutions to all cases are presented in Table 2. It can be noted that the solution for 

Case 1 is the cheaper if one considers only the costs associated to the HEN. However, that solution is the 

most expensive if Eco-costs are considered as well. The opposite occurs in Case 2 solution, where HENC 

were increased by 79.9% for yielding a 55.4% reduction in EC. That can be considered a poor economic 

performance regarding HENC. As expected, the solution with the lowest sum of HENC and EC is the one 

where those two values were considered in the objective function (Case 3). Although the EC are greater than 

in Case 2, that value is considerably lower than in Case 1 (51.5%), while the HENC are 16.6% greater, 

which are more appealing values than those for Case 2. In Case 4, it is worth observing that the 

metaheuristic method was able to identify a solution at the upper bound proposed. The hypothetical 

environmental policy is thus respected at a rather small HENC increase in comparison to Case 1 (4.4%).  
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Table 2. Costs and eco-costs for all cases’ solutions

Solution HENC+EC ($/y) HENC ($/y) Comparison to 

Case 1 (HENC) 

EC ($/y) Comparison to 

Case 1 (EC) 

Case 1 10,843,881 2,113,345 0.0% 8,730,536 0.0% 

Case 2 7,694,618 3,802,512 +79.9% 3,892,106 -55.4% 

Case 3 6,699,658 2,464,501 +16.6% 4,235,157 -51.5% 

Case 4 6,706,815 2,206,815 +4.4% 4,500,000 -48.5% 

Figure 3 (a) presents design data for all solutions. It is worth noting that even though it has greater 

utility requirements, area requirements are smaller for Case 1, which presented the lowest HENC. Such 

greater utility use, however, favors the increase in EC. In Case 2, it can be observed that the area 

requirement is the greater among all cases’ solutions. Such greater area yields a large HEN investment, but 

also greatly reduces the use of utilities, therefore improving the environmental performance of that solution. 

The Eco-cost method was followed when solving Case 3 and, thus, the solution found in Case 3 is the 

optimal choice regarding economic and environmental performance. The optimal solution constraining eco-

costs to 4.5M$/y (Case 4) led to a solution that is a middle-ground between those for Cases 1 and 3.  

Regarding the types of utilities, it can be noted that HU1 (high pressure steam from coal-fired boiler) 

is only slightly reduced in more eco-friendly solutions, despite being the utility that causes more 

environmental impacts. Such choice is thermodynamically-driven. That is, given its high temperature, HU1 

is the only utility that can be used to heat some of the cold streams. Hence, it is mandatory that it is present 

at least for heating such streams. Concerning cold utilities, the use of cooling towers is favored in solutions 

with lower EC. Regarding area-related Eco-costs, it is worth noting that those are small when compared to 

utilities-related, and thus, even the high-area solution of Case 2 has a smaller value for Eco-cost, as seen in 

Table 2. 

Figure 3 (b) and (c) present the configurations that can be considered the two more meaningful for 

the methodology used here. Those are the ones found in Case 1 and Case 3, which have objective functions 

of HENC and HENC+EC, i.e. with and without activating the Eco-costs method. The configurations differ 

slightly. Note that in Case 3 solution, there is one more heater using HU3 (which is produced from natural 

gas) than in Case 1 solution. Moreover, Case 3 configuration favors the use of cooling water from cooling 

towers, which yield less Eco-cost. 

Figure 3. Design data chart for all cases (a) and solutions for Case 1 (b) and Case 3 (c). Numbers above grid

diagrams are heat loads, in kW 

5 Conclusions 

This work presented a framework for the evaluation of heat exchanger networks regarding their 

economic and environmental performances. Such task was accomplished with aid of the Eco-costs approach, 
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which is based on the Life Cycle Assessment concept and is used to translate environmental impacts into 

monetary values. That enables the development of single objective optimization models for simultaneously 

reducing HEN costs and Eco-costs. The methodology was applied to a large-scale example from the 

literature, evaluated in four different cases. In the solutions, it was observed that the method was able to 

reduce the coal-fired boiler use (which yields more eco-costs) up to the point its choice was 

thermodynamically necessary, since it was the only source of high temperature steam. As expected, since 

cooling towers EC value per kilowatt is lower, it was observed that solutions with lower EC favored their 

use instead of chillers or compressors. It was noted that heat exchanger construction eco-costs had little 

influence on the final environmental performance, although heat exchanger areas account greatly for HEN 

costs.  

The metaheuristic-based framework here presented was efficient in finding near-optimal solutions to 

the model and cases proposed, including when an additional upper-bound was added. That indicates that the 

use of metaheuristics for HEN can be further explored and that these approaches are an interesting 

alternative for HEN design considering aspects other than its economic evaluation. As demonstrated, such 

framework can be efficiently used for proposing networks that are more environmentally friendly. 

Moreover, it can be employed when a project is required to meet a pre-determined environmental 

performance due to environmental policies. 
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Electricity, as one of the main used energy sources in production systems, plays a very impor-
tant role in modern industries. The rapid and ongoing growth of electricity price has become an
important issues for many countries. Therefore, improving the energy efficiency of a production
system, saving the costs involved and its environmental impact, has encouraged many researchers
all around the world to study these issues. For example in [4], the authors studied the scheduling
problem of processing jobs with arbitrary power demands on an uniform speed or speed-scalable
single machine to minimize total electricity cost. The production scheduling of a single machine
with different states is studied in [5] to minimize total energy consumption costs when the price of
energy varies between the periods. Two versions of this problem with/without fixed sequence of the
jobs are addressed in [1] and [2]. Moreover, the complexity of the preemptive version of the prob-
lem without fixed sequence of the jobs is analysed in [3] based on a dynamic programming approach.

In this paper, the energy efficient scheduling of n jobs during T periods on a speed-scalable
single machine is addressed. The machine has 3 main states (ON,OFF, and Idle), and two transition
states (named Ton and Toff)(Figure 1). In each state s ∈ {ON, OFF, Idle, Ton, Toff}, the machine
consumes a specific amount of energy (es) per period. The energy consumption in state OFF is
equal to 0 (eOFF = 0), and the machine must be in OFF states during the initial and final periods.
The energy consumption of the machine during state ON depends on the processed job. For each
state s, the machine requires a specific number of periods ds; s ∈ {ON, OFF, Idle, Ton, Toff}.
In the speed-scalable case, the machine has different possibilities for processing each job with
different speeds. So, each job j = 1, ..., n has vj possible processing times defined in a set as
Pj = {pj,1, · · · , pj,vj}. Their corresponding energy consumptions qj,i to each pj,i (j = 1, ..., n, i =
1, ..., vj) are defined in sets Qj = {qj,1, · · · , qj,vj} for j = 1, ..., n. Since performing a job more faster
needs more energy consumption, the following relations are assumed:

pj,1 > pj,2 > · · · > pj,vj
; qj,1 < qj,2 < · · · < qj,vj

;∀j ∈ {1, · · · , n} (1)

The objective of this study is to find the most economical production schedule in terms of total
energy consumption costs when Time-Of-Use electricity tariff is considered for each period. To
the best of our knowledge, our study is the first work in the literature that addresses the energy
efficiency of a multi-states and multi-speeds single machine system with the time-dependent elec-
tricity cost.

In [4], the authors proved that the non-preemptive scheduling problem of a speed-scalable sin-
gle machine is NP-hard. So, the non-preemptive scheduling problem of a multi-states and speed-
scalable single machine, which is presented in this paper, is also NP-hard. Therefore, a genetic
algorithm and a memetic algorithm are proposed to solve the problem in a reasonable time (espe-
cially for the large size instances). Any solution of this problem consists in T periods, from 0 to T ,
for which the machines state or the processed job is specified. So, each chromosome is represented
by T + 1 genes and each gene identifies the machines state in a period. To distinguish between the
machine’s states, each state is represented by a specific number as OFF = 1, Ton = 2, Idle = 3,
and Toff = 4. Besides, an integer number greater than 100 (k > 100) indicates that the ma-
chine is in ON state. If in period t, the machine processes job j with speed i, in its corresponding
chromosome, the gene t fills with number (100 ∗ j + 10 ∗ i). Figure 3 represents the corresponding
chromosome of the instance of Figure 2. Since in this instance the number of periods is 32, so this
chromosome consists of 33 genes. The number 230 in 10th gene means that during period 9 the
machine processes job 2 with speed 3. Also, the number 4 in 27th gene means that during period
26 the machine is in Toff state.
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Fig. 1. Machine states and possible transitions.

Fig. 2. Illustrative example

Fig. 3. The genetic algorithm’s chromosome encoding

In this study, the roulette wheel selection has been chosen as parents selection operator, and
the main parameters of genetic algorithm such as: population size, crossover rate, mutation rate,
crossover operator, mutation operator and number of iterations, are determined by using the
Taguchi method. As a result, the initial population size and the number of iterations are con-
sidered equal to 150 and 100, respectively. The single-point is selected as crossover method, and
the crossover rate is selected equal to 0.7 (70%). The cut point will be randomly generated from
the periods index. Then, the first children will be composed of the first parent from the beginning
to the cut point, and the second parent from the first gene after the cut point to the end of the
chromosome, and the reverse for the second children. After producing the children, a correction
procedure must be done to convert the not feasible solutions to the feasible one (see Figure 4).
Besides, for the mutation method, a chromosome from the initial population will be randomly
selected and the mutation will be performed on the selected gene by swapping its value. Then, a
correction procedure must be done on the obtained offsprings. The mutation rate is selected equal
to 0.1 (10%). Finally, the best chromosomes in terms of the fitness function must be selected from
all the initial population and the obtained chromosomes by crossover and mutation methods, to
update the initial population for the next iteration.

From this genetic algorithm, a local search procedure is applied to get a memetic algorithm.
The local search may increase the quality of the 15 (10% of the population size) best chromosomes
of the population in each iteration. For each of them, the neighborhood is explored by increasing
one unit the processing speed of one job (if it’s processing speed is less than the maximum speed),
and consequently, processing all the remaining jobs earlier. This procedure must be repeated for
all the jobs in their sequence order. So, at most n new solutions can be created from each initial
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Fig. 4. single-point crossover method

Fig. 5. The memetic algorithm’s chromosome encoding

solution, and finally, the solution which has the best objective value in the neighborhood replace
to the initial one. For example, for the considered solution in Figure 3, the first job is processed
with the first speed (3 periods). So, in the first solution proposed by memetic algorithm, the first
job is processed with the second speed (2 periods), and all the remaining jobs are performed one
period earlier during the rest of periods.

The performance of the proposed methods have been tested based on several numerical ex-
periments. Five different examples are randomly generated for each instance size by changing the
processing times and the energy consumptions of the jobs, as well as the unit of energy price in
each period. The genetic algorithm (GA) and the memetic algorithm (MA) have been coded by
C++ language in the Visual Studio 2015, and CPLEX software is used to solve the instances with
the exact method (Branch and Cut). The computation time for CPLEX was set to 3600 seconds.
As a result, for the small size problems (the instances with less than 15 jobs, 5 speeds, and 120
periods), the genetic algorithm and the memetic algorithm find the solutions with the average gap
of 7.5% and 2.7% to the optimal solution with the computation time of 15.64 s and 18.50 s. For
the large size instances, the memetic algorithm improves the results of the genetic algorithm in
average 18%, and the average computation times are equals to 34.37 s for the GA and 61.59 s for
the MA.
For the future works, we will attempt to propose a more efficient mathematical model for this
problem. We are also interested to investigate the performance of the other exact methods like
Branch and Bound, and Bender’s decomposition for this problem.

References

1. Aghelinejad, M., Ouazene, Y., and Yalaoui, A. : Machine and production scheduling under electric-
ity time varying prices. In Industrial Engineering and Engineering Management (IEEM), 2016 IEEE
International Conference on, 992-996. IEEE.

2. Aghelinejad, M., Ouazene, Y., and Yalaoui, A. : Production scheduling optimization with machine state
and time dependent energy costs. International Journal of Production Research, 2017, 1-18.

3. Aghelinejad, M., Ouazene, Y., and Yalaoui, A. : Preemptive scheduling of a single machine with finite
states to minimize energy costs. International conference on Optimization and Decision Science (ODS),
2017

4. Fang, K., Uhan, N.A., Zhao, F., and Sutherland, J.W. : Scheduling on a single machine under time-of-
use electricity tariffs. Annals of Operations Research, 1-29.
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Abstract

Electronics are increasingly used in controlled and embedded mechanical systems. This leads to
new mechatronics devices which are lighter, smaller and use less energy. However, this mechatron-
ics approach must ensure a smooth operation. The reliability assessment of these systems remains
a major challenge. However, their failure are often caused by many extreme solicitations of ther-
mal(temperature variation), and mechanical nature (shocks, vibration), etc. The most failures of
mechatronic devices are caused by solder joints fatigue. consequently, to meet the reliability re-
quirements, the robustness of the solder joints should be validated and reliably optimized. In fact,
due to thermal expansion, thermal cycles induce mechanical stresses in the solder joints connect-
ing the electronic components to the PCB. Therefore, these stresses can be significant leading to
plastic deformation whose accumulation can cause damage leading to solder joint failure and con-
sequently, the failure of the complete device. In order to maximize the number of fatigue life cycles
and to avoid the failures in the operational environment, the robust optimization and reliability
based design optimization of critical solder joints should be carried out in the design process of
mechatronic devices.

In the RBDO [1, 2], the derivative-based algorithms are the most used methods [3], which re-
quire derivative computation. The main advantage of those methods is that they need a much
smaller number of iterations to converge to an optimum over other methods. However, only con-
vergence towards a local minimum is guaranteed. The derivative-free algorithms which are based
only on original fitness function [4], are proved as powerful tools for global optimum research and
therefore are widely used in real word problem such as engineering optimization. The evolution
strategies(ES) are one among powerful derivative free algorithms, which are a popular methods
for black-box optimization, where no expressions of so-called objective functions, are known and
no derivatives can be computed [5]. The use of Evolution strategies in real word problems proved
their power [6].

In the first stage of this work, the virtual thermo-mechanical test [7] was performed to evalu-
ate the reliability of solder joints of a mechatronic device[8]. The 3D FE developed model(figure1)
takes into account the nonlinearities properties of viscoplastique behavior of the solder joints[9].
This study reveals the interest to use the meta modeling techniques with CMA-ES, to increase the
reliability of solder joints of the mechatronic devices
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Figure 1: Global (a) and local model (b) of the solder joints

.
The second stage aims to applied the CMA-ES algorithm [10] to the global optimization of solder
joints in the mechatronic system (figure 1), in order to optimize the thermo-mechanical perfor-
mance of solder joints by maximizing the number of life cycles.The objective function (number of
life cycles based on design parameters) is evaluated repeatedly by performing iterations of CMA-ES
algorithm.The interest of this method resides in its efficiency to calculates a global optimum of the
objective function. The results obtained show an increase in the number of life cycles of the solder
joints, and signifies a success and the robustness of the CMAES method in the mechatronics field.

The last stage of this work intended to constraint the CMA-ES Algorithm with global reliabil-
ity methods[11] in order to develop a new Robust Reliability based design optimization, those
methods are based on global approximation model of performance function using Kriging Meta-
model. Metamodeling technique[12] is the basis for these global reliability methods. This category
of methods, firstly, approximates the performance function by Kriging metamodel, and then per-
form sampling methods based on the built surrogate model to calculate the failure probability.
The computational cost is significantly reduced with the aid of metamodel, since the metamodel
is cheap to evaluate. Additionally, global reliability methods can give accurate results because
Kriging metamodel can adequately model the nonlinear limit state function.
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Abstract. This paper is motivated by a real life application of multi-objective optimiza-
tion without preference. Having many incomparable solutions with Pareto optimality, the
motivation is to select a small number of representative solutions for decision makers. The
k-means clustering is investigated in this paper for the 2-dimensional case using the spe-
cific property that the points to cluster are Pareto optimal in R2. A dynamic programming
heuristic is designed, assuming a specific property of the optimal clusters. Having N points
to partition in K cluster, the complexity of the heuristic is in O(N3). If the presented conjec-
ture is proven, it induces that K-means clustering would be polynomially solvable in O(N3).
The dynamic programming algorithm can be adapted to consider cardinality constraints
for the clusters, which can improve the complexity. Matheuristics can be derived from the
previous algorithm to have a complexity in O(K.N2). These algorithms allows a natural par-
allel implementation. A posteriori, the complexity of the clustering algorithms allows also to
consider these algorithms inside multi-objective meta-heuristics to archive diversified non-
dominated points along the Pareto front. Applications in stochastic/robust optimization are
also discussed, clustering scenarios of uncertainty.

Keywords: Clustering algorithms; bi-objective optimization ; Pareto frontier; k-means ; dynamic
programming; matheuristics ; data science

1 Introduction

This paper is motivated by real-life applications of multi-objective optimization [7, 21]. The so-
lutions of multi-objective optimization approaches are a set of efficient solutions, non dominated
considering the Pareto optimality. It is a weak preference rule, many efficient solutions may exist.
The problematic is here to select for decision makers only a few good compromise solutions K from
N � K non dominated solutions. This selection aims to maximize the representativity of these K
solutions among the N initial ones. This can be seen as an application of clustering algorithms [14],
partitioning the N elements into K subsets with a maximal similarity, and giving a representative
(or central) element of the optimal clusters.

K-means clustering is one of the most famous unsupervised learning problem, and is widely
studied in the literature. A seminal algorithm to solve K-means problems was provided by Lloyd in
[16], a steepest descent heuristic that allows easily parallel computations with modern computers
[18]. Hartigan’s heuristic improve the quality of local minimums [12, 24]. We note that recent works
investigates larger neighborhoods [19]. A careful initialization has also an important impact to solve
k-means [2]. K-means was proven to be NP hard [5]. Special cases of K-means are also been proven
NP-hard in a general Euclidean space: the problem is still NP-hard when the number of clusters
is 2 ([1]), or when the dimensionality is 2 ([17]). The case K = 1 is trivially polynomial. The 1-
dimensional case was proven polynomially solvable thanks to a dynamic programming algorithm in
[27], with a complexity in O(k.n2) with a dynamic programming algorithm. This last algorithm was
improved in [11], for a dynamic programming algorithm with a complexity in O(kn) using memory
space in O(n). Being in a general Euclidean space, K-means can be solved by a Polynomial Time
approximation Schemes (PTAS), i.e. algorithms allowing to have a 1 + ε approximation solvable
in polynomial time for all ε > 0, as developed in [3].
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This paper develops dynamic programming heuristics to solve the particular case of k-means
clustering in a 2-dimensional Pareto frontier. A specific propriety of the optimal clusters is as-
sumed in a conjecture. If the conjecture is proven, this paper proves that the problem would be
polynomially solvable in O(N3) to optimality. At this stage, it is only a heuristic. Matheuristics
can also be derived from the previous algorithm in O(K.N2).

2 Problem statement and notations

We suppose in this paper having a set E = {x1, . . . , xN} of N elements of R2, such that for all
i 6= j, xi I xj defining the binary relations I,≺ for all y = (y1, y2), z = (z1, z2) ∈ R2 with:

y I z ⇐⇒ y ≺ z or z ≺ y (1)

y ≺ z ⇐⇒ y1 < z1 and y2 > z2 (2)

This property is verified in the applicative context, E being the solution of a bi-objective
optimization problem without preference. This applies for exact approaches or population meta-
heuristics like evolutionary algorithms and others [26].

We consider in this paper the Euclidian distance, defining for all y = (y1, y2), z = (z1, z2) ∈ R2:

d(y, z) = ||y − z|| =
√

(y1 − z1)
2

+ (y2 − z2)
2

(3)

We define ΠK(E), as the set of all the possible partitions of E in K subsets:

ΠK(E) =



P ⊂ P(E)

∣∣∣∣ ∀p, p′ ∈ P, p ∩ p′ = ∅ and
⋃

p∈P
= E and card(P ) = K



 (4)

K-means clustering is a combinatorial optimization problems indexed by ΠK(E). K-means
clustering minimizes the sum for all the K clusters of the average distances from the points of the
clusters to the centroid. Mathematically, this can be written as:

min
π∈ΠK(E)

∑

p∈π

1

card(p)

∑

x∈p

∣∣∣∣∣

∣∣∣∣∣x−
1

card(p)

∑

y∈p
y

∣∣∣∣∣

∣∣∣∣∣

2

(5)

3 Preliminary results

This section gives some preliminary results necessary for the following developments.

Proposition 1 (Order Properties) ≺ has following properties:

∀x, y, z ∈ R2, x ≺ y and y ≺ z =⇒ x ≺ z (6)

∀x, y, z ∈ R2, λ ∈ [0, 1] x ≺ z and y ≺ z =⇒ λx+ (1− λ)y ≺ z (7)

∀x, y, z ∈ R2, λ ∈ [0, 1] x ≺ y and x ≺ z =⇒ x ≺ λz + (1− λ)y (8)

Proof : The proofs of these results are easy, straightforward applications of the properties of the
relation < in R.

Proposition 2 (Total order) Points (xi) can be indexed such that:

∀(i1, i2) ∈ [[1;N ]]2, i1 < i2 =⇒ xi1 ≺ xi2 (9)

Proof : We prove the result by induction on N ∈ N.
For N = 1, the propriety (9) is trivially verified.
Let us suppose N > 1 and the Induction Hypothesis (IH) that (9) is true for N − 1.
Let A = {a ∈ R | ∃xi ∈ E, a = x1i }.
A is a finite subset of R, it has a maximum. Let m such that x1m = maxA.
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Let m′ 6= m. xm I xm′ with the definition of E, it implies x1m′ ≺ x1m or x1m ≺ x1m′ .
x1m ≺ x1m′ implies x1m′ > x1m which is in contradiction with x1m = maxA, thus x1m′ ≺ x1m.
It proves:

∀i ∈ [[1;N ]]− {m}, xi ≺ xm (10)

Applying (IH) to [[1;N ]]−{m} allows to index [[1;N ]]−{m} as i1 < · · · < iN−1 with propriety (9).
Defining iN = m, the missing inequalities are furnished by (10) to have the result true for N .
It proves by induction that (9) is true for all N ∈ N. �

Obj1

Obj2

x1•
x2•

x3• x4• x5•
x6• x7• x8•

x9• x10• x11• x12• x13• x14• x15•

Fig. 1. Illustration of the indexation implied by Proposition 2 in a 2-d Pareto front

Proposition 3 We suppose that points (xi) are sorted following Proposition 2. Let (i1, i2, i3) ∈
[[1;n]]3.

i1 < i2 < i3 =⇒ d(xi1 , xi2) < d(xi1 , xi3) (11)

Proof : Let i1 < i2 < i3. Proposition 2 ordering ensures x1i1 < x1i2 < x1i3 and x2i1 > x2i2 > x2i3)
d(xi1 , xi2)2 = (x1i1 − x1i2)2 + (x2i1 − x2i2)2

With x1i3 − x1i1 > x1i2 − x1i1 > 0, (x1i1 − x1i2)2 < (x1i1 − x1i3)2

With x2i3 − x2i1 < x2i2 − x2i1 < 0, (x2i1 − x2i2)2 < (x2i1 − x2i3)2

Thus d(xi1 , xi2)2 < (x1i1 − x1i3)2 + (x2i1 − x2i3)2 = d(xi1 , xi3)2. �

4 Optimal clusters for k-means clustering in a 2d-Pareto Front

This section gives the fundamental results for the algorithm of section 5. The optimal clusters can
be characterized and enumerated polynomially, as proven in this section.

4.1 Conjecture for the optimality of clusters

This result is intuitive geometrically. However, it is not fully proven, so we mention it as a conjec-
ture.

Conjecture 1 (Optimal clusters) We suppose that points (xi) are sorted following Proposition
2. We conjecture we have optimal solutions of the minimization problem 5 having only clusters
Ci,i′ = {xj}j∈[i,i′]] = {x ∈ E | ∃j ∈ [i, i′]], x = xj}

This characterization of the clusters is crucial for an application of the Dynamic programming
algorithm with a Bellman’s optimality property.
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4.2 Computing cost for one single cluster

This section investigates the complexity to compute the cost of the possible optimal clusters. We
note ci,i′ the cost of the cluster Ci,i′ :

ci,i′ =
1

i′ − i
i′∑

j=i

∣∣∣∣∣∣

∣∣∣∣∣∣
xj −

1

i′ − i
i′∑

k=i

xk

∣∣∣∣∣∣

∣∣∣∣∣∣

2

Computing ci,i′ requires using this formula O(i′ − i) operations, for the computation of the

centroid 1
i′−i

∑i′

k=i xk and for the summation over the i′− i elements to compute their distance to
the centroid. The other operations are in O(1).

The next section requires to compute all the ci,i′ with i < i′. Processing all the computations
of ci,i′ This makes a summed complexity in:

∑

i<i′

O(i′ − i) = O(N3)

Algorithm 1: k-means clustering in a 2d-Pareto Front

Input:
- N points of R2, E = {x1, . . . , xN} such that for all i 6= j, xi I xj ;
- K ∈ N the number of clusters

Cluster2dPareto(E,K)
//Initialization phase.
define matrix c with ci,j = 0 for all (i, j) ∈ [[1;N ]]2

initialize matrix C with Ci,k = 0 for all i ∈ [[0;N ]], k ∈ [[1;K]]
initialize P =nil, a set of sub-intervals of [[1;N ]].
sort E following the order of Proposition 2
compute ci,j for all (i, j) ∈ [[1;N ]]2 as in section 4.2
//Construction of the matrix C
for i = 1 to N

// case k = 1 treated separately
set Ci,k = c1,i
for k = 2 to K

set Ci,k = minj∈[[1,i]] Cj−1,k−1 + cj,i
end for

end for
return CN,K the optimal cost

//Backtrack phase
i = N
for k = K to 1 with increment k ← k − 1

find j ∈ [[1, i]] such that Ci,k = Cj−1,k−1 + cj,i
add [[j, i]] in P
i = j − 1

end for
return the partition P giving the cost CN,K

5 Dynamic Programming algorithm

Conjecture 1 and the polynomial computations of all the ci,i′ with i < i′ allows to derive a dynamic
programming algorithm. Defining Ci,k as the optimal cost of the k-means clustering with k cluster
among points [[1, i]] for all i ∈ [[1, N ]] and k ∈ [[1,K]], we have following induction relation:

∀i ∈ [[1, N ]], ∀k ∈ [[2,K]], Ci,k = min
j∈[[1,i]]

Cj−1,k−1 + cj,i (12)
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5

This last relation use the convention that C0,k = 0 for all k > 0. The case k = 1 is directly given
by:

∀i ∈ [[1, N ]], Ci,1 = c1,i (13)

These relations allow to compute the optimal values of Ci,k by dynamic programming in the
Algorithm 1. CN,K is the optimal solution of the k-means problem, a backtracking algorithm on
the matrix (Ci,k)i,k allows to compute the optimal partitioning clusters:

Theorem 1. Let E = {x1, . . . , xN} a subset of N points of R2, such that for all i 6= j, xi I xj.
The complexity of Algorithm 1 is in O(N3). If the conjecture 1 is proven, the k-means optimal
clustering is polynomially solvable with Algorithm 1.

Proof : In Algorithm 1, it is easy to show by induction that Ci,k has its final value for all i ∈ [[1, N ]]
at the end of the for loops from k = 2 to K. The reason is that the induction formula (12) uses
only values Ci,j with j < k. CN,K is thus at the end of these loops the optimal value of the K-
means clustering among the N points of E. The backtracking phase searches for the equalities in
Ci,k = Cj′−1,k−1 + cj′,i = minj∈[[1,i]] Cj−1,k−1 + cj,i, proving that such cluster Cj′,i allows to give
an optimal solution.

Let us analyze the complexity. Sorting and indexing the elements of E following Proposi-
tion 2 is equivalent to sort following one dimension, as highlighted in the proof of Proposition
2. The complexity of this sorting phase is thus in O(N logN). The straightforward computation
of the matrix ci,i′ has a complexity in O(N3) following the computation of section 4. The con-
struction of the matrix Ci,k in the dynamic Programming phase requires N ×K computations of
minj∈[[1,i]] Cj−1,k−1 + cj,i, which are in O(N), the complexity of this phase is in O(K.N2) which is
a O(N3) as K < N . The final backtracking phase requires K computations having a complexity
in O(N), the complexity is in O(K.N). It proves that the complexity of Algorithm 1 is in O(N3),
the phase giving this complexity being the computation of matrix ci,i′ .

6 Discussions

This section discusses the implications and applications of Theorem 1 and Algorithm 1.

6.1 Relations with the state-of-the-art

The k-means problem was proven NP-hard in a Euclidean space of dimension 2 since [17]. This em-
phasizes that the hypothesis of non dominated solutions is crucial in this result. We note similarities
with the 1-dimensional case, proven polynomially solvable thanks to a dynamic programming algo-
rithm in [27] improved in [11]. Actually, Proposition 2 induces a similarity with the 1-dimensional
case, the total order induces a 1-dimensional structure. The general 1-dimensional k-means problem
is included in the 2 dimensional case in a Pareto Front, it is equivalent to cluster among a linear
Pareto front. The general case without linearity of the Pareto front induces more complications,
with no additivity of distance but a triangular inequality. Lastly, we note that an equivalent of the
Conjecture 1 was proven for the p-median and p-centers problems in [8], leading to polynomially
proven algorithms.

6.2 Improving the complexity of Algorithm 1?

In the Algorithm 1, the complexity is due to the initial computations of the matrix ci,i′ , whereas
main part of the algorithm, the dynamic programming phase, has a complexity in O(K.N2). It is
possible to reduce the number of computations noticing that some computations of ci,i′ are not
required. Indeed, in the computations Ci,k = minj∈[[1,i]] Cj−1,k−1 + cj,i, the computation of ci,j
may be useless if Cj−1,k−1 + c̃i,j is higher than the current best value in the minimization, where
c̃i,j is a lower bound of ci,j easier to compute. This opens numerical perspectives to accelerate the
Algorithm 1.
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6.3 Adding cardinality constraints

Similarly to [20], Algorithm 3 allows to incorporate cardinality constraints, considering only clusters
Ci,i′ with specific cardinality of i′ − i. A first reason is that when i′ − i close to N , there are few
chance to have very unbalanced clusters at optimality. A second reason could be to impose for
representativity to avoid too small clusters. It can be a constraint to impose that the cardinal of
the selected clusters must be close to N

K . In Algorithm 3, a first way to deal with such constraints
is to set values ci,i′ = +∞ for the i < i′ with the unwilled cardinality.

We note that such cardinality constraints can have a positive impact on the complexity of
Algorithm 1. Computations Ci,k = minj∈[[1,i]] Cj−1,k−1 + cj,i are easier with less cases in j to
enumerate. For the both continuous and discrete p-center problems, the computations of ci,i′ are
independent, the useless computations of ci,i′ can be removed. Allowing for each i ∈ [[1, N ]] only
α.K definite values of ci,i′ , it improves the final complexity. A natural case would be to consider only
the subsets [[i, i′]] with bN/Kc−αK < |i′− i| < bN/Kc+αk for a given α ∈ N. With such choices,
the construction of the matrix Ci,k is in O(K2.N) with operations Ci,k = minj∈[[1,i]] Cj−1,k−1 + cj,i
having a complexity in O(K). With such choices, the construction of the matrix Ci,k is in O(K2.N).

6.4 Accelerated matheuristic derived from Algorithm 1

The complexity in O(N3) can be a bottleneck to compute Algorithm 1 for high values of N .
O(K.N2), the complexity of the dynamic programming algorithm without the computations of
ci,i′ , can be a more reasonable complexity.

A first possibility is to compute in O(K) good lower bounds of ci,i′ and use the dynamic
programming with these estimations to compute partitions that are finally evaluated using the
exact formula. As is, the dynamic programming has a complexity in O(K.N2).

Another possibility, similar to variable fixing heuristics as in [10], is to restrict the computations
forbidding some partitions. Setting ci,i′ = +∞ forbids the cluster Ci,i′ . With such choices, the
construction of the matrix Ci,k is in O(K2.N). Using infinite values of ci,i′ is also a way to add a
cardinality constraints for the clusters.

These two constructive matheuristics can be followed by local search iterations using the Lloyd’s
algorithm [16]. This steepest descent procedure can be considered only on the extreme points of
the clusters with Proposition 1, leading to a complexity in O(K) computations for each steepest
descent iteration.

6.5 Towards a distributed implementation

The numerical computations of Algorithm 1 can be accelerated with a distributed implementation
using the Message Passing Interface (MPI) framework, as in [18]. The computation of ci,i′ are
independent and are thus easily easy parallelized. The construction of the matrix Ci,k requires
independent computations for a given k, using the final values in k−1. For a parallel implementation
sharing the memory, this requires just to wait that all the coefficient Ci,k−1 are terminated to start
the computations of Ci,k−1. With a distributed implementation with MPI, this requires for each
thread to broadcast the results of Ci,k computations to the other threads.

6.6 Using the Algorithm 1 in higher dimensions?

The applicative motivation could concern multi-optimization preoccupations with three or more
objectives. The bi-objective case is a first step. The 2-dimensional case is very specific thanks to
the Proposition 2. However, Algorithm 1 can be used thanks to the reduction of dimension with
Principal component analysis (PCA) or using the Johnson-Lindenstrauss lemma [6].

6.7 Applications to multi-objective optimization

The hypothesis defining E is verified for non-dominated points of bi-objective optimization. As
stated in the introduction, the initial motivation of this work is to aid the decision makers when a
multi-objective optimization approach without preference furnishes a large set of non dominated
solutions. In this application, the value of K is small, for human analyses to give some preferences.
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A posteriori, the complexity of Algorithm 3 allows also to consider these clustering algorithms
inside multi-objective optimization meta-heuristics. Archiving Pareto fronts is a common issue of
population meta-heuristics facing multi-objective optimization problems [25]. A key issue is to
have diversified points of the Pareto front in the archive, to compute diversified solutions along
the current Pareto front. Algorithm 3 can be used to address this issue, embedded in multi-
objective optimization approaches. More specifically, clustering Pareto sets has an application for
the diversification of genetic algorithms to select diversified solutions for cross-over and mutation
phases [28]. For swarm particle optimization, clustering algorithm are also useful in the low-level
implementation as shown in [22]. This applies also for the large class of multi-objective meta-
heuristics [26].

Embedded in multi-objective meta-heuristics, Using Algorithm 3 would be called iteratively.
Having a dynamic programming algorithm, this makes easier online optimization where several
points are not changing from an iteration to another. In this case, the computation of matrix c can
reuse the previous values that are still valid. Coefficients Ci,k can also be computed quicker with
previous computations.

6.8 Applications to optimization under uncertainty

Clustering non-dominated vectors has also applications in the context of optimization under un-
certainty. It is a natural and common idea to model the uncertain data by the use of discrete
scenarios for stochastic and robust optimization [23, 15]. A computational limitation can be the
maximal number of scenario to incorporate in the optimization models, or the number of scenario
to explore in meta-heuristics like in [13]. It induces a need for an algorithm to select a subset of
representative scenarios to explore, and/or to aggregate the closest scenarios. In both cases, the
problem is similar to select a given number of scenarios, maximizing the representativity of the
selected scenarios The points to cluster represent in this case scenarios, the dimension of the space
Rn is the number of uncertain parameters n.

In the case of robust optimization with discrete scenarios, worst-case analysis induce to consider
only the Pareto non-dominated scenarios. The mid-point heuristic, aggregating non-dominated
scenarios, is used for approximation results but also for the quality of primal heuristics in [4].
Partial aggregation following representative clusters of scenario is likely to improve the mid-point
primal heuristic.

In the case of stochastic optimization, the progressive hedge algorithm uses scenario aggregation
to derive primal heuristics [23, 13]. We note that dual heuristics in [9] aggregates also scenarios
following partitions to have dual bounds for stochastic problems. The quality of the clustering
impacts the quality of the heuristics in both cases, this makes sense to be careful on the clustering
algorithms to use.
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1 Introduction

In recent years, as various engineering technologies have progressed, applications of optimization
techniques have diversified, as shown in Fig. 1. Cases 2 and 3 in the figure especially tend to have
black-box and expensive objective functions regarding time and/or money for each evaluation.
Meanwhile, in the real world, time and/or money constraints are usually imposed beforehand on
any engineering development project. Therefore, practitioners who handle such expensive black-
box objective functions must find better approximated solutions to as great a degree as possible,
under the evaluation-times constraint induced by the time and/or money constraints. We refer
to the general class of such problems as the Evaluation-times Constrained Optimization (ECO)
problem.

Let us consider an example in case 2 to understand the importance of the ECO problem.
Suppose that an objective function value is calculated based on a solution from an expensive
simulator that takes 1 day to output one solution. Furthermore, assume that a practitioner is
given a time constraint of 30 days to attempt to optimize this expensive objective function. In
this case, the practitioner can run the simulator a maximum of 30 times, which means that the
practitioner has to find a good approximated solution in 30 evaluation-times for the objective
function. However, typical optimization algorithms would not work well for such a case because
they are not configured based on the constraint information. They cannot adapt to the constraints
originated from the real world.

In this short paper, we formulate ECO problems and then provide a general solver model for
them. The general solver model is a population search model designed to carry out a strategy
that gradually shifts from exploration to exploitation as the evaluation-times come close to the
constraint. Specifically, a parameter set of the model, affecting the population behavior, is consec-
utively adjusted every iteration to execute the strategy. Following this general model, we would
create new population search algorithms for ECO problems or customize existing population search
algorithms, such as particle swarm optimization (PSO) [1], differential evolution (DE) [2], cuckoo
search (CS) [3], and spiral optimization (SPO) [4], for ECO problems.

2 Formulation of Evaluation-times Constrained Optimization (ECO)
Problems

This section aims to formulate the ECO problems.
Defining an expensive objective function f : RD → R, the number of evaluation-times t, and a

given evaluation-times constraint T , we can formally describe ECO problems as follows.

Decrease
x∈RD

f(x) a.m.a.p. subject to t ≤ T.

This uses “Decrease” and “a.m.a.p. = as much as possible” to attenuate the usual command
“Minimize” because it is generally impossible in this scenario to guarantee that the algorithm will
strictly minimize and find an optimal solution for any T . In fact, typical optimization theories
assume infinite evaluation-times.

Furthermore, this formalization can be more specific at the expense of generality. Suppose
{x1,x2, . . . ,xt} are sequential solutions until iteration t by an algorithm for which one iteration
means one function evaluation. In this case, the ECO problem can be represented as follows.

Decrease
xt∈{x1,...,xT }

min{f(xt) (t = 1, . . . , T ) } a.m.a.p.
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Note that a similar and simpler expression is “DecreasexT
f(xT ) a.m.a.p.” and that “Decrease”

can be replaced with “Increase” if a maximization problem is considered.

3 A General Solver Model for ECO Problems

This section aims to suggest a general solver model for ECO problems.
First, we consider the following general population search model for common optimization

problems for an objective function f .

Xk+1 = A(X1:k,F 1:k,P ) (k = 1, . . . ,K) (1)

where Xk := {x1,k, . . . ,xM,k} is a population of M search points at an iteration k, F k := {f(x1,k),
. . . , f(xM,k)}, X1:k := {X1, . . . ,Xk}, F 1:k := {F 1, . . . ,F k}, P is a parameter set that affects
the behavior of the population (interaction among the population) for the next step, and K is the
maximum of the iteration. This general model means that the next population is determined based
on the search history data and the parameter set. This model can represent almost any population
search algorithm such as PSO [1], DE [2], CS [3], and SPO [4].

The performances of typical optimization algorithms are measured by each evaluation-times
when each objective value sequences almost reach the optimal value. However, ECO algorithms
must be measured by the best objective value when the evaluation-times reaches the given con-
straint. For example, in Fig.2, Algorithm 1 is the most efficient in the context of typical minimiza-
tion. However, when the evaluation-times constraints are T1 and T2, the most efficient algorithms
are Algorithm 3 and Algorithm 2, respectively. This indicates that the evaluation-times constraint
is essential information for algorithms performance. Therefore, the algorithms for ECO problems
should utilize the given evaluation-times constraint T in the search mechanisms.

Based on this principle, we here consider adjusting the parameter set P of the usual model (1)
using the constraint T to make the population Xk behave appropriately for ECO problems. To
this end, we focus on a well-known effective strategy in metaheuristics that finds an appropriate
balance between exploration and exploitation for a target problem. Note that exploration is a
strategy that globally searches, and exploitation is a strategy that intensively searches around
good solutions. Here, as such an appropriate balance for ECO problems, we suggest gradually
shifting exploration to exploitation as the evaluation-times t approaches T . It is noted that, in this
model, the evaluation-times t is defined by t = M×k. Thus, for a given evaluation-times constraint
T , the population size M and the maximum iteration K must be set to satisfy K = T/M .

To realize this concept, we introduce a measure E(Xk+1), evaluating a relation between all
points xi,k+1 (i = 1, . . . ,M) and the current best point xbest, and a target trajectory R(k;T ) of
E(Xk+1) which gradually decreases as k → K = T/M (i.e., t → T ). The measure E(Xk+1) can
evaluate the degree of balance between exploration and exploitation for the current population.
Thus, when E(Xk+1) is decreasing, we can judge that the exploitation is getting stronger. The

323 sciencesconf.org:meta2018:210276



1 K = T/M

Fig.3 Examples of R(k, T ) Fig.4 Proposed General Solver Model for ECO Problems

converse is also true. The target trajectory R(k;T ) provides an ideal decreasing balance from
exploration to exploitation that E(Xk+1) should follow as k → K = T/M (i.e., t → T ). As
examples of R(k;T ), we provide the following three decreasing functions:

– R1(k;T ) = (R−R)(k − 1)/(K − 1) +R,
– R2(k;T ) = (R−R)

√
1− (k −K)2/(1−K)2 +R,

– R3(k;T ) = (R−R)(−
√

1− (k − 1)2/(K − 1)2 + 1) +R,

where K = T/M and R is usually set to E(X1). These trajectories are as shown in Fig. 3. From the
usual model (1), E(Xk+1) = E(A(X1:k,F 1:k,P )) can be regarded as a function of the parameter
set P . Thus, we can expect to adjust the parameter set P to make E(Xk+1) follow the ideal
trajectory R(k;T ). Specifically, we propose adjusting P every iteration by solving the following
problem.

P k+1 = minimize
P

(R(k;T )− E(Xk+1))2 (k = 1, . . . ,K). (2)

This method determines the next parameter set P k+1 to make E(Xk+1) follow R(k;T ) for each
iteration k. If the number of elements of P is small, this problem could be easily solved. We can
describe the proposed general solver model as shown in Fig.4.

4 Conclusions

This short paper has formulated a new class of black-box optimization problems, called the
Evaluation-times Constrained Optimization (ECO) problem, in which the evaluation-times of the
objective function are constrained beforehand. Furthermore we showed a general solver model for
ECO problems that is designed to adapt a typical population search model to ECO problems. Our
future work is to use this proposed general model to develop new population algorithms for ECO
problems or adapt existing population algorithms to ECO problems.
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1 Introduction

This paper addresses a new Fleet size and mix Pickup and Delivery Problem with multi-flux, com-
patibility constraints and scheduling, encountered in real-world logistics. In this problem, there are
a team of drivers and multiple vehicle types available to cover a set of pickup and delivery’s demand
pair. Each demand has a time windows, a number of product type’s trolleys. The demands are
paired such that a pickup demand is coupled with a unique delivery demand. Each pair of demands
is carried by a driver with the same vehicle, and the pickup demand must be performed before
its delivery demand. Demands and vehicle types must satisfy a set of compatibility constraints
that specify which demands cannot be covered by which vehicle types and which requests cannot
be shipped together. Each schedule of a driver must satisfy the daily driver’s work rules. In this
problem, a driver is allowed to change the vehicle in it’s schedule. The total cost of a solution is
the sum of the total fixed cost of driver’s number, the total fixed cost of used vehicles and the total
mileage cost.

Recently, many extensions of pickup and delivery problems motivated by real life problems
were discussed in the literature. [4] proposed a set partitioning formulation to solve a practical
heterogeneous fleet pickup and delivery problem with unloading sequence constraints. They also
took into account practical aspects such as: multiple time windows, multiple depots, compatibility
constraints between carrier and vehicles, orders and vehicles, and between orders. [2] proposed
a branch and price algorithm to tackle pickup and delivery problems with soft time windows.
Most of the complications involved in the pickup and delivery problems such as time windows,
capacity, compatibility constraints, and driver’s works rules have not been addressed together in
the literature. To solve this new pickup and delivery problem, in the next section an effective hybrid
ant colony optimization algorithm is proposed to solve this problem.

2 Solution methodology and results

The ant colony optimization algorithm is chosen because it proved its effectiveness in vehicle routing
problems ([1,3]) since its constructive method does not require a repair procedure. To present the
algorithm, firstly the procedure of a solution construction by an ant is given, secondly the updating
formulae of the pheromone are shown. The dedicated local search algorithms which are proposed
to improve accuracy of the ant colony algorithm, are described in the next subsections.

2.1 Construction of a solution and pheromone updating procedure

A solution is composed of a set of schedule, characterised by a suit of trips. An ant, using
pheromone, constructs the schedules sequentially. It opens a new schedule for a new driver if
among the remaining nodes to visit any of them can be inserted in the current schedule. A new
schedule is initialized with the demand chosen to be completed using a vehicle type with the larger
area, which respect the compatibility constraints, when in the construction of a solution the request
found using pheromone and informations in the current trip, cannot be inserted in the current trip
without violate the driver’s rules.

Given a partial scheduling s which is building, we consider r the last trip constructed. Let pi the
last pickup demand satisfying in the trip r. The next request j to insert is chosen to be randomly
inserted in the current trip using probability:
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P rij =
τα1
ij ηij∑

l∈Sr
i
τα1

il ηil
if j ∈ Sri ; and 0 otherwise

τij denotes the trail of pheromone on arc (i, j). Sri is the set of eligible requests which can be per-
formed after request i (with pi the last pickup demand complete in the last trip r). The parameters
α2 and ηij modulated consecutively the importance between the visibility and the pheromone, and
the visibility value used to guide the ant.

ηij =
1

lj + α2dpipj
(1)

with α2 > 0 a positive fixed scalar, dpipj the distance from the location of pi to pj , and lj the
latest time at which the service may begin at node pj .

The initialization and pheromone updating procedures are important features to enhance
promising arcs and then explain the convergence of the algorithm. At the beginning of ACO,
pheromones are initialized as follow:

τij = τ0 if (i, j) ∈ E; and 0 otherwise

with τ0 a fixed scalar.
When all ants have constructed their solutions, the trail pheromone deposited on all edges are

updated by the formulae:

τij ←
{
ρτij + (1− ρ)∆∗

ij if pi precedes pj in the best ant
ρτij otherwise

(2)

with ∆∗ij =
(number of demands in s∗i )

α3

total cost of the best solution found
.

And s∗i the schedule which contains request i in the best ant, ρ ∈[0;1] fixed and α3 positive
fixed scalars.

The idea of using ∆∗ij is to enforce the construction of trips with a good packing. This formulae
to update pheromone allowed the algorithm to converge to a unique solution.

2.2 Local search algorithms

This section describes five local search algorithms used to improve a solution constructed by an
ant. Each local search algorithm is designed to handle a specific aspect of objective function (the
sum of fixed cost of drivers, sum of fixed cost of vehicles used and the routing cost).

Heuristic H1 is used to decrease the sum of the number of drivers used. H1 tries to remove each
schedule of the solution. So at each iteration, a schedule is selected and remove from the solution.
Thus, the requests presents of this schedule are reinserted in the partial solution. Every request is
inserted in the partial solution at the positions (pickup and delivery positions) that minimizing the
total cost. If finally, all the requests presented in the trip r are reinserted, the solution is updated
if the new solution has a better cost than the previous one.

The local search algorithm H2 is proposed to decrease the sum of fixed cost of the vehicles
used. Given a solution, for each schedule and for each trip in this schedule, the algorithm finds
the type of the vehicle able to performed the trip at the cheapest cost. At each iteration of the
heuristic H3, a request is randomly chosen and removed from the solution, and, the pickup and
delivery demands of this request are reinserted at the positions that minimizes the total cost. The
process is repeat for a given number of iterations.

The algorithm H4 improves a given solution by optimizing each trip of this solution. To optimize
a trip, an insertion order of requests presents in this trip is randomly generated. In the order of
completion, these requests are inserted in a new trip (each insertion of the request is done such
that the cost after insertion of the request is minimized). If all requests are inserted in the new
trip with a better cost, the trip is replaced by the new one.

The algorithm H5 at each iteration, removes a trip in a schedule with more than one trip, and
tries to reinsert the requests (from the removed trip), in the partial solution. If all the requests are
reinserted, a new solution is obtained. And the previous solution is replaced by the new one, if it
has a better cost.

The pseudo code of hybrid ACO algorithm used is given by Algorithm 1. In this pseudo code,
the algorithms H1, H2, H3, H4 and H5 at lines 6, 8 and 10 are mainly used sequentially to
decrease the total cost of the solution constructed by an ant. The choice of the order of using of local
search algorithms was made after several experiments to optimize the algorithm performances.
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Algorithm 1 Pseudo code of HACS algorithm

1: Initialization of parameters
2: while the best solution is not improved in a given number of iterations do
3: for each ant of the population do
4: Construct a solution to complete all demands
5: while we decrease the number of drivers do
6: Apply respectively algorithms: H1, H3, H4 and H5
7: end while
8: Apply algorithm H2
9: while we decrease the total cost of the current solution do

10: Apply respectively algorithms: H1, H3, H4, H5 and H2
11: end while
12: Apply the local updating pheromone
13: end for
14: Apply the global updating pheromone
15: end while

2.3 Computational experiments

The algorithms have been implemented on eclipse, the programming language was Java and the
experiments have been carried out on a 2.6 GHz and 8 Go of RAM. Based on well know Solomon’s
Benchmark for vehicle routing, a benchmark with reasonable size (up to 100 demands) is generated.

There are six parameters that can significantly affect the performance of the hybrid ACO:
ρ = 0.85, α1 = 3, α2 = 0, α3 = 3, τ0 = 1, number of ant = 2N . Where N is the number of
demands. These values are found by the Taguchi experimental design.

The proposed algorithm finds a feasible solution for each instance of the proposed benchmark.
These solutions provide a first set of best know solutions for the future methods of resolution.

Experiments on the Hospital Centre of Troyes benchmark (consisting of instances with 100
demands) are also realized. The experiments show that on average, the result obtained by the
proposed algorithm decreases in average 26% of the cost of the solution for each day of the week.
The computational time spent by the hybrid ant colony algorithm on solving each instance is just
over two minutes.

3 Conclusion

In this paper, we have presented a pickup and delivery problem which involves a set of practical
issues such as time windows, heterogeneous vehicle types, DOT rules, and compatibility constraints.
These issues are commonly seen in real world logistics operations, but have received little attention
in the literature. In this paper, it is designed an ant colony algorithm to solve the problem. The
proposed ant colony algorithm is combined with dedicated local search algorithms to improve
the quality of the solutions obtained. To test the proposed hybrid ACO algorithm, 56 instances
up to 100 demands based on well-know Solomon’s benchmark were introduced. The tests on the
industrial benchmark show the effectiveness of our approach. In the future, it would be interesting
to compare our approach with other algorithms.
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1 Introduction

Recently, the increase of the use of renewable energies and the need for more energy efficiency
are one of the most important concerns of the governments. Improving the energy efficiency and
incrementing the renewable energy consumption in the industrial sector which has the largest share
of energy consumption become one of the most effective steps to reach defined “20-20-20 Energy
Targets” of European Union. Therefore, especially in the last few decades, energy-efficiency-based
studies received a considerable attention from both researchers and companies. With the increasing
awareness for energy efficient production systems, the studies which are conducted for classical lot
sizing and scheduling problems have evolved to energy-efficiency based lot sizing and scheduling
studies. When the previous studies are examined, it is seen that the common approach applied
to reduce the energy costs is to reduce the energy consumption. None of them take into account
the energy supplier conditions and build a relation between the energy related constraints and
production constraints. The work of [1] which introduces the energy aspect to the single item
lot sizing problem can be referred as the first attempt which combines both energy supplier and
producer side constraints. In our study, we improve the work of [1] and integrate single item lot
sizing problem in flow shop systems with the energy contract selection problem.
Energy producers propose different energy tariffs and contract options to their customers to manage
their energy generation strategies in a more efficient way. Selecting best energy option which can
cover the need of the production system is another important decision which has to be made
by manufacturers. The aim of our study is to identify optimum energy contract option and the
optimum production sizes for each period and each machine for a given planning horizon. The
renewable energy sources are also taken into account in the contract capacity selection process by
aiming to generate more environmental friendly production systems.
As it is proved by [2], capacitated lot sizing problem is NP-hard problem. Therefore, it is quite
hard to reach optimum solution of the problem within a reasonable time period. In this study, we
propose to apply an Iterated Local Search approach to overcome this difficulty.

2 Problem Definition

A manufacturing system which is made of N machines and N buffers is considered. The whole
planning horizon is divided into T periods. Each period is defined by its length (Lt), its external
demand (dt) to be satisfied, the electricity price (Cot). The objective is to identify the production
quantity to be produced and the optimum energy contract option by minimizing the production,
holding, set-up and energy costs. Three types of energy sources (k) (traditional, solar ,wind)
are considered. The contract options (Vk,l) proposed by the supplier are characterized by their
subscription costs (Costk,l). In the case of excessively high or low consumption from the contacted
capacity, exceeding portions are penalized with defined penalty cost (fk). The penalty tolerance
level is considered 10% in this study. The objective function of the proposed approach can be
written as follows:

Minz=
∑T

t=1

∑N
m=1(ψm,t.xm,t + h.Im,t + wm,t.ym,t) +

∑Rk

l=1

∑K
k=1(Costk,l.Pk,l)

+
∑T

t=1

∑K
k=1(fk.(ACk,t +BCk,t))
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Table 1. Notations

The Parameters Definition

ψm,t Electrical consumption cost of machine m at period t
h : Holding cost per unit
wm,t : Setup cost of machine m in period t
Costk,l : Subscription cost for energy source k option l.
fk : Penalty cost for energy source k.

The Decision Variables Definition

xm,t : Quantity produced on machine m in period t.
Im,t : Inventory level of machine m at the end of period t.
ym,t : A binary variable, equal to 1 if machine m is setup in period t,0 otherwise.
Pk,l : A binary variable, equal to 1 if energy source k and option l is selected 1,0 otherwise.
ACk,t : The energy used above the contracted value for energy source k in period t.
BCk,t : The energy used below the contracted value for energy source k in period t.

In the first part of the objective function, electricity based production cost, holding cost and
setup costs are minimized. The second part selects the optimum energy contract option which can
cover the energy need of the manufacturing system by minimizing energy costs and the third part
calculates the penalty costs that can arise from any deviation from contracted option values. The
objective function is followed by the lot sizing, flow shop configuration and energy related con-
straints. We suggest readers to review the previous work of authors for the detailed mathematical
model. [3]

3 Solution Approach

Iterated local search (ILS) is a single-solution based metaheuristic algorithm which consists of
three basic components: an initial solution generation mechanism, an improvement procedure and
a perturbation mechanism which is used to escape from local minimum [5]. The main steps of the
solution approach are given in Algorithm 1. As it can be observed from the solution algorithm,
ILS approach starts with an initial solution and a local search is performed on the initial solution.
Since the set of decent moves are applied in the local search procedure, this case leads to trapping
in the local minimum. To escape from the local minimum point, perturbation procedure is applied.
Therefore, the current solution is moved to the new walking regions in the solution space. This
local search and perturbation procedures are repeated until the stopping condition is met. The
movements of the found solutions are illustrated on Figure 1.

s0=GenerateInitialSolution
s∗=Local search (s0)
repeat

s
′
=Perturbation(s∗, history)

s∗
′
=Local Search(s′)

s∗=AcceptanceCriterion(s∗, s∗
′
, history)

until termination condition met

Algorithm 1: Iterated Local Search Algorithm [4]

In our study, we generate initial solution by assigning production quantities to the machines
in a random way by following formula:

xm,t=dt+random(0, xm−1 − dt) ∀m = 2, ..., N,∀t = 1, ..., T
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Fig. 1. Graphical representation of ILS solution approach [4]

This stipulates that the quantity on the last machine for the given period is the summation of
the demand of the this period and a random quantity. The maximum value of this random quantity
equals to difference between the quantity produced on the previous machine and the demand. Since
the flow shop configuration is considered in this study, this approach ensures not to produce more
than what is available from previous machines.
When it comes to identifying the movements in the solution space, we propose three moves: shifting
the production inside of the periods, load balancing and reducing the inventory level.
Shifting the production may reduce the setup cost. Secondly, load balancing strategy aims to shift
the starting time of the machines in a period to have a higher (or a lower) power usage within the
period. Lastly, in reducing inventory strategy, the production quantities are shifted by keeping the
same setup cost. Therefore, the machines run in the same periods but productions will change by
shifting the production of some products from one period to another.

4 Conclusion

The main contribution of this study is to combine energy contract selection problem with the
single item lot sizing problem for flow shop systems. It is aimed to built a harmony between
production and energy decisions to contribute to the energy efficiency in the industry. The energy
capacity options for renewable energy sources are taken into account, therefore, it is targeted to
generate more environmental friendly production systems. Since the handled problem is NP-hard
problem, an iterated local search approach is proposed to reach ”good” results within a ”reasonable”
time period. The developed ILS facilitates to define optimum contract option covering the energy
need of the manufacturing system and optimum production sizes which satisfy customer demand
by overcoming the NP-hardness of the adressed problem. The first results of proposed approach
present high quality solutions within an affordable computation time.
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1 Introduction

This work is carried out in collaboration with a company which specializes in the sale of ready-mix
concrete.
Ready-mix concrete is normally delivered in mixer trucks. This type of truck is heavy, cumbersome,
expensive, and can be disproportionate in some cases, especially when delivering small quantities
of concrete.
Therefore, the company wants to propose a new delivery method using small containers (500 litre
bins) to reduce delivery costs and deal more effectively with orders of small quantities.
This new method is a two-step process :

1. A vehicle delivers a number of bins of concrete to the customer ;
2. The next day, the vehicle returns to the customer to pick up empty bins.

To ensure the profitability of this method, the company needs a decision support system that can
generate efficient pick-up & delivery tours taking into account vehicle capacity constraint and
recycling constraint.
Indeed, if a bin is totally empty and clean when it is picked up from a customer, it could be
directly supplied to another customer. Otherwise, it must be immediately routed to a recycling
centre before it can be delivered again (the unconsumed concrete is then recycled and the bin
cleaned). Knowing that the state of a bin is uncertain before the vehicle arrives at customer’s
location, the a priori planned vehicle route may changes during time to include recycling centre(s)
whenever necessary. This uncertainty involves dealing with stochastic vehicle routing.
This paper aims to provide an efficient approach to build pick-up & delivery tours minimizing the
loss of quality caused by potential detours to recycling centres.

2 Literature Review

We consider a stochastic One-Commodity pick-up & delivery travelling salesman problem.

2.1 Pick-up & delivery problems

There are three main classes of pick-up & delivery problem in the literature :

One-to-one problems One or more vehicle have to carry n commodities, where each commodity
has a specific origin and destination. One of the best known examples of this class is the Dial-
a-Ride problem which consists in transporting people from an origin to a destination. The
problem has been studied for both single [4] and multiple [5] vehicle cases, with various types
of constraints related to ride times, time windows [6, 7]...

One-to-many-to-one problems Commodities are divided into ”delivery commodities” and ”pick-
up commodities”. One or more vehicle have to carry the delivery commodities from the depot
to the customers and the pick-up commodities from the customers to the depot. Assuming that
np is a set of pick-up customers, and nd a set of delivery customers, two cases have been distin-
guished for these problems : single demands, where np∩nd = ∅, and combined demands, where
np ∩ nd 6= ∅ . For the latter case, [8] consider various possible path types such as Hamiltonian
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path, where each customer is visited once such that pick-up and delivery are performed simul-
taneously, as well as Double-path where each customer that has a combined demand (pick-up
and delivery) is visited twice, the first time for a pick-up, the second for a delivery. Several
heuristics have been proposed for both path types for the single and the multi-vehicle cases [9,
10]...

Many-to-many problems One or more vehicle have to transport goods between customers
knowing that each customer can be a source or a destination of any type of good. Among
the problems of this class, the One-Commodity pick-up and delivery travelling salesman prob-
lem was introduced in [11]. A single vehicle with a known and finite capacity has to carry a
single commodity between pick-up customers and delivery customers, a picked up commodity
can be supplied to a delivery customer. This problem is known to be NP-Hard. Moreover,
checking the existance of a feasible solution is an NP-Complete problem [13]. Studies on such
problems are relatively scarce. A branch and cut algorithm has been proposed in [11] for small
instances, and two heuristics have been developed in [12] to tackle larger instances, in particular
by defining ”the infeasibility of a path”, and adapting the nearest neighbourhood heuristic to
increase the chance of obtaining a feasible solution. Furthermore, [14] have proposed a hybrid
method combining GRASP (greedy randomized adaptive search procedure) and VND (variable
neighbourhood descent) metaheuristics. This method gave better results than the previously
proposed ones.

For a detailed survey on pick-up and delivery problems, we refer the reader to [15].

2.2 Stochastic/Dynamic vehicle routing problems

Vehicle routing problems can be classified according to the information quality and evolution.
Thus, an input information can be deterministic or stochastic, and it can be known in advance or
revealed during the tour.
A taxonomy of vehicle routing problems based on these two dimensions is proposed by [16]. Four
types of vehicle routing problems are then distinguished :

Static and deterministic problems Input is known in advance and doesn’t change over time.
This is the most studied type of problem, but it generally doesn’t fit with real-world applica-
tions, where some information cannot be known beforehand.

Static and stochastic problems Here, some information is a stochastic variable which is re-
vealed gradually during the execution of the tour. However, the a priori planned routes cannot
change during the execution of the tour except in some special cases. For example, if the
considered stochastic variable is the customers request, or in other words, if customers may
request a visit with a certain probability, the a priori planned route may change only to skip
customers that do not require a visit. Several types of stochastic variables have been studied in
the literature : stochastic travel times [17], where travel times between customers is a random
variable, stochastic customers, where customers may request a visit with a certain probability
[3]...

Dynamic and deterministic problems Some information is totally unknown beforehand and
is revealed only during the execution of the tour. Vehicle tours are then changed in real time,
during the execution of the tour according to revealed information.

Dynamic and stochastic problems This type of problem is a combination of the latter two
types described above. Some information is a stochastic variable that can be used to build a
priori tours taking into account possible future events, and routes are adapted in real time
according to revealed information.

For more details on stochastic and dynamic vehicle routing problems, we refer the reader to the
surveys of [16] and [1].

2.3 Stochastic/Dynamic pick-up & delivery problems

Most studies tackling pick-up & delivery problems consider the static case in which all information
is known beforehand and does not change during time. However, some papers deal with the dy-
namic case where some information is only revealed during the tour and the a priori tour is adapted
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progressively in real time. A few of these works exploit stochastic information to anticipate future
events, [18] present some of these papers. However, to the best of our knowledge, there is no work
dealing with the One-commodity travelling salesman problem in a stochastic case.

The problem considered in this paper can be classified as a static and stochastic One-commodity
travelling salesman problem. It is static because changes are not allowed during the execution of
tour except for detours to recycling centres. Stochastic because we have probabilistic information
through historical data about potential future detours. It is a One-commodity travelling salesman
problem because a single-vehicle has to carry one commodity from a set of pick-up customers to a
set of delivery customers.

3 Problem Formulation

The pick-up & delivery travelling salesman problem(1-PDTSP) can be defined on a complete graph
G = (V,E) as follows :

– V = {0, 1, ..., n} is a set of n+ 1 nodes representing the n customers (n = nd +np, where nd is
the number of delivery customers and np the number of pick-up customers). Node 0 represents
the depot ;

– E = {(i, j), i, j ∈ V, i 6= j} is a set of edges representing connections between customers ;
– C = {ci,j , (i, j) ∈ E} represents the travel distance between customers i and j (ci,j =
cj,i,∀(i, j) ∈ E) ;

– D = {di, i ∈ V } is a set of customers demands (|di| is the number of bins to deliver to / pick
up from customer i, di < 0 for delivery customers and > 0 for pick-up customers ) ;

Given a vehicle with a known and finite maximum capacity Q, and assuming that :

– xi,j is a boolean variable such that:

xi,j = 1 if customer j is visited immediately after customer i;

xi,j = 0 otherwise.

– qi the number of bins in the vehicle after his visit to customer i.

Our objective is to find a Hamiltonian cycle that minimizes the total travel distance, ie :

min
n∑

i=0

n∑

j=0

xi,jci,j (1)

Subject to :

n∑

j=0

xi,j = 1 ∀i ∈ {0, 1, ..., n} (2)

n∑

i=0

xi,j = 1 ∀j ∈ {0, 1, ..., n} (3)

qi + xi,jdj ≤ Q ∀i, j ∈ {0, 1, ..., n} (4)

qi + xi,jdj ≥ 0 ∀i, j ∈ {0, 1, ..., n} (5)

Constraints (2) et (3) ensure that each customer is visited exactly once, while constraints (4) and
(5) relate to vehicle capacity.
A picked up bin can be supplied to a delivery customer if necessary. However, if a bin is not totally
clean and empty when it is picked up from a customer, it must be firstly routed to one of the
R available recycling centres around the customer’s location before it can be supplied again. We
can consider the R available recycling centres as a ”priority customer” that may requires a visit
after each of the np pick-up customers. Then, we define pi as the probability that the ”priority
customer” requires a visit immediately after customer i (pi = 0 for all delivery customers). The
problem can then be seen as a travelling salesman problem with stochastic customer requests.
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4 Estimation-based algorithm

To tackle the 1-SPDTSP described above, we propose an estimation-based heuristic adapted from
the approach presented in [2] for the probabilistic travelling salesman problem.
This approach is based on a local search method which starts from an initial feasible solution S, and
tries to improve it by moving to S′, a feasible neighbouring solution of S, such that f(S′) < f(S).
The process is repeated until no improvement can be found.

ImprovedSolution← True;
S ← IntialSolution;
while ImprovedSolution do

N ← Neighborhood (S);
N ← RomoveUnfeasibleSolutions (N);
for S′ ∈ N do

if f(S′) < f(S) then
S ← S′;

end

end
ImprovedSolution← False;

end
Algorithm 1: Local search principle

4.1 Neighbourhood structure

We use the 1-shift algorithm introduced in [3] to generate the neighbourhood of a given solution
S. This method consists in changing the position of a customer in a tour from i to j. Customers
which are at positions i+ 1, i+ 2, ..., j of the tour are then shifted backwards (see figure 1).

4.2 Feasibility checking

For each generated solution, we unsure that capacity constraints described in section 3 are re-
spected. A feasible solution is a tour in which the total number of bins loaded on the vehicle never
exceeds the maximum capacity Q of the vehicle, and is never negative. Assuming that qi is the
number of bins in the vehicle after visiting customer i, figure 1 presents an example of feasible and
infeasible solution.
Given a feasible solution S and an 1-shift neighbouring solution S′ of S obtained by shifting a

Fig. 1: 1-Shift algorithm

customer from position i to j. It can easily be shown that S′ is feasible if and only if the partial
tour from customer i to customer j is feasible. Indeed, to check to feasibility of a neighbouring
solution, we only check the feasibility of the tour between positions i and j.
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4.3 Objective function

In our case, the objective function f to minimize is the total travel distance of the vehicle. How-
ever, since we cannot know in advance the travel distance of an a priori solution S due to potential
detours to recycling centres (see figure 2), we use the following unbiased estimator of f(S) as a
criterion to move from a solution to another one :

f̂M (S) =
1

M

M∑

r=1

f(S, ωr)

This estimator was proposed by [2] for the probabilistic travelling salesman problem. The idea is
to estimate the quality of an a priori solution S from a set of M simulations of possible a posteriori
solutions. An a posteriori solution is obtained by associating a binary vector ω with the a priori
solution such that ω[i] = 1 if a detour to a recycling centre is required immediately after visiting
customer i, 0 otherwise (see vector ω in figure 2).
Thus, given an a priori solution S (that does not include recycling detours) :

1. M possible a posteriori solutions (including potential detours) are generated by associating M
vectors ω with the a priori solution S;

2. For each generated a posteriori solution, f(S, ωi), the travel distance of the a posteriori solution

given by ωi is calculated. f(S, ωi) = f(S) + TDL−
n∑

i=1

n∑
j=1

ωixi,jci,j , where :

– f(S) is the travel distance of the a priori solution S (without detours) ;
– TDL is the Total Detour Length of the a posteriori solution (see example in figure 2).

3. f̂M (S) = 1
M

M∑
r=1

f(S, ωr) is calculated and considered as an estimator of f(S).

Fig. 2: A priori solution VS a posteriori solution

Note that ω is generated according to the set P = {pi, i ∈ V } of probabilities that recycling detour
is required after visiting customer i. Therefore, ω[i] = 0 for all delivery customers because recycling
detour may occur only when picking up bins.

4.4 Recycling centre choice

Since we consider R available recycling centres in our problem, each time a detour to recycling
centre is required, we must choose among the R possibilities we have. Therefore, we calculate the
travel distance caused by the detour to each of the R available recycling centres to choose the one
that minimizes the detour length (see figure 3).
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Fig. 3: Recycling centre choice

5 Computational results

The algorithm was implemented in Java, and executed on AMD A10-7700K Radeon R7, 3.40 GHz
With 8 GB RAM.
We tested the performance of our algorithm on the Euclidian PDTSP instances generated by [19].
The number of customers in these instances vary between 25 and 200. The first four customers
of each instance have been chosen to be the recycling centres, the remaining nodes are assumed
to be the customers. For each customer i, we determined whether a recycling detour is required
after visiting i or not (we determined an ”effective scenario” for each instance). The boolean
variables were generated according to a fixed probability P . We generated scenarios for P ∈
{0.1, 0.3, 0.5, 0.7, 0.9}. Then, the a priori solutions found by our algorithm were evaluated according
to the fixed scenarios, with different values for the parameter M , the number of simulated a
posteriori solutions (see section 4.3). For M = 0, our algorithm doesn’t simulate a posteriori
solutions. It is then equivalent to a classic local search which doesn’t take into account stochastic
information.
Table 1 shows the average solution cost obtained by our Estimation-Based Local Search for the
instances described above (we fixed the neighbourhood size to 200).
First, we observe that, for each class of instances, solution costs increase as the parameter p

increases. This is due to the fact that a higher probability p involves a greater risk of requiring
detours to recycling centres and thus, a greater risk of increasing the solution cost. However, we can
see that this increase is smaller as the number of generated a posteriori solutions (M) is greater.
Figure 4 shows the percentage of travel distance due to detours when p = {0.1, 0.3, 0.5, 0.7, 0.9},
and for M = {0, 25, 50, 100}. The results show the effectiveness of our approach in minimizing
the detours impact on the solution cost, especially when p ≥ 0, 5. Indeed, the objective of our
estimation-based local search is to anticipate possible detours during the tour and take them
into account when generating a priori solutions. Therefore, the more detours may occur during
a tour, the more interesting our approach is. In other words, and as we can observe in table 1,
our estimation-based heuristic always obtains the best solutions in comparison with the classic
local search (the one with M = 0) when p > 0, 1. Moreover, the results are generally better when
M = 100. Thus, a greater number of a posteriori simulations gives generally a more accurate
evaluation of an a priori solution.

6 Conclusion and perspectives

We presented in this a paper an Estimation-based local search to tackle a stochastic one-commodity
pick-up & delivery travelling salesman problem. The objective of our approach is to build efficient
vehicle routes that minimize loss of quality due to potential changes during the tour. We tested
our algorithm on the Euclidian PDTSP instances proposed in [19]. We adapted the instances to
fit our constraints and collected the results with different parameter values. The experiments show
the effectiveness of our algorithm, especially when dealing with large instances, and when detours
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Table 1: Estimation-based local search solutions for the Euclidian PDTSP instances

Number of sample solutions M

Probability Number of customers 0 25 50 100

p = 0.1 25 544,26 555.9 551,5 565,4
50 843,33 895 893.1 860.6
75 1121,1 1119 1138,66 1111,5
100 1414,56 1432,5 1494 1457,5
150 2007,07 2017 2013 1993,3
200 2603,73 2601.1 2496 2489,16

p = 0.3 25 618,5 596 574,26 577,3
50 1020,03 1018,2 1051,3 1001,1
75 1446,9 1474,4 1398,12 1392,8
100 1874,26 1862,2 1813.7 1841,1
150 2673,83 2641,14 2594 2569,4
200 3592,26 3617,14 3504,2 3495,6

p = 0.5 25 706,66 688,3 681.13 680,6
50 1281,33 1210,15 1187 1161,7
75 1848,86 1817,21 1832,2 1804,4
100 2233,96 2214,1 2157 2149,4
150 3416,86 3411,14 3378,9 3386.6
200 4445,53 4431,37 4376,1 4348,4

p = 0.7 25 782,06 771 734,3 746,2
50 1480,83 1535,2 1457,5 1447,3
75 2172 2267,3 2169 2125,2
100 2666,5 2517,3 2500,1 2491,7
150 4047,16 4006,7 4011,6 3992,8
200 5490,2 5397,3 5325,8 5332,3

p = 0.9 25 867,8 804,4 786,4 799,1
50 1682,06 1633,9 1526,1 1589,1
75 2472 2480,4 2366,5 2306,2
100 3108,8 3116,5 2915,2 2903
150 4741,8 4886,3 4605,36 4552,52
200 6457,8 6384,8 6376,6 6301,1

Fig. 4: Recycling detour’s impact on total travel distance
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are more likely to occur.
In this paper, we proposed a static and stochastic approach to tackle our vehicle routing problem.
To improve further the obtained results, future works will be devoted to the development of a
dynamic and stochastic approach which can exploit stochastic information to build efficient routes
that can dynamically change to fit potential unexpected events during the vehicle tour.
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Abstract. Despite their proven effectiveness, current parallel models for Multi-Objective
Evolutionary Algorithms (MOEAs) often struggle in reaching both a good Pareto front
approximation and a high level of performance on supercomputer architectures. In this work,
we propose APM-MOEA, an Asynchronous Parallel Model for MOEAs. It is based on an
island model with objective space division. The main features of the proposed model are
a global view for the organizer to achieve better distribution of solutions, an asynchronous
communication scheme to reduce model overhead, control islands to improve diversity and
a local search procedure to improve the quality of solutions. Extensive experiments have
been conducted using the GISMOO algorithm to compare APM-MOEA with state-of-the-
art island-based models in the resolution of the multi-objective travelling salesman problem
(MOTSP). The experimental results show that, according to four multi-objectives metrics,
our approach outperforms all the implemented parallel models in terms of convergence,
diversity of solutions and scalability.

1 Introduction

Many academic and industrial optimization problems are multi-objective and have been of partic-
ular interest to researchers in recent years. These problems usually do not have a single optimal
solution but a set of best trade-off solutions which form the so-called Pareto front in the ob-
jective space. In order to approximate this Pareto front, multi-objective evolutionary algorithms
(MOEAs) have been largely investigated in the fields of continuous and combinatorial optimiza-
tion [1]. As they often require a high amount of computing resources to explore large portions of
the search space and handle complex real-life constraints, they could greatly benefit from today’s
high-performance computing architectures. Thus, parallel multi-objective evolutionary algorithms
(pMOEAs) have been proposed in the literature to reduce computation times and improve the
quality of the obtained Pareto fronts [2]. Among the pMOEAs paradigms, master-slave and dis-
tributed models are certainly the most studied [3]. Master-slave models aim to reduce the execution
time of MOEAs by parallelizing their main operations such as crossover, mutation and evaluation
functions. Island models, also called distributed models, mainly aim to reach the Pareto front
more effectively and improve the quality of obtained solutions. In such a model, the population
is divided into islands which run an independent MOEA and carry out information exchanges
to enhance the exploration capabilities of the algorithms. Although significant progress has been
made in recent years in the design and improvement of parallel models for evolutionary algorithms,
most of these models have limited scalability and ability to solve various problems. In fact, solving
multi-objective combinatorial optimization problems efficiently on a large number of processors
remains a challenge today.

This paper aims to propose a new island model, namely APM-MOEA (Asynchronous Parallel
Model for Multi-Objective Evolutionary Algorithms), which is based on objective space division
and inspired by the works of Streichert et al. [4]. The main features of the proposed model are the
following :

– Each island is assigned to a specific part of the objective space according to a principle of
constrained dominance ;
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– An organizer has a global view of the current search via a global archive ;
– A specific clustering algorithm is used to divide the objective space and achieve a better

distribution of solutions ;
– Asynchronous cooperation between islands, especially for the exchange of local archives with

the organizer, to limit model overheads ;
– Control islands to guide the exploration of the search space and improve diversity ;
– A periodic use of a specific local search procedure to improve convergence.

In this work, APM-MOEA is used to parallelize the GISMOO algorithm [5], which has proven
to be efficient in solving classical multi-objective optimization problems. In order to evaluate the
performance of the proposed model, other state-of-the-art island models are also adapted to GIS-
MOO and a comparative study is conducted on the resolution of the Multi-Objective Travelling
Salesman problem (MOTSP) [6].

The remainder of this paper is organized as follows : the next section provides an overview of
the main existing distributed models for MOEAs. In Section 3, the main features of the APM-
MOEA model are outlined. Experimental conditions, results and analysis are exposed in Section
4. Finally, the last section contains some conclusions and new research directions.

2 Related works on Parallel Multi-Objective Evolutionary Algorithms

During the last few years, several models have been designed to parallelize MOEAs [3]. While
master-slave models focus on reducing execution time, islands models aim to improve solution
quality and diversity. In such a model, the global population is partitioned into several islands and
a single MOEA runs on each of them, usually on a separate processor. Based on this concept, the
PMOMA algorithm [7] uses a ring topology to exchange the best non-dominated solutions between
subpopulations and the Multi-Front algorithm [8] exchanges the first fronts obtained by a Pareto
ranking, highlighting the difficulty of determining the best number of fronts to exchange which
depends on the shape of the Pareto front. More recently, Sanhueza et al. [9] proposed PasMoQAP,
an asynchronous island model to solve the multi-objective quadratic assignment problem. Every
five generations, each island shares two promising individuals with other islands and integrates the
received individuals in an elitist way. Promising results are obtained with up to 11 islands and
compared to a self-made implementation of an island model of NSGA-II [10].

The cooperative coevolution strategy was also used to distribute the computation among the
islands. In such an approach, each subpopulation is focused on the optimization of a subset of
the problem variables. Dorronsoro et al. [11] have adapted the original cooperative coevolution to
the multi-objective context and proposed CCMOEA. With three state-of-the-art multi-objective
algorithms, the parallel model allows to obtain better solutions using 4 or 8 islands on a real-
world combinatorial optimization problem. Atashpendaret al. [12] hybridized cooperative evolution
with a particle swarm optimization algorithm in order to efficiently tackle well-known continuous
problems.

In the context of multi-objective optimization, the main goal is usually not to seek a single
optimum solution but rather a set of Pareto optimal solutions. This provides the opportunity to
design a parallel model in which each processor search for different solutions and cooperate to
approximate the whole Pareto front. Thus, some parallel models use a divide-and-conquer strategy
to find non-dominated solutions and most of them are based on objective space division. The first
model which tries to specialize the processors to specific parts of the objective space is DRMOGA
[13]. At regular intervals, a global population is formed from the subpopulations, sorted according
to one objective function and redistributed on the subpopulations. De Toro Negro et al. [14]
use a similar approach in PSFGA and propose two mechanisms to maintain diversity within the
whole population. Deb et al. [15] give different search directions to each island using the guided
dominance principle. A small number of non-dominated solutions are periodically exchanged to
enhance diversity. Results show that without prior knowledge about the shape of the Pareto front,
it may be difficult to define good search directions.

In the previous models, islands cooperate to approximate the whole Pareto front and some
mechanisms are used to limit overlaps. To completely avoid them, two other models explicitly
divide the objective space. The first model is the cone separation model [16]. It uses a geometrical
approach to subdivide the objective space which is effective if the Pareto optimal front is continuous
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and convex. The second model has been proposed by Streichert et al. [4] and applies a subdivision
scheme based on a k -means clustering algorithm. All subpopulations are periodically gathered,
clustered and redistributed onto the available islands. The main drawback of the approach is that
the gathering of all subpopulations produces a high communication overhead, in particular with a
high number of processors [17].

Despite their proven effectiveness on continuous problems, these models often struggle in reach-
ing both a good Pareto front approximation and high scalability [3]. Moreover, according to our
knowledge, they have not all been experimented on combinatorial optimization problems. Also, cur-
rent state-of-the-art parallel models are generally experimented with 2 or 4 processors and show
reduced effectiveness on larger numbers of processors [18]. In this paper, we propose APM-MOEA,
a new pMOEA which handles multi-objective combinatorial optimization problems using larger
numbers of processors.

3 The APM-MOEA model

APM-MOEA is an island-based model which uses a clustering algorithm to divide the objective
space and assign specific parts of it to each island. It uses three different kinds of islands : one
organizer (or master), a number of normal islands and two control islands. Fig. 1 illustrates the
APM-MOEA model using 6 islands and highlights the communications from the organizer to the
other islands. An example of partitioning for this model is given in Fig. 2 with the corresponding
clusters and centroids.

Fig. 1: Scheme of APM-MOEA using 6 islands
(GA : Global archive, CX : Cluster X)

Fig. 2: Example of clustering for APM-MOEA using
6 islands, 4 clusters for the 3 normal islands and 1

for the organizer

The overall behavior of the proposed model is defined as follows. After the initialization of the
populations and the archives used to store the non-dominated solutions, an iterative process is
repeated until a stopping criterion is reached which generally is a maximum number of generations
or a maximum execution time. First, the populations evolve through genetic operations during
a number of generations where each island is focused on a specific region. During the genetic
operations, the local archives, one for each island, are continually updated with the new generated
solutions. A local search procedure is then applied on each population to improve the quality of
solutions. The next steps are managed by the organizer to redefine the regions of the objective space
for each island. Although it follows the outlines of the model of Streichert et al.[4], APM-MOEA
implements significant changes which are described in the following sections.

3.1 Global search view of the organizer

The organizer island is responsible for handling the clustering and has a global view of the current
search. It maintains a global archive that is updated with local archives from all other islands. At
each migration point, the global archive is partitioned by a clustering algorithm, then clusters and
centroids are distributed to their respective islands. The main loop of the organizer is illustrated
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in Fig. 3. The other islands have a similar outline, but they only send their local archives when a
new migration point is reached and check for a new cluster at regular intervals. It is important to
note that the solutions from each cluster are not necessarily integrated in the population since an
elitist replacement is done to keep only the best solutions.

Fig. 3: Main loop of the organizer island

The original model of Streichert et al. uses a classic k -means and has the drawback of relying
heavily on randomly selected initial centroids. Other methods have been proposed to improve these
initial points and thus improve the algorithm efficiency. Among these, Yedla et al. [19] introduced
a new clustering algorithm which includes a method for finding better initial points and a more
efficient approach to assign the data points to the corresponding clusters. Experiments have shown
that their algorithm has more accuracy and is faster than the original k -means clustering algorithm.
The main features of this clustering algorithm are integrated into APM-MOEA and the origin
point is replaced by the ideal vector to take into account the characteristics of the multi-objective
problems.

In order to limit each island to a specific region of the objective space during the evolution
of populations, constraints are added to the problem. Thus, a solution S is feasible if and only if
the nearest centroid from S is the centroid assigned to the considered island. In other cases, the
solution S is marked as invalid and is not favored in the evolutionary operations. For example, in
the context of the MOTSP, the constraint violation can be the Euclidean distance between the
objective vector and the centroid attributed to the island. The constrained domination principle
introduced by Deb et al. [10] modifies the definition of domination and it is used to limit the islands
to their own region. More precisely, it is used to compare two solutions in the binary tournament
of the MOEA, to select the best offspring in the genetic phase and to sort the population in the
replacement step. It is important to mention that the original Pareto dominance is still used to
update the local archives.

3.2 Asynchronous communications

As it has been pointed out by Jaimes et al. [17], the main drawback of the Streichert model is
the communication overhead caused by the exchange of populations. To address this issue and
handle the irregularity of local search computations, the APM-MOEA model uses asynchronous
communications to avoid using a global synchronization barrier. As shown in Fig. 3, the organizer
island does not have to wait for all the local archives to perform the clustering. At regular intervals,
it simply checks if new local archives have been sent. If this is the case, the global archive is updated
with the new solutions. All send operations are non-blocking and therefore do not need to wait
for the corresponding receive operations. The communication overhead for the other islands is also
limited as they only have to periodically check for new clusters and send their local archive.

3.3 Control islands

Two additional islands, named control islands, are included in APM-MOEA in order to find more
diversified solutions and explore the objective space more efficiently. Unlike the other islands,
they have no constraint about the search area. The first control island includes the local search
procedure in its process while the second generates new solutions only with evolutionary operations.
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These islands allow to explore the whole objective space with a global view of the current search.
The control islands communicate exclusively and asynchronously with the organizer island which
provides new solutions contained in its global archive (cf. Fig. 1). Like the normal islands, they
periodically send their local archive to the organizer.

3.4 Local Search

The performance of multi-objective algorithms can often be improved through the inclusion of
some form of local search. In this sense, hybrid algorithms specifically tailored to combinatorial
multi-objective problems have been developed [20] [9] [21].

In APM-MOEA, a non-iterative local search is applied to improve each solution of the popu-
lation at regular intervals. Partial neighborhood exploration [22] is favored rather than exhaustive
exploration to reduce computation time. Depending on problem characteristics, two strategies can
be used : a first improving strategy and a candidate list strategy [23]. The former tries to generate
all the neighbors and stops when a solution which dominates the original solution is found. A
maximum number of tries can be set to limit computation overhead. The latter generates a subset
of all the neighbors associated to a candidate list by keeping all the neighbors that dominate the
current solution in an additional archive. At the end of the search process, a single non-dominated
solution from the archive is randomly selected to replace the current solution in the population.

4 Experimental Results

In a first step, experiments aim to compare the performance of APM-MOEA with three state-of-
the-art island-based models which use a divide-and-conquer approach : the cone separation model
[16] (Cones), the DRMOGA model [13] (DRMOGA) and the original model of Streichert et al. [4]
(Original). The proposed model have been tested with control islands (APM-C) and without them
(APM). The quality of obtained solutions and the scalability are analyzed through four metrics that
are presented later. For a fair comparison, local search is incorporated in the same way for all
models. After focusing on the scalability of APM-MOEA in a second step, the contribution of the
control islands is finally emphasized. Beforehand, we present the experimental design used in this
study.

4.1 Multi-objective Travelling Salesman Problem

A well-known benchmark in multi-objective combinatorial optimization is used for these experi-
ments : the Multi-Objective Travelling Salesman Problem [6]. In its mono-objective version (TSP),
given a number of cities and a distance between each pair of cities, the travelling salesman prob-
lem is to find the shortest way of visiting all the cities and returning to the starting point. In its
multi-objective version, there are different kinds of costs between each pair of cities, each one being
associated to a specific cost matrix.

For the experiments, six combinations of single-objective TSP instances from TSPLIB [24]
are tested ranging from 200 to 1000 cities. These instances are referred as kroAB200, kroAB300,
kroAB400, kroAB500, kroAB750 and kroAB1000. For example, kroAB200 is a bi-objective instance
with 200 cities and represents the combination of kroA200 (the 1st objective) and kroB200 (the
2nd objective). As large instances of MOTSP are experimented, the optimal Pareto fronts are not
known. Therefore, state-of-the-art solution sets provided by Lust and Teghem [21] are used as a
reference set.

4.2 The GISMOO algorithm

The GISMOO algorithm [5] was chosen to evolve the subpopulations and to illustrate the perfor-
mance of APM-MOEA. During the last years, it has proven to be efficient to solve a variety of
continuous [25] [5] or combinatorial [26] [27] problems. More specifically, its immune phase allows
to obtain well-diversified solutions which seems to be a significant benefit for a divide-and-conquer
model. Following the authors guidelines, all GISMOO experimentations were carried out with the
following parameters : population size, mutation probability and crossover probability are respec-
tively set to 100, 0.06 and 1.0.
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4.3 Experimental conditions

All parallel models are implemented in the C++ language using the MPI library and the mpiicpc
compiler. They are executed on one node of the ROMEO supercomputer [28] which allows the use
of 2, 4, 8 and 16 processor cores for these experiments. For each parallel model, an unique processor
core is associated to one island. All test instances were solved 5 times for each parallel model and
the average of the metric values are presented.

In regard to the evolutionnary phase, the order crossover (OX) is used to perform the recom-
binations and the inversion mutation is used as the mutation operator. The 2-opt neighborhood
Pareto local search with the speedup technique proposed by Lust and Teghem [21] is implemented
in each model. The same maximum execution time is also set as the stopping criteria for each test
instances and each model. More precisely, the computational times for the instances kroAB200,
kroAB300, kroAB400, kroAB500, kroAB750, kroAB1000 are set to 200, 300, 600, 1000, 2500 and
5000 seconds respectively.

4.4 Performance metrics

In the multi-objective context, it is difficult to assess both convergence toward the Pareto front and
diversity of the obtained solutions. However, in the last decades, many metrics have been proposed
to compare the performance of different MOEAs [29]. Four metrics are used in these experiments :

– The generational distance GD [30] measures the average distance from obtained solutions to
the reference set solutions. It allows the evaluation of the convergence of a solution set toward
the Pareto front. Lower values of this metric are associated to better convergence ;

– The hypervolume metric H [31] measures the size of the portion of the objective space that is
dominated by a given solution set. It allows the estimation of both the convergence and the
diversity of the solutions. Higher values of hypervolume are preferable ;

– The coverage of two sets C compares the convergence of two given solution sets using Pareto
dominance. More specifically, C (A,B) measures the proportion of solutions in set B which are
dominated by solutions in set A ;

– The minimal spacing (ms) [32] evaluates the spread of solutions contained in a set. It addresses
the limitations of classical spacing metrics by computing the distance from a solution to its
nearest neighbor which has not already been considered. The lower the value is, the better is
the diversity.

4.5 Comparison with others parallel models

We first compare the quality of the non-dominated solutions obtained by each model. Table 1
presents the mean deviations to the best values of GD obtained by all models using 2, 4, 8 and
16 islands. For each configuration, the best result is marked in bold characters. According to this
metric, the cone separation model finds better solutions than other models using only 2 proces-
sor cores. With more islands, the two APM-MOEA variants outperforms the compared models,
especially with 16 islands where APM-C obtains a mean value of 0.01 for the GD metric while the
second best (Original) obtains only 0.42. Furthermore, for the APM-MOEA model, the GD met-
ric significantly decreases with the number of islands, showing its ability to improve the quality of
its solutions when the number of islands increases. On the contrary, the Cones model do not find
better solutions with a large number of processor cores.

DRMOGA Cones Original APM APM-C

2 isl. 2.27 1.69 2.28 2.12 N/D

4 isl. 1.20 1.20 1.32 1.00 1.62

8 isl. 0.80 0.79 0.61 0.43 0.40

16 isl. 0.53 0.92 0.42 0.13 0.01

Table 1: Means deviations to GD

DRMOGA Cones Original APM APM-C

2 isl. 0.863 0.806 0.820 0.897 N/D

4 isl. 0.888 0.886 0.892 0.909 0.904

8 isl. 0.898 0.909 0.912 0.918 0.919

16 isl. 0.900 0.910 0.914 0.921 0.923

Table 2: Means of hypervolume metric H
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To confirm the results obtained with the previous metric, we computed the hypervolume metric
for all models. In each configuration, APM and APM-C obtain a greater value of H than state-of-the-
art models. Once again, the metric values are significantly better with 16 islands. These results
show that the portion of the objective space which is dominated by the solutions provided by
APM-MOEA is generally greater than other models, indicating a better convergence to the Pareto
front and a good diversity within the obtained solutions.

The results of these first two metrics seem to indicate that APM-MOEA manages to find
solutions closer to the Pareto front than other models, especially for configurations with a large
number of islands. To confirm this assumption, we directly compared the models with each other on
the coverage C metric. We computed the values of C for APM-C compared to Cones and Original.
Fig. 4 and Fig. 5 outline, for each test instance, the average C values obtained using 8 and 16
islands respectively.

Fig. 4: Average coverage C of Cones, Original and APM-C using 8 islands

Fig. 5: Average coverage C of Cones, Original and APM-C using 16 islands

The results obtained with this metric significantly favors APM-MOEA. In fact, the average
values obtained by C (APM-C, Cones) and C (APM-C, Original) are greater than the values of
C (Cones,APM-C) and C (Original,APM-C) for all test instances. This trend is further confirmed
when using 16 islands. Average values of C (APM-C,Cones) vary between 0.75 and 0.98, implying that
most solutions obtained by the Cones model are dominated by the solutions of the proposed model.
On the contrary, the values C (Cones,APM-C) are near to 0, showing that APM-C finds solutions that
are not dominated by the solutions of Cones. The comparison with the Original model shows a
similar tendency.

With the previous metrics, we have shown that APM-MOEA generally finds solutions closest
to the Pareto front than state-of-the-art models. We now analyze the diversity of the obtained sets
by computing the minimal spacing metric. Table 3 summarizes the average minimal spacing metric
obtained by each model for MOTSP instances. With any number of islands, our model provides a
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better spread of solutions than any other models as shown by the low ms values obtained. Moreover,
its diversity increases with the number of islands. In particular, by using an enhanced clustering
algorithm to distribute the computations, APM-MOEA provides well-distributed solutions.

DRMOGA Cones Original APM APM-C

2 isl. 0.00388 0.00160 0.00135 0.00064 N/D

4 isl. 0.00237 0.00061 0.00046 0.00039 0.00050

8 isl. 0.00167 0.00033 0.00034 0.00023 0.00022

16 isl. 0.00145 0.00030 0.00032 0.00019 0.00014

Table 3: Means of minimal spacing metric ms for each parallel model

Fig. 6 illustrates overall results by providing examples of solution sets obtained by the Cones,
Original and APM-C models on a typical run solving a bi-objective MOTSP instance. The reader
may note that APM-C obtains solution sets that are better distributed and that cover larger regions
of the objective space, confirming the values obtained by the minimal spacing and the hypervolume
metrics. These examples also highlight the good convergence of APM-MOEA which provides lower
values for each objective function.

Fig. 6: Example of solutions set obtained by Cones, Original and APM-C

4.6 Scalability

Previous experiments have shown that increasing the number of islands also improve the quality
of the solutions produced by APM-MOEA. In order to provide more insight about its scalability,
we analyzed the evolution of the global archive through time with different numbers of islands. To
enable this study, the global archive has been periodically saved by the organizer in an external
file and the metric values were calculated afterwards to limit the computation overhead. Fig. 7
shows the evolution of convergence GD using 4, 8 and 16 islands for kroAB400 and kroAB750
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instances. For each of the two test instances, a large number of islands allowed reaching a better
convergence toward the Pareto front in a much faster way. In fact, the 16 islands configuration
takes significantly less time than the two other ones to achieve a specific GD value. Moreover, the
largest gap is observed between 4 and 8 islands. In the same way, Fig. 7 shows the evolution of the
hypervolume metric H using 4, 8 and 16 islands for the same test instances. Once again, H values
are higher and reached more quickly, showing a better distribution of the obtained solutions and
a larger coverage of the objective space. Large gaps are also observed between 4 and 8 islands.
Finally, results on hypervolume and minimal spacing metrics showed the ability of APM-MOEA
to distribute the islands well on the objective space.

Fig. 7: Evolution of the GD metric of APM-C for kroAB400 (left) and kroAB750 (right)

Fig. 8: Evolution of the H metric of APM-C for kroAB400 (left) and kroAB750 (right)

4.7 Contribution of the control islands

The last step of this study is to analyze the contribution of the control islands to the efficiency
of APM-MOEA by comparing the two APM-MOEA variants through three of the multi-objective
metrics previously presented.

Table 4 first exposes the average GD value obtained by APM-C and APM for each test instance.
It shows that using control islands with a small number of islands is inefficient. In fact, APM obtains
the lowest values of GD for all test instances, showing a better convergence. Using more islands, the
APM-MOEA model with control islands is able to find solutions closer to the Pareto front for most
test cases. since it obtains the best values of GD for 9 of the 12 cases. The reader may note that
the best improvements are obtained with the largest test instances (kroAB750 and kroAB1000).
The same observations about the convergence for the different configurations can be made with the
hypervolume metric exposed in Table 2. Finally, we analyze the diversity of the solutions through
the values of the minimal spacing metric exposed in Table 3. Once again, APM obtains the best value
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of MS with 4 islands whereas APM-C obtains the best values with 8 and 16 islands. These results
show that the control islands improve the diversification capacity of APM-MOEA, especially with
a large number of islands.

4 islands 8 islands 16 islands

APM APM-C APM APM-C APM APM-C

kroAB200 0.65 0.97 0.52 0.48 0.04 0.00

kroAB300 0.68 1.47 0.46 0.37 0.01 0.02

kroAB400 0.90 1.87 0.38 0.46 0.14 0.01

kroAB500 1.38 2.76 0.42 0.44 0.20 0.00

kroAB750 1.30 1.48 0.39 0.34 0.15 0.01

kroAB1000 1.12 1.15 0.42 0.29 0.23 0.00

Average 1.00 1.62 0.43 0.40 0.13 0.01

Table 4: Means deviations to GD for APM and APM-C

5 Conclusion and Future Work

This paper proposed a new asynchronous parallel model based on the divide-and-conquer approach
to tackle multi-objective combinatorial problems. On several MOTSP instances, APM-MOEA
managed to find solutions of better quality than three state-of-the-art models with 4, 8 and 16
processor cores. Moreover, APM-MOEA has proven to be scalable using from 4 to 16 islands
since the computed metrics indicated good convergence and coverage of the objective space with
the largest number of processors. The additional islands also allow the model to obtain a better
distribution of the solutions in the search space.

Furthermore, APM-MOEA provided very promising results on one specific multi-objective prob-
lem, but future works should be dedicated to studying its behavior in other contexts. For example,
it would be interesting to experiment the APM-MOEA model with continuous multi-objective
or many-objective problems. Another promising avenue would be to adapt the model to other
multi-objective evolutionary algorithms such as NSGA-II to further validate its efficiency.

In this study, the main focus was on studying solution quality, but master-slave models have
been proposed to speed-up MOEAs. They often parallelize the evaluations of the objective func-
tions, which usually require long computing times. Thus, it could be interesting to hybridize APM-
MOEA with a master-slave model to both improve solution quality and reduce execution time.
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26. C. Gagné and A. Zinflou, “An hybrid algorithm for the industrial car sequencing problem,” Proceedings
of the IEEE World Congress on Computational Intelligence (WCCI 2012), P, Brisbane, Australia,
2012.
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Abstract 

Simulated annealing (SA) is a well-known stochastic local search algorithm for solving unconstrained 

optimization problems. It mimics the annealing process used in the metallurgy to approximate the global 

optimum of an optimization problem and uses the temperature to control the search. Unfortunately, the 

effectiveness of simulated annealing drops drastically when dealing with a large-scale optimization problem. 

This is due in general to a premature convergence or a stagnation. The both phenomenon’s can be avoided by 

a good balance between exploitation and exploration. This paper focuses on the same problem encountered 

by simulated annealing and try to heal it using the quaternion which are a number system that extends complex 

numbers. Quaternion’s representation helps simulated annealing algorithm to smooth the fitness landscape 

and thus avoiding to get stuck in the local optima by expanding the original search space. Empirical analysis 

was conducted on many numerical benchmark functions. The experimental results show that the quaternion’s 

representation of neighborhood improves the quality of solution compared with the classical simulated 

annealing. Our approach was also compared with other nature-inspired optimization algorithms. It was shown 

that the quaternion simulated annealing overcomes other heuristics in terms of solution quality for most of the

benchmark functions. 

Keywords: Simulated Annealing, quaternion, local search 

1. Introduction

The optimization problem in continuous variables aims at minimizing an objective function. If this objective 

function depends on real variables with no restrictions on its values, the problem is called the unconstrained 

optimization. Otherwise, it is the constrained optimization.  Mathematically, let Ω the set of feasible solution, 

and let 𝑓: Ω → ℝ the objective function defined over the solution space. The purpose is to solve the 

unconstrained optimization problem U.O.P 

 𝑈. 𝑂. 𝑃      {
𝑀𝑖𝑛 𝑓(𝑥)

𝑠. 𝑡 𝑥 ∈ Ω

We need to find the global minimum 𝑥∗ in the solution space Ω, where for every  𝑥 ∈   Ω, 𝑓(𝑥∗) ≤ 𝑓(𝑥). Let

define 𝑁(𝑥) the neighborhood function for every 𝑥 ∈   Ω and we consider the classical simulated annealing 

described in Algorithm 1. The SA starts from an initial solution 𝑥0 ∈   Ω. Then, at iteration 𝑛 of the outer loop,

the SA generates a new solution 𝑥𝑛     from the previous solution 𝑥𝑛−1 , this based inner loop generate 𝑥𝑛𝑒𝑤 
as described in algorithm 2) + the Metropolis criterion 

on a probability distribution below equation (eq. 1) and decides whether or not to accept it through. This 

behavior is modeled by a probability distribution defined as : 

𝑃𝑇𝑛(𝑥𝑛𝑒𝑤  |𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) = {
𝑒𝑥𝑝 (−

𝑓(𝑥𝑛𝑒𝑤) − 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑛−1
) 𝑖𝑓  𝑓(𝑥𝑛𝑒𝑤) − 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) > 0

1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

351 sciencesconf.org:meta2018:210616



In which 𝑇𝑛−1 is the previous temperature parameter.  For each temperature stage 𝑇𝑛, this process is repeated

𝐿𝑚𝑎𝑥 times. After these  𝐿𝑚𝑎𝑥 iterations, the current temperature 𝑇𝑛 is decreased. One of most used cooling

function is the geometric function:  𝑇𝑛 = 𝛼 𝑇𝑛−1 , 0 < 𝛼 < 1
The SA repeats these steps until a stopping criterion is meet which can be the final temperature 𝑇𝑓 or an upper

limit on the number of iterations. At the early stage, the temperature is high and the probability of accepting a 

bad solution is large. As the algorithm proceeds, both the temperature decreases and the probability of 

accepting bad solution become low. At the later stage the simulated annealing behaves like the gradient descent 

method. In general, SA can be seen as an iterative improvement process composed from three functions: 

generation, acceptance and cooling. These three functions determine the convergence of general SA [1], but 

parameters in general SA, such as the initial temperature, initial configuration, inner-loop, and outer-loop stop 

criterion, can have significant impact on its finite-time behavior. That is, the computation time in practice 

depends on the three functions as well as these parameters. Most research on SA has concentrated on the 

update and accept function and various algorithmic parameters, only limited attention has been paid to the 

generate function. 

Algorithm 1: Simulated annealing algorithm 

Input: 

𝑓 : cost function, 𝑇0: the initial temperature, 𝑇𝑓: the final temperature, 𝐿𝑚𝑎𝑥: the length of temperature stage, 𝑥0 : the

current solution 

Output:  

𝑥𝑏𝑒𝑠𝑡  : The best solution for the cost function 𝑓
Start: 

n=0 

While (𝑇𝑛 ≤ 𝑇𝑓) do

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑥𝑛 
For 𝑘 = 1 to 𝐿𝑚𝑎𝑥  do

𝑥𝑛𝑒𝑤  = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐷, 𝑘)
If  (𝑥𝑁𝑒𝑤)  −𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) ≤ 0  then  𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡←𝑥𝑛𝑒𝑤

   else ← Genarate a pseudorandom number 𝜀 from uniform distribution over [0,1] 

If    𝜀 < exp (−
𝑓(𝑥𝑁𝑒𝑤− 𝑓(𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡))

𝑇𝑛
)  then   𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡←𝑥𝑛𝑒𝑤    End

  End 

 End 

T𝑛+1←𝛼 T𝑛
     n←n+1 

𝑥𝑛+1←𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡
End 

𝑥𝑏𝑒𝑠𝑡←𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡

To the best of our knowledge, the first work integrating a learning technique into the neighborhood function 

was proposed by Corana [2], who proposed an adaptive approach to adjust the neighborhood range of SA for 

continuous optimization problems [More Explanation]. But It has been proved by Miki et al. 2002 [3] that this 

method is not better than the SA with the good neighborhood range. Miki et al, 2002 [3] tried to enhance the 

performance of SA by appropriately adjusting the neighborhood range according to the landscape of the given 

problem using the opposition based learning. In fact, the opposition based learning increases only the diversity 

of the candidate’s solution by selection not only the random guess but also its opposite. But this approach can 

become when get the algorithm near to the global optimum. 

  Unlike the previous approaches which used parameters to adjust the neighborhood range during the 

exploration of the search domain, this research proposes the quaternion’s representation to enhance the 

neighborhood exploration. In this paper we propose a method that does not use parameters to adjust 

neighborhood range, but instead explore the quaternion space. Each 1-dimension of the initial vector is 

converted to a 4-dimencsion quaternion.  Even if the quaternion space is bigger than the original one the search 

become easier.In addition real valued data is often best understood when embedded in the complex domain. 

It was first reported by Fister et al. [5] that the quaternion representation can help the algorithm to efficiently 

balance between exploration and exploitation. This approach expands the original search space, exploring the 

search space of quaternion is easier because the fitness landscape based on this quaternion representation 
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become smoother.  The quaternion was used by Fister et al. [5] to enhance the firefly algorithm and to avoid 

the premature convergence; it was reported by the author that the quaternion representation of individuals 

within firefly creates a balance between exploration and exploitation.  

Joao Papa et al. [6] introduces a Harmony search algorithm based on quaternion. His aim was smoothing the 

fitness landscape of non-convex function in high dimension space. Where each proposed solution in n 

dimensional   is molded as a tensor of dimensions 4×N. The same approach was applied for swarm intelligence 

algorithm by Iztok Fister et al. [7] to reduce the problem of stagnation if the Bat algorithm where each 

individual in was represented as quaternion. In addition Thanh Tung Khuat [8] represents individuals of 

genetic algorithm using quaternion. The main idea behind his approach is to map each 1-dimension real value 

to a 4-dimensiol quaternion. The method gives a better final solution and enhance the algorithm convergences. 

Up to now, the quaternion was only applied on population-based algorithms. This article presents the first 

attempt to apply quaternion on a stochastic local search like simulated annealing and to validate its 

effectiveness. 

The rest of this paper is organized as follows. First, section 2 gives background information, including a 

description of the simulated annealing and the quaternion algebra, section 3 describes the concept of the 

quaternion simulated annealing, then section 4 presents the experimental results and discussion, and finally, 

we conclude the paper in Section 5. 

2. Background

In this section, first we will describe how the simulated annealing generates the candidate’s solutions in the

case of continuous optimization. Then, we will give a brief introduction of the quaternion algebra.  

2.1.  Neighborhood Structure 

We suppose that for each state 𝑥 in 𝑆 there is a set 𝑁(𝑥) ⊂ 𝑆, which 𝑁(𝑥) is called the set of neighbors of 𝑥 

reachable in exactly one move. Each move is reversible ( 𝑦 ∈ 𝑁(𝑥) ⟹ 𝑥 ∈ 𝑁(𝑦)). From any state 𝑥 there is 

the same number of moves (i.e., 𝜔 = |𝑁|). In addition, any state in the neighborhood 𝑁 must be reachable is 

a finite number of moves. Each move has a probability of 1 𝜔⁄  to be accepted and each random move is 

choosen  using the function (1) The simulated annealing explores the search space using random walk 

methods called the hit and run generator introduced by Smith in 1984 [9] summarized in Algorithm 2. The 

underling concept behind this Markov chain sampling technique is to generate a sequence of point by taking 

steps of random length in randomly generated direction. First the hit-and-run algorithm generate a random 

uniformly distributed directions over a specific set of directions on the unit hypersphere ℝ𝑛. This is done by

generation n independent scalar 𝑑𝑖 , 𝑖 = 1,2, . . , 𝑛 from a normal distribution 𝑁(0, 1) then we scale them to

calculate the unit direction vector 𝐷𝑘 [10]

𝐷𝑘 = (𝑑1, 𝑑2. . , 𝑑𝑛) (∑𝑑𝑖
2

𝑛

𝑖=1

)

−1 2⁄

   (2)

Then the hit and run algorithm generates a step length 𝜆 which is generated uniformly on the intersection of 

unit direction vector 𝐷𝑘 with the feasible set 𝑆.

Algorithm 2: 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆_𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏() 

Input: 

𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡  : the current solution, D: the problem dimension , k : the current inner iteration index

Output:  

𝑥𝑁𝑒𝑤  :  The new generated solution

Start: 

𝑥𝑘+1 = 𝑥𝑘 + 𝜆𝐷𝑘    (3)

where 𝐷𝑘 is a random direction uniformly distributed over a direction set 𝐷 ⊂ 𝑆 and 𝑥𝑘 is uniformaly distributed

over the line set : 𝐿𝑘 = {𝑥: 𝑥 ∈ 𝑆 𝑎𝑛𝑑 𝑥 = 𝑋𝑘 + 𝜆𝐷𝑘 , 𝜆 𝑎 𝑟𝑒𝑎𝑙 𝑠𝑐𝑎𝑙𝑎𝑟}
End 
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2.2.         Quaternions 

The quaternions [11] is defined by the formula 𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘, where 𝑎0, 𝑎1, 𝑎2, 𝑎3 are real

numbers 𝑖, 𝑗 and 𝑘  represent the imaginary parts. These fundamental quaternion units satisfy the following 

equations: 

 {

𝑖𝑗 = 𝑘,  𝑗𝑘 = 𝑖 𝑘𝑖 = 𝑗,
𝑗𝑖 = −𝑘 𝑘𝑗 = −𝑖 𝑖𝑘 = −𝑗

𝑖2 = 𝑗2 = 𝑘2 = 1

  (4) 

For two quaternions 𝑞1, 𝑞2 in the 4-dimential space over the real numbers, .the following operations can be

defined [12]: 

 Addition and subtraction are determined by the formula:

𝑞1 ± 𝑞2 = (𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘) ± (𝑏0 + 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘)

= (𝑎0 ± 𝑏0) + (𝑎1 ± 𝑏1)𝑖 + (𝑎2 ± 𝑏2)𝑗 + (𝑎3 ± 𝑏3)𝑘
 (5) 

 Multiplication is determined by the formula:
𝑞1𝑞2 = (𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘)(𝑏0 + 𝑏1𝑖 + 𝑏2𝑗 + 𝑏3𝑘)

= 𝑎0
1 + 𝑎1

′ 𝑖 + 𝑎2
′ 𝑗 + 𝑎3

′ 𝑘
(6) 

Where 

{

𝑎0
′ = 𝑎0𝑏0 − 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏3
𝑎1
′ = 𝑎0𝑏1 + 𝑎1𝑏0 + 𝑎2𝑏3 − 𝑎3𝑏2
𝑎2
′ = 𝑎0𝑏2 − 𝑎1𝑏3 + 𝑎2𝑏0 + 𝑎3𝑏1
𝑎3
′ = 𝑎0𝑏3 + 𝑎1𝑏2 − 𝑎2𝑏1 + 𝑎3𝑏0

The product of two quaternions is not commutative i.e  𝑞1𝑞2 ≠  𝑞2𝑞1.

 Conjugate is an unary operation defined by

𝑞1̅ = (𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑎0 − 𝑎1𝑖 − 𝑎2𝑗 − 𝑎3𝑘 (7)

 Norm of a quaternion is determined by

‖𝑞1‖ = ‖𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘‖ = √𝑎0
2 + 𝑎1

2 + 𝑎2
2 + 𝑎3

2 (8)

 The norm satisfies these proprieties ‖𝑞1̅̅̅‖ = ‖𝑞1‖ and  ‖𝑞0𝑞1‖ = ‖𝑞0‖‖𝑞1‖. This function is used

for mapping a 4-dimentional quaternion to 1-dimentional real valued scalar.

 The Multiplicative inverse of quaternion q is denoted as 𝑞−1 which is equal to

𝑞1
−1 =

𝑞1̅
‖𝑞1‖

2
(9) 

The multiplicative inverse of quaternion satisfies the properties 

𝑞1𝑞1
−1 = 𝑞1

−1𝑞1 = 1 , (𝑞1
−1)−1 = 𝑞1 and (𝑞1𝑞2)

−1 = 𝑞2
−1𝑞2

−1

 The distance between a quaternion  𝑞1 and 𝑞2 is defined by

𝑑𝑖𝑠𝑡( 𝑞1,  𝑞2) = √(𝑎0 − 𝑏0)
2 + (𝑎1 − 𝑏1)

2 + (𝑎2 − 𝑏2)
2 + (𝑎3 − 𝑏3)

2 (10)

The operations of the quaternion algebra are used for implementing the quaternion hit and run function of the 

simulated annealing. The next section of this paper presents the use of these operations within the new 

simulated annealing with the quaternion hit and run generator in detail. 

2.3.         Simulated annealing based quaternions 
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The main idea behind our approach is exploring the quaternions space instead of Euclidian space. Each 

solution  𝑥𝑛 ∈ ℝ
𝐷  is modeled as a set of  𝐷 quaternions 𝑞 ∈ ℝ4. Therefore, the simulated annealing based

quaternion will search a solution of the form 𝑥𝑖
′ ∈ ℝ𝐷 × 4. then We map each quaternion to real value by

𝑥𝑖 = 𝑁𝑜𝑟𝑚(𝑥𝑖
′) =

[∑ |𝑥𝑖𝑗
′ |3

𝑗=1 ]
1 2⁄

|𝑥𝑖0
′ |

 , 𝑖 = 1,…𝐷.        (11) 

In other words, the simulated annealing tries to find the quaternions that minimizes the cost function for each 

variables. The simulated annealing based on the quaternion representation is relied to the classical simulated 

annealing, and we only changed the way we generate the candidate solution from Euclidean space to a 

quaternion space. The quaternion representation moves the search toward the more promising area. Despite 

the fact that the quaternion space is larger than the original one, it can be smoother for exploration [5]. At the 

first step we generate a random a set of quaternion 𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖  , 𝑖 ∈ 1. . 𝐷 using a function defined by [5]

𝑅𝑎𝑛𝑑𝑜𝑚_𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛() = {𝑎𝑖 = 𝑁(0,1)| 𝑓𝑜𝑟 𝑖 = 1. .4}     (12)
Where each quaternion component is initialized with a random number drawn from the Gaussian distribution 

𝑁(0,1) with zero mean and one as a standard deviation. Next, each quaternion of candidate solution within 

the neighborhood space is mapped to the corresponding real value before evaluation the objective function. 

Algorithm 3: Simulated annealing algorithm based quaternions 

Input: 

𝑓 : cost function, 𝑇0: the initial temperature, 𝑇𝑓: the final temperature, 𝐿𝑚𝑎𝑥: the length of temperature stage, 𝐷: problem dimension.

Output:  

𝑞𝑏𝑒𝑠𝑡 : The best quaternion solution for the cost function 𝑓
Start: 

𝑞𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑅𝑎𝑛𝑑𝑜𝑚_𝑄𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛()
While (𝑇𝑛 ≤ 𝑇𝑓) do

For 𝐿 = 1 to 𝐿𝑚𝑎𝑥 do

𝑞𝑁𝑒𝑤  = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛()
𝑁𝑁𝑒𝑤 = 𝑁𝑜𝑟𝑚( 𝑞𝑁𝑒𝑤)

If  (𝑁𝑁𝑒𝑤)  −𝑓(𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)≤ 0  then  𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡←𝑞𝑛𝑒𝑤
 else ← Genarate a pseudorandom number 𝜀 from uniform distribution over [0,1] 

If    𝜀 < exp (−
𝑓(𝑁𝑁𝑒𝑤)− 𝑓(𝑁𝑐𝑢𝑟𝑟𝑒𝑛𝑡)

𝑇𝑛
)  then  𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡←𝑞𝑛𝑒𝑤   End

 End 

 End 

     End 

T𝑛+1←𝛼 T𝑛
   n←n+1 

𝑞𝑏𝑒𝑠𝑡←𝑞𝑐𝑢𝑟𝑟𝑒𝑛𝑡
End 

In the Next section, we will study the convergence of the quaternion simulated annealing and we will prove

that QSA keep its convergence propriety under the quaternion space. 

3. Experimental results

Experiment was performed to find how the quaternions representation of the neighborhood can enhance the 

quality of solution, and improve the rate of convergence in high dimensional search space of simulated aneling. 

Furthermore, we compared the outcomes of our approach with other optimization algorithm such as the 

particle swarm optimization (PSO) [13], the genetic algorithm (GA) [14]. The ant bee colony algorithm (ABC) 

[15], The Bat Algorithm (BA) [16] and the generalized simulated annealing (Gen-SA) [17]. These results will 

have analyzed using a statistical test and then discussed. 

3.1. Benchmark functions 

We have chosen twelve n-dimensional functions (table 1) selected from the literature [18]. To figure the 

performance of our approach and how it can improve the solution quality.  These functions were divided into 

unimodal function and multimodal one, which have multiple local minima scattered throughout the search 

space. These functions can show the ability of the algorithm to escape from local minimum. The n-dimensional 
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functions can also be categorized into separable and non-separable ones The last ones are the most dificult to 

optimize due to the  interdependency between wariables. 

Table 1:   The benchmark functions 
No Name Expression  Ranges Minimu

m value 

Characteristics 

1 Rastrigin 𝒇(�⃗⃗� ) = 𝟏𝟎𝒏 +∑ (𝒙𝒊
𝟐 − 𝟏𝟎𝒄𝒐𝒔(𝟐𝝅𝒙𝒊))

𝑫

𝒊=𝟏
 𝒙𝒊 ∈ [-5.12, 5.12] 0 

separable, 

multimodal 

2 Griewank 𝒇(�⃗⃗� ) = 𝟏 +∑
𝒙𝑰
𝟐

𝟒𝟎𝟎𝟎

𝑫

𝒊=𝟏
−∏𝒄𝒐𝒔(

𝒙𝒊

√𝒊
)

𝑫

𝑰=𝟏

 𝒙𝒊 ∈ [-600, 600] 0 
non-separable, 

multimodal 

3 Rosenbrock 𝒇(�⃗⃗� ) =∑ [𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊
𝟐)
𝟐
+ (𝟏 − 𝒙𝒊)

𝟐]
𝑫

𝒊=𝟏
 𝒙𝒊 ∈ [-5, 10] 0 

non-separable, 

unimodal 

4 Levy 

𝒇(�⃗⃗� ) = 𝒔𝒊𝒏𝟐(𝝅𝒘𝟏) +∑ (𝒘𝒊 − 𝟏)
𝟐[𝟏

𝑫

𝒊=𝟏

+ 𝟏𝟎𝒔𝒊𝒏𝟐(𝜋𝒘𝒊 + 𝟏)]
+ (𝒘𝒅 − 𝟏)

𝟐[𝟏 + 𝒔𝒊𝒏𝟐(𝟐𝝅𝒘𝒅)] 

Where 𝒘𝒊 = 𝟏 +
𝒙𝒊

𝟒
, for all 𝒊 = 𝟏,… ,𝑫 

𝒙𝒊 ∈ [-10, 10] 0 
non-separable, 

multimodal 

5 
Xin-She 

Yang 
𝒇(�⃗⃗� ) =∑ 𝜺𝒊|𝒙𝒊|

𝒊
𝑫

𝒊=𝟏

where ε is a random variable uniformly distributed in [0,1] 

𝒙𝒊 ∈ [-5, 5] 0 
separable, 

multimodal 

6 Salomon 𝒇(�⃗⃗� ) = 𝟏 − 𝒄𝒐𝒔(𝟐𝝅√∑ 𝒙𝒊
𝟐

𝑫

𝒊=𝟏
)+ 𝟎.𝟏√∑ 𝒙𝒊

𝟐
𝑫

𝒊=𝟏
𝒙𝒊 ∈ [-100, 100] 0 

non-separable, 

multimodal 

3.2.  Comparison of the convergence speed 

To validate the convergence speed, experiments were conducted on the benchmarks with the dimension D = 

10, in 10 000 neighborhood generation. The cost value was reported in figure 1.  For non-separable functions 

((𝑓2, 𝑓3, 𝑓4, 𝑓6),it was depicted from the figures that the classical SA get stuck rapidly in local minima, it also 

shows a slow convergence rate in the high-dimensional search space. However, The Q-SA presents a good 

rate of convergence toward the global minimum especially for non-separable function.  For separable functions 

(𝑓1, 𝑓5) the Q-SA reaches a better solutions in the early stages compared to the original SA. The SA using 

quaternion representation converges in few generations, and it has ability to tune itself in the local minimum.

Fig 1 : Convergence curves of the Q-SA and the SA on the benchmark functions 
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As Observed from Fig. 1 we can find that all the cost function values of the QSA converges to much better 

solutions and with much faster speed at the later stage of algorithm.  However, there are different convergence 

behaviors at the former stage for two algorithms. There are certain stages that classical SA’s convergent speed 

outperforms QSA for some functions’ plots.  For example, GSA’s convergent speed is faster than that of QSA 

at the initial stage for functions Rastrigin and Griewank.  However, the convergence speed at the initial stage 

for functions of QSA greatly exceed CSA for All other functions.  In subsequent stage, The CSA is more local 

than the QSA, this is why fails rapidly into a local optimum for the six functions. We can conclude that the 

proposed Q-SA has higher precision and tends to find the global optimum faster than the SA for all these 

benchmark functions. 

3.3. Performance comparison with other optimization algorithms 

This subsection aims to compare the result of QSA to other well-known optimization algorithms such ans the 

particle swarm optimization (PSO) [13], the genetic algorithm (GA) [14] ,the ant bee colony algorithm (ABC) [15],the 

Bat Algorithm (BA) [16] and the generalized simulated annealing (Gen-SA) [17]. This experiment part aims also to 

measure the effect of quaternion representation on the classical SA. The obtained results were tested using 

Friedman statistical tests. These experiments were conducted using an open-source library LibOPT developed 

in C language and implementing PSO, GA ABC and BA [19]. For the dimension D=50, we set the population 

size to PS=100 as reported by [5]. The maximal number of generation (MaxGen) was calculated using the 

following formula [5]: 𝑀𝑎𝑥𝐺𝑒𝑛 =
5000×𝐷

𝑃𝑆
(12) 

Therefore, the maximal number of generation MaxGen=  2500 was used in this study for PSO, GA, ABC and

BA.  In addition, for each optimization algorithm a set of parameter was used.  

 The Q-SA and SA parameters:

- Initial temperature = 1000,

- the Inner number of iteration= 100,

- the outer number of iteration =100.

 The Gen-SA parameters was selected as [17] :

- Initial temperature = 5230,

- visiting.param = 2.62,

- acceptance.param = -5.0,

- markov.length = 2 * length(lower) lower is the

vector with length of initial vector. 

The parameters of GA, BA and ABC was the same used 

by [4]: 

 The GA parameters

- crossover rate: CR = 0.9,

- the probability of diversity: p = 0.15,

- the number of individuals is chosen to store in

the archive pool: m = 40. 

 The BA parameters are:

- the loudness: A0 = 0.5,

- the pulse rate: r0 = 0.5,

- minimum frequency: Qmin = 0.0,

- maximum frequency: Qmax = 0.1.

 The ABC parameters are:

- the number of employed bees: 50,

- the number of onlooker bees: 50,

- the limitation of the number of cycles that a

source cannot be improved: 100. 

 The parameters of PSO was based on the studies

of  [20] :

- the acceleration constants c1=c2= 2

- the inertia weightw=0.7

- the minimal inertia weightw wmin =0.4

- the maximal inertia weightw wmax =0.9

The numerical results of our experiment for each algorithm on six benchmark functions where the best, the 

worst, the mean, the median values and its corresponding standard deviations for each algorithm on ten 

benchmark functions are presented table 3.   

Table 3: Performance comparison of Q-SA with other optimization algorithms for dimension D=50. 

Function Mesures Q-SA SA Gen-SA PSO GA ABC BA 

Rastrigin Best 3.06E-04 3.51E+02 3.38E+01 6.45E+01 6.88E+02 0.00E+00 4.08E+02 

Worst 1.29E-01 5.72E+02 8.56E+01 1.96E+02 7.93E+02 0.00E+00 1.07E+03 

Mean 1.41E-02 4.75E+02 5.39E+01 1.35E+02 7.40E+02 0.00E+00 7.81E+02 

Stdev 2.52E-02 5.65E+01 1.28E+01 2.91E+01 2.49E+01 0.00E+00 2.02E+02 

Median 4.82E-03 4.71E+02 5.37E+01 1.39E+02 7.41E+02 0.00E+00 8.19E+02 

Griewank Best 7.92E-07 2.39E+01 3.31E-12 8.07E-01 2.57E+01 0.00E+00 2.44E-01 

Worst 6.34E-03 3.31E+01 4.13E-11 1.06E+00 3.21E+01 1.34E+01 2.60E+01 

Mean 9.05E-04 2.96E+01 1.55E-11 9.55E-01 2.90E+01 7.02E+00 6.80E+00 

Stdev 1.46E-03 2.14E+00 9.84E-12 6.17E-02 1.69E+00 5.67E+00 6.62E+00 

Median 2.05E-04 2.97E+01 1.28E-11 9.58E-01 2.91E+01 1.02E+01 5.52E+00 

Rosenbrock Best 1.77E-04 3.43E+08 1.98E-13 4.00E+02 1.83E+06 4.87E+01 9.26E+01 
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Worst 4.29E+00 4.97E+08 8.97E+01 3.84E+03 3.59E+06 1.10E+06 9.42E+05 

Mean 2.57E-01 4.12E+08 2.21E+01 1.87E+03 2.69E+06 3.56E+05 3.27E+04 

Stdev 7.88E-01 4.29E+07 2.59E+01 1.04E+03 5.30E+05 4.33E+05 1.75E+05 

Median 6.24E-02 4.12E+08 1.44E+01 1.63E+03 2.77E+06 4.90E+01 1.53E+02 

Levy Best 5.95E-07 2.19E+02 1.35E+01 5.73E+00 3.17E+02 7.93E+00 9.30E+01 

Worst 4.55E-04 3.36E+02 1.18E+02 4.11E+01 4.81E+02 9.56E+00 9.43E+05 

Mean 9.03E-05 2.79E+02 4.81E+01 1.55E+01 4.13E+02 8.83E+00 1.30E+05 

Stdev 1.23E-04 3.03E+01 2.02E+01 7.52E+00 4.16E+01 4.00E-01 3.31E+05 

Median 4.13E-05 2.79E+02 4.38E+01 1.46E+01 4.13E+02 8.95E+00 1.53E+02 

Xin-She Yang 

Best 3.83E-08 2.40E+11 0.00E+00 1.61E-10 9.86E+18 0.00E+00 4.79E+16 

Worst 1.41E-05 2.24E+19 0.00E+00 1.10E+01 1.70E+25 0.00E+00 9.36E+37 

Mean 2.60E-06 1.35E+18 0.00E+00 5.52E-01 1.16E+24 0.00E+00 4.26E+36 

Stdev 2.79E-06 4.20E+18 0.00E+00 2.07E+00 3.25E+24 0.00E+00 1.81E+37 

Median 1.79E-06 4.28E+16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

Salomon Best 4.91E-04 2.92E+01 7.20E+00 2.00E-01 3.22E+01 0.00E+00 1.72E+01 

Worst 2.07E-01 3.61E+01 2.22E+01 3.50E+00 3.64E+01 0.00E+00 2.67E+01 

Mean 9.56E-02 3.39E+01 1.73E+01 2.02E+00 3.45E+01 0.00E+00 2.20E+01 

Stdev 7.30E-02 1.29E+00 2.66E+00 7.56E-01 9.67E-01 0.00E+00 2.20E+00 

Median 1.01E-01 3.42E+01 1.77E+01 2.20E+00 3.43E+01 0.00E+00 2.18E+01 

As depicted in this table 3, the Q-SA algorithm solves efficiently the Rosenbrock and the Levy problems. It 

was also noticed that the Q-SA shows acceptable performance for Rastrigin, Griewank. Table 3 shows also 

that the ABC algorithm significantly outperforms the results of the other algorithms, i.e., QSA, SA, Gen-

SA,PSO, GA and BA according to dimension D = 50 in Rastrigin, Salomon and Alpine functions.  

3.4. Statistical test 

The significance of the results was evaluated using the Friedman’s test [21]. It is a non-parametric statistical 

test equivalent to the parametric ANOVA. The freedman’s test Hypotheses are for formulated as follows: 

𝐻0: Each ranking of the metaheuristics within each problem is equally likely, (i.e., there is no difference

between them) so that for instance, the population medians are equal: 𝐻0 ∶  [𝜇1  = · · · =  𝜇𝑁  ]
𝐻1: At least one of the metaheuristics has a different performance than at least one of the other metaheuristics;

𝐻0 ∶  [ 𝜇1 ,· · · , 𝜇𝑁  𝑛ot all equal ]

In addition, we rank the results of the metaheuristic for each benchmark function, giving 1 to the best algorithm 

and 7 to the worst one. Let r(𝑝𝑖𝑗) be the rank of 𝑗𝑡ℎ algorithm in k algorithm on the 𝑖𝑡ℎ function of N

benchmark functions, where k is equal to 7 and N is equal to 6 in our experiment. The average ranks of 

algorithm were then computed, 𝑅𝑗 =
1

𝑁
∑ r(𝑝𝑖𝑗)
𝑁
𝑖=1   𝑓𝑜𝑟 𝑗 ∈ [1. .7] as shown in table 3. The average ranks by 

themselves give a useful performance comparison. As depicted in table 3 the Q-SA ranks the first with the 

rank average of 1.83 followed by the Gen-SA with the rank average of 2.50, the ABC, PSO, BA and SA rank 

the third, the fourth, fifth and sixth respectively. The GA has the worst performance over all algorithm. 

Table 4: The rank for all algorithms in each benchmark function and the their average rank 

Q-SA SA Gen-SA PSO GA ABC BA 

Rastrigin 2 5 3 4 6 1 7 

Griewank 2 7 1 3 6 5 4 

Rosenbrock 1 7 2 3 6 5 4 

Levy 1 5 4 3 6 2 7 

Xin-She Yang 3 5 1 4 6 1 7 

Salomon 2 6 4 3 7 1 5 

Average rank (𝑅𝑗) 1.83 5.83 2.50 3.33 6.17 2.50 5.67 

The Freidman statistic is calculated by the following formula:  𝜒𝐹
2 =

12𝑁

𝑘(1+𝑘)
[∑ 𝑅𝑗

27
𝑗=1 −

𝑘(𝑘−1)2

4
] = 24.60

Then we calculate the Iman & Danvenport [22] statistic 𝐹𝐹 to overcome the conservative behavior of Freidman

statistic  𝜒𝐹
2 : 𝐹𝐹 =

(𝑁−1)𝜒𝐹
2

𝑁(𝑘−1)−𝜒𝐹
2 = 10.80 
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Where the 𝐹𝐹 statistic is distributed according to the F-distribution with 𝑘 −  1 = 6 and (𝑘 − 1)(𝑁 − 1) = 30
degrees of freedom.  𝐹𝐹 = 10.80 is greater than the critical values of 𝐹(6, 66) = 2.35 [23].  Thus, we reject

the null hypothesis at the level of significance α=0.05. Then, we conclude that the performance of all 

algorithms is statistically different. We can proceed with a post hoc significant test to know if algorithm 𝑖 and 

𝑗 are different. 

To do that, we used the Holm–Bonferroni [24] method. First we start by ordering the p-value 𝑝1, 𝑝2, 𝑝3. . , 𝑝𝑘−1
associated with hypotheses 𝐻1, 𝐻2, 𝐻3. . , 𝐻𝑘−1. The Holm–Bonferroni procedure reject the null hypothesis 𝐻1
to  𝐻𝑗−1 if 𝑗 is the smallest integer such that 𝑝𝑗 >

𝛼

𝑘−𝑗
, where 𝛼 is the level of significance which is equal to

0.05 in this study. Within the 𝑅𝑗 values calculated by Friedman test shown in Table xx, the Q-SA has been

taken as a reference algorithm. Indicating with 𝑅1 the rank of Q-SA, and with 𝑅𝑗 for 𝑗 = 2,… ,6 the rank of

the remaining algorithms. To calculate the 𝑝𝑗 value for each pair of algorithm, first we compute the 𝑧𝑗 value

given by the following equation:  𝑧𝑗 =
𝑅1−𝑅𝑗

√𝑘(𝑘+1)
6𝑁

 . The probability values 𝑝𝑗 following the normal distribution

Ν(0,1)   have been calculated and compared to
0.05

7−𝑗
. The results of the Holm–Bonferroni procedure are given 

in table 5. The null hypothesis is rejected when the Q-SA is compared ton GA, SA and BA. In other words, 

The Q-SA statistically outperforms the GA, SA and BA. However, the null hypothesis is accepted when Q-

SA is compared to PSO, ABC and Gen-SA meaning that the performance of Q-SA, PSO and ABC is 

indistinguishable on the selected benchmark functions. 

Table 5: Results of the Holm–Bonferroni procedure 

This results clearly indicates that not only quaternion representation enhances the classical version of 

simulated annealing but it can be an alternative to population based algorithm like BA, PSO and ABC for high 

scale problems.  

4. Conclusion 

This article introduces a novel approach to enhance the simulated annealing by the quaternion’s representation 

of the neighborhood structure. Research works dealing with quaternion’ for solving the optimization problem 

are very limited. This work proposes the quaternion’s representation of neighborhood structure in the 

simulated annealing algorithm that associates each 1-dimensional real-valued scalar to 4-dimensional 

quaternion. Despite the fact that the quaternion representation enlarges the search space, exploration is more 

effective. This study demonstrates that problems such the premature convergence or the stagnation arisen in 

large scale unconstrained optimization could be reduced or even avoided using quaternion. Numerical results 

show that our approach enhances significantly the quality of solution in large scale problems compared to the 

classical simulated annealing. In addition, the QSA is competitive with other optimization algorithms.   Further 

research should be conducted on other local search algorithms using the quaternion algebra. Furthermore, the 

QSA has a promising application for the real optimization problems. 
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1 Introduction

Cellular  Manufacturing  Systems  (CMS)  are  an  industrial  implementation  of  the  Group  Technology  (GT)
philosophy. CMS consist of dividing the manufacturing system into cells so that similar parts are processed in the
same cell. Such systems are specifically designed for job shops whose production volume is average [1]. CMS have
proven ability to reduce set-up times, in-process inventories, lot sizes and production equipment while improving
productivity  and production system mastery [16].  There  are  four  important  steps  in  CMS design:  (1)  process
planning, (2) cell formation (CF), (3) machine layout and (4) cell layout. Our paper deals with CF which is a key
step in CMS design.

In the last decades, the interest of researchers on CF triggered a big amount of research that can be broadly
divided into the following three non-exclusive categories [1]:
1. Methods based on the part-machine incidence matrix: The part-machine incidence matrix (PMIM) is a binary
matrix that indicates the set of machines used to process each part.  A large number of studies concentrate on the
use of this matrix, by considering that it is the most important, if not the sole, input of the problem (e.g. [13]). Such
matrix-based methods generally proceed by swapping rows and/or columns of the PMIM to yield a diagonal block
structure from which part families and machine cells are obtained.  This category has several limitations as it takes
neither the operation sequences nor the production volumes into account.     
2. Methods based on similarity coefficients: McAuley [11] was the first to use the measure of similarity between
machines to identify cells. He developed a mathematical coefficient that uses only PMIM information. Since his
article was published, numerous papers have tried to enhance this measure by adding further inputs, including
production volumes [15,10], part operational time and operation sequences [4]. The efforts in this category tend to
combine data inputs from several criteria,  defining the similarity coefficient as a weighted combination of the
overall criteria (see [18] for a comprehensive study). However, weak justifications are given for the weighting
procedure, which is an influential parameter in the derived solutions.   
3. Methods based on Meta-Heuristics:  CF problem's NP-completeness prompted research to focus on heuristic
methods.  Meta-heuristics,  have  attracted  the  most  attention,  leading  to  Tabu  search  approach  [9],  Simulated
Annealing [17], Neural Network approaches [7] and Genetic algorithms (GA) [17,5,1,2]. Literature findings proved
that GA based methods are very interesting research paths in comparison to other heuristics [10]. In GA based
approaches, the encoding representation is the sole means that prospects the search space. We believe therefore that
it must be lent more attention in research efforts. In fact, most of the published works (e.g. [17,5,2]) that use an
evolutionary approach adopt the machine-to-cell integer encoding that has proven its limitation [1]. 

To contribute to these efforts, this paper proposes a new cut-based GA encoding representation derived from the
cut-based-graph-partitioning model [12]. The proposed cut-based solving approach supposes that the number of
cells is not known a priori and hence, it looks for the appropriate number of cells. Furthermore, this approach is
more suitable to meeting the real-life production systems requirements as it uses the actual amount of product flow
that  is  falsely  estimated  by  binary-PMIM-based  methods,  and  as  it  considers  the  natural  constraints  such  as
operation sequences, maximum cell size, cohabitation and non-cohabitation constraints.

The remainder of this paper is organized as follows. In section 2, a graph partitioning formulation for the MCF
problem is presented. Section 3 discusses some theoretical aspects from which the cut based encoding is derived.
The next section describes the proposed genetic algorithm. Section 5 presents the results obtained by applying the
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proposed  methods  on  some  chosen  data  sets,  and  section  5  presents  our  conclusions  as  well  as  our
recommendations for further research.

2 Formulation

In  order  to  be  self  contained,   in  what  follows  we  present  the  formulation  of  the  MCF  problem  as  a
cohabitation-and-non-cohabitation-constrained graph partitioning problem [12].  

2.1 Input Data
(1) M = {M1, M2, ..., Mm} is a set of m machines and P = {P1, P2, ..., Pp} is a set of p part types.
(2) For each part type Pk (k = 1, 2, ...., p), we suppose given:

(i) A single sequence of machines to be visited by the part:
Rk = (<Mk, 1>,< Mk, 2>, ...,<Mk, sk>), where: <Mk, t>∈ M (t = 1,2, ..., sk) and sk is
the number of machines in the sequence Rk.

(ii) rk: the mean production volume of part type Pk per time unit.
(3) Constraint data :

(i) A set of machine couples SC.
(ii) Another set of machine couples SN.
(iii) An integer number N.

2.2 Flow Graph Construction 
(4) For each (Pk, Mi, Mq) ∈ P × M × M, we denote as vkiq the number of times Mi follows Mq or inversely  in Rk 

(i,q=1, ..., m).
(5) For each (Mi, Mq)∈M×M, we denote the Mi, Mq inter-machine traffic (i,q=1,..., m) by: 

tiq=∑
k=1

p

r k vkiq

In addition, we define:
(6) The non-oriented flow graph G=(M,E), where the set of edges E is the set of non-ordered machine couples that

are connected by a positive traffic or that are in SC or SN:
E = {eiq / (Mi , Mq) ∈ M×M, i, q = 1, ..., m; i ≠ q  and  tiq ≠0} ∪ SN ∪ SC

(7) Edge weight function W:

W (eiq) = tiq where i,q ∈{1, ..., m }.
Remark. If the flow graph is not connected, it must be connected by adding fictive edges with null weights. This
procedure permits the assumption that the flow graph is connected from here on.

2.3 Decision Variables 

(8) Let CS={w1,w2,…,w|CS|} be a subset of cuts of G such that [ mN ]≤|CS|<m where [x] is the integer part of the

number x and |X| is the cardinal of the set X.

2.4 Intermediate Processing 
(9) Let C = {C1, C2,  ..., CJ} be the set of connected components of the graph G after removing all the edges of CS 

cuts. That is,

C= (M,E−U i=1
|CS|wi) .

C is a partition of M in J cells. That is,

Cj ≠ Ø, ∀  j ∈ {1,2, …,J} ;∪ j=1
J C j=M  and Cj ∩ Cg =Ø, ∀  j,g ∈ {1,2, …,J}, j ≠ g.

(10) Subset of intercellular edges:
E (CS )=U i=1

|CS|wi

(11) Total intercellular traffic:
T (CS )= ∑

eiq∈E (CS )

W (eiq )
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2.5 Constraints
To be feasible CS must satisfy  the following constraints: 
(12) Maximum number of machines allowed in a cell N: We only consider cut subsets CS whose C partition re-

spects:
∀ Cj  ∈ C (j = 1, 2, ...., J ):  |Cj| ≤ N.

(13) Cohabitation constraint:
∀ (Mi , Mq) ∈ SC, ∀w ∈ CS: eiq∉ w , where i,q  {∈ 1,…, m}.

(14) Non-cohabitation constraint:
 (∀ Mi, Mq) ∈ SN, ∃ w ∈ CS: eiq ∈ w, where  i,q ∈ {1,..., m}.

2.6 Objective Function 
(15) Let S be the set of cut subsets that respect the previous constraints. The problem is to find a solution CS* ∈  S, 

such that: 

Z (CS* )=Min
CS∈S

T (CS )

This means to seek a cut subset that respects all the constraints and has the minimum amount of intercellular
traffic.

3      Theoretic preliminaries

Since a solution is a graph partition, it can be represented by a sum, using the boolean operator OR , denoted +, of
cuts (A cut is a subset of edges that can be associated with a subset of vertices A for which all these edges have
exclusively and exactly one endpoint in A). The solution of figure 1, for example, can be defined by the sum of two
of the depicted cuts w1,w2,w3. 

Fig. 1 A graph partition with its constructor cuts.

For instance, the sum of w1=(0,1,1,1,0,0,1,0) and w2=(0,1,1,0,1,1,1,0) yields w1+w2 =(0,1,1,1,1,1,1,0), which is
sufficient to determine the associated solution. In fact, the cuts are represented by binary vectors in which the ones
indicate  the  associated  edges.  For  example,  w1=(0,1,1,1,0,0,1,0)  is  constructed  by  e2,e3,e4,e7 because  their
corresponding values equal one. 

The obtained solution vector is an edge encoding representation [1]. However, the allele values used to identify
intercellular  and  intracellular  edges  are  inverted.  According  to  this  interpretation,  the  obtained  sum
(0,1,1,1,1,1,1,0)  sets  e1 and  e8 intracellular  and  the  remainder  edges  are  intercellular,  yielding  the  solution
C={{M1,M3},{M2},{M4,M5}} of figure 1.        

A partition being a sum of cuts yields to the fact that the search space can be covered using these “graph
creatures”. However, the edge-based cut codification is not suitable to be used as a genetic encoding representation
because a random binary vector is not necessarily a cut and therefore this will require resorting to a repair function
when generating the initial population or whenever a GA operator is applied. Fortunately, we can overcome this
first hurdle by using cut properties in graph theory. In fact, cuts define a vector space that can be covered by the
XOR operator and a subset of only m-1 special cuts (the base of the vector space). There are several manners to get
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a cut base. Among the simplest ways, the direct method consists of choosing any m-1 vertices and then getting the
cuts associated with the singletons of the chosen vertices. For instance, for the graph of figure 1, if we choose the
singletons {M1},{M2},{M3},{M4} their associated cuts, i.e.  w({M1})=(1,1,1,0,0,0,0,0),  w({M2})=(0,0,0,1,1,1,0,0),
w({M3})=(1,0,0,1,0,0,1,0) and w({M4})=(0,1,0,0,1,0,0,1), define a cut base. Any cut has a unique representation as
a XOR sum of fundamental cuts. For example, w1= w({M1}) XOR w({M3}) and w2= w({M1}) XOR w({M2}) XOR
w({M3}). For further theoretic issues on cut properties see [14], [21].

4 The Cut-Based GA

Genetic algorithms are one of the famous optimization approaches that imitate natural evolutionary processes. In
this section, the general principles of GA are first presented [1], followed by a description of the GA applied to the
MCF problem.

4.1 Principles of the Genetic Algorithm

J.Holland [6] is considered to be the founder of the modern Genetic Algorithms. These algorithms are based on an
analogy to  natural  selection.  First,  a  chromosome structure  is  set  to  represent  the  solutions  of  the  problem.
Afterwards, an initial  population of chromosomes is generated, either randomly or by using a given heuristic.
Then,  members  of  the  population  are  selected,  based  on  an  evaluation  function,  called  fitness.  The  fitness
associates a value to each member according to its objective function. Genetic operators are then applied to the
selected members to produce a new population generation.  This process is  repeated until  achieving a  certain
stopping criterion.

Implementing genetic algorithms requires defining the following aspects:
 the structure of the genetic code used for representing solutions;
 the method for generating the initial population of solutions;
 an adaptation function to evaluate the fitness of each solution;
 the genetic operators used for producing a new generation; and
 certain control parameter values (eg. population size, number of iterations, genetic operator probabilities).

4.2 GA Implementation

4.2.1 Cut-Based Encoding The graph theory model (see section 2) allows encoding each solution  by a chain

of  K×(m–1) binary alleles, where  K= [ mN ]  ([x]  denotes the integer part of  x). In other words, this chain is

composed of K parts of length m-1. Each part allows defining a cut by specifying the basic cuts that construct it
with the XOR sum. Therefore, each one of the K parts yields a cut. Afterwards, by combining these cuts with
an OR sum, we get the associated partition solution. The definition form of K is due to the fact that a typical

good solution has probably a moderate number of cells which cannot be less than  
m
N

 and thus,  K cuts are

sufficient to construct a good solution. For example, by supposing K to be equal to 3, the three-cell solution of
figure 1 would be coded by the following chain:

part 1 part 2 part 3
w({M1}) w({M2}) w({M3}) w({M4}) w({M1}) w({M2}) w({M3}) w({M4}) w({M1}) w({M2}) w({M3}) w({M4})

1 0 1 0 1 1 1 0 0 0 0 0

The interpretation of this chromosome structure is straightforward: part 1 uses w({M1}) and w({M3}) to define
the first cut  w1. The second uses w({M1}), w({M2}) and w({M3}) yielding w2. In the third part all the alleles are
equal to zero, and thus, no cut is generated. The two cuts, w1 and w2, yield the associated partition by combining
them with an OR sum.        

The most important advantage of binary coding is that GAs are positively sensitive to reduced alphabets. With a
binary alphabet, it becomes easier to the GA to detect the good building blocks of the individuals' codes. However,
the cut-based GA suffers from a high level of redundancy. In fact, a solution is not affected by swapping its parts
and, furthermore, we can have two equal parts. To overcome this second hurdle, we sort every solution without
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repetition. This sorting considers for each part the decimal number taken from the sub-string of the part when it is
supposed binary coded (see the appendix). For example, the previous chain is coded in decimal as follows:

part 1 part 2 part 3

10 14 0
Thus, part 2 sub-string must be put first, then part1. The sorting ignores part3 because it is not associated to a

valid cut. Hence, after this sorting procedure, there will be no equal parts except for a possible sequence-of-zeros
tail.   

4.2.2 Initial Population The initial population is randomly generated without repetition.  To get a solution, we
generate K integers from the interval [0, 2m-1-1] (see the appendix). Each integer, when it is binary coded, will
give a part of the solution chain. After applying the sorting procedure, if there is no equivalent member in the
population, the solution is accepted.

4.2.3  Fitness and Selection To allow the GA to get advantage of the good information infeasible solutions can
hide, the fitness is calculated by using a transformation function proposed by [1].  This method enables the GA
to distinguish between feasible solutions and infeasible ones as well as between good and less good feasible
solutions. 

By using this  fitness,  the  "Roulette  wheel"  random procedure [3]  selects  the  individuals  eligible  to  the
crossover.

4.2.4 Crossover and Mutation For simplicity, we have opted for one-cutting-point crossovers. The first one is
classical and allows putting the cutting point in any random point of the chain. The second crossover allows
putting the cutting point only between consecutive cut parts (see figure 2). The ratio of individuals that will
undergo a crossover operator is defined by the parameter Pc. The rest give up their places to other randomly
generated members. 

The mutation operator consists of randomly choosing a ratio of  Pm members. For each one, a cut part is
replaced by another one randomly generated. 

For the parameter settings, empirical experimentation has been conducted to choose the parameter values
that push the GA to perform at its best in a small amount of time (less than one minute).

Fig. 2 Crossovers

4.2.5  Stopping Criterion After the selection-crossover-mutation process, the sorting procedure is applied on
each individual of the population. The best individual that has been saved before the three step process is then
reinserted in the population (elitism). This process is repeated until a certain number of iterations imax is reached.

4.2.6  Cut Based GA Algorithm The pseudo code of the GA we implemented is as follows:
1. Get random population (with feasible or infeasible individuals without repetition); [Apply the sorting

procedure on each individual of the population;]
2. Evaluate population using fine tuning procedure (see 3.2.3);
3. Repeat
 Save the best fitted individual;
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 Get mating population : Select Pc proportion of individuals from population using  the Roulette Wheel
Selection procedure;

 Apply crossover (pick one of the two crossovers randomly) on the mating population and replace parents
by their offspring; Generate the rest (1-Pc) of the population randomly;

 Apply mutation on the resulting population with Pm ratio;
 Reinsert the best fitted individual;
 [Apply the sorting procedure on each individual of the population;]
 Re-evaluate population;
 Until imax iterations;

5 Computational Results

Two variants of the cut based genetic algorithm were implemented. The first one does not implement the sorting
procedure whereas the second does. The two cut based GA were also compared with the edge based GA [1] and
our implementation of the well-known Kmeans clustering [8]. Our implementation of Kmeans initializes the
centroids by using random rows of the machine-to-machine-product-flow matrix. In addition, since Kmeans
uses a known number of clusters (cells), we calls Kmeans for all the integer values in [m/N, m-1] interval;
hence, we call it multiKmeans. The corresponding pseudo code is as follows: 

Loop for k=[m/N] to m-1 do 
 Call kMeans(input: number of cell (clusters) k, machine-to-machine-product-flow adjacency

matrix, output: machine partition solution);
 update the best solution if outperformed;
Loop end;

The four applications were processed on a Core i3 microcomputer with a clock speed of 2,1 GHz and 3.8 Go
of  RAM managed by  a  32-bit  Linux operating  system.  We coded them by using  a  C++ compiler.  In  the
following paragraphs, the four methods are referred to as CGA for the Cut based Genetic Algorithm without the
sorting procedure, SCGA for the Cut based Genetic Algorithm with the Sorting procedure, EGA for the Edge
based Genetic Algorithm, and multiKmeans. 

Four examples are taken from the literature [1] and a fifth example has been generated randomly [20]. They
are sorted according to their size, assumed to be equal to the product p×m (number of products × number of
machines).  
The five examples have a size of 20×8, 20×20, 40×20, 51×20 and 100×50 respectively, and the maximum
number of machines per cell is set to 5 for all but the third example where it is set to 4, and the fifth where it is
set to 7, then to 15.

Aiming at using moderate resources, we considered the evolutionary methods with the population sizes 100,
200, 300, 400 and 500, and the number of generations values 100, 200 and 300. 

For the crossover and mutation rates, values in the interval [0.6 , 0.8] for the first, and in [0.01 , 0.05] for the
second  have  shown  comparable  performances.  Therefore,  we  have  chosen  to  set  them  to  0.7  and  0.03
respectively, once and for all.

We run each one of the three methods for 20 times, and then we have reported the best average traffic and the
best solution with its own computational running time. The obtained results are reported in Table 2 (the best
performances for each method are boldfaced and the best scores for each example are underlined).

Table 2. Computational results.
Parameters First example (size=20×8) Third example (size=40×25)

EGA CGA SCGA EGA CGA SCGA
Pop. 
size

Gen
. #

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu (s) Avg.
traffic

Best 
traffic

Cpu
(s)

100 100 16.0 13 0.07 26.0 20 0.13 27 22 0.15 - UF* - 85.0 80 0.25 83.7 75 0.24
200 19.8 17 0.13 27.6 22 0.25 24.5 21 0.29 - UF - 85.0 81 0.48 80.5 70 0.47
300 25.2 19 0.19 27.4 24 0.40 25.0 20 0.44 78.1 66 0.16 84.9 81 0.73 80.1 72 0.72

300 100 18.6 15 0.22 28.6 21 0.68 24.1 17 0.77 60.0 51 0.19 82.7 79 0.78 74.8 68 0.82
200 20.0 13 0.42 27.2 20 1.59 26.0 20 1.83 71.8 56 0.35 82.3 80 1.55 73.6 64 1.61
300 19.0 13 0.65 26.0 21 2.58 27.7 22 2.56 67.2 47 0.52 82.3 80 2.36 73.4 61 2.68

500 100 17.3 13 0.40 27.4 19 1.67 25.9 22 2.57 62.1 56 0.40 80.5 62 1.51 75.6 68 1.60
200 16.7 13 0.82 25.4 19 4.34 26.3 19 3.99 64.9 50 0.62 80.3 72 2.98 73.1 57 3.37
300 18.45 13 1.21 26.0 19 6.10 26.6 19 6.56 62.0 49 0.93 76.7 65 4.54 70.2 61 4.98
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Parameters Second example (size=20×20) Fourth example (size=51×20)
EGA CGA SCGA EGA CGA SCGA

Pop. 
size

Gen
. #

Avg.
traffic

Best 
traffic

Cpu (s) Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

100 100 30.1 27 0.06 45.9 43 0.13 38.9 38 0.11 211.2 184 0.09 192.3 166 0.44 183.7 167 0.38
200 30.4 25 0.10 44.0 41 0.29 38.4 33 0.24 185.7 165 0.18 187.7 153 0.93 183.5 139 0.85
300 27.5 22 0.15 41.8 38 0.49 37.0 30 0.34 199.5 168 0.26 190.6 167 1.32 180.8 145 1.25

300 100 27.7 24 0.17 40.9 38 0.53 36.2 32 0.52 202.7 162 0.29 173.0 146 2.17 169.3 139 1.81
200 28.4 25 0.34 41.6 39 1.35 35.5 26 1.08 199.2 178 0.57 163.7 144 4.04 165.1 132 3.18
300 26.0 22 0.54 40.8 36 1.62 34.8 31 1.55 183.5 102 0.86 164.1 145 7.3 165.3 143 5.00

500 100 26.9 22 0.30 39.5 37 1.07 34.8 31 1.04 183.8 118 0.53 170.5 152 5.36 161.7 140 3.78
200 26.0 20 0.60 39.7 37 2.33 31.6 25 2.18 196.4 146 1.06 161.2 140 10.53 155.5 136 9.04
300 24.1 21 0.90 38.7 34 3.40 33.2 25 3.19 192.7 155 1.74 160.0 147 16.11 150.3 110 11.52

Parameters fifth example (size=100×35, N=7) sixth example (size=100×50, N=15)
EGA CGA SCGA EGA CGA SCGA

Pop. 
size

Gen.
#

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

Avg.
traffic

Best 
traffic

Cpu
(s)

100 100 - UF - 515.1 511 3.00 487.8 453 3.42 506.7 398 0.18 461.5 449 0.71 390.0 350 0.72
200 - UF - 516.1 513 6.02 486.9 435 6.89 - UF - 457.3 446 1.41 378.5 342 1.48
300 - UF - 513.7 503 8.84 477.7 429 9.93 - UF - 449.0 392 2.27 369.9 339 2.21

300 100 - UF - 503.0 436 9.94 477.5 447 10.34 - UF - 448.5 439 2.24 368.9 350 2.41
200 529.6 465 1.49 502.2 453 18.48 463.4 435 20.37 525.8 390 1.77 434.7 363 4.51 367.9 341 5.09
300 - UF - 484.7 422 25.19 465.1 434 31.61 522.2 415 2.40 432.0 390 7.91 363.4 326 7.79

500 100 530.4 482 1.36 492.2 447 15.50 466.6 432 18.12 526.1 460 1.03 435.4 336 4.14 364.6 338 4.40
200 528.9 492 2.95 483.0 433 31.94 459.4 435 36.26 523.8 349 2.15 428.6 369 8.18 366.0 341 9.61
300 520.3 455 3.19 464.9 422 45.02 443.1 418 54.56 486.2 394 3.78 405.0 345 16.16 358.5 331 14.83

* UF : unfeasible solution.

For the six examples, multiKmeans gave 32, 50, 194, UF, UF and 416, respectively, in less than 0.1 second. 
From Table 2, in the first example, when compared to the other methods, EGA had a twofold performance: it

reached a better value of the objective function in a lesser running time. In the second example, EGA was still able
to reach a better value of the traffic. However, the average traffic of EGA reveals a great difficulty in reaching
these best values. Indeed, CGA and SCGA were clearly more responsive to increasing the population size by
reaching far better solutions in the average, as depicted in figure 3 for the fourth example.

Fig. 3. Average-traffic comparison for example 4.

Figures 4 and 5 further stress the analyse by depicting the normalized values of the results, and as it can be
deduced, the three evolutionary methods are far better than Kmeans based approach that does implement neither a
constraint handling routine nor a mechanism to avoid local optima trapping.

Fig. 4. Normalized-traffic comparison Fig. 5. Normalized-average-traffic comparison
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We can also realize that EGA struggles to reach feasible solutions in small population sizes and limited number
of generations in comparison to its counterparts.  However, SCGA that gave the best performances in average
requires more time resources, especially when the expected number of cells (clusters) for good solutions grows.
Indeed, this behaviour stems from the fact that when the maximum cell size decreases, cut based methods need
more graph cuts to construct feasible solutions because with the overhead cost of the sorting procedure, SCGA
needs more time to achieve its optimisation process.   

6 Conclusions

This paper deals with cell formation witch is one of the main problems to be solved when dealing with cellular
manufacturing.  A genetic  algorithm  with  a  new  graph-cut-based  encoding  representation  is  proposed.  The
performance of the new GA is tested on a set of numerical examples and compared with other methods. The cut
based GA has proven to be more able to reach feasible areas with low resources, especially when the expected
number of cells for good solutions is moderate.      

We suggest continuing this work in the following directions. First, we are interested by adopting other ways for
constructing the cut base. Inspecting then their influence on the performance of the cut based GA will be a good
path of investigation. Second, the compared evolutionary methods are from the same family as they belong to the
edge-based approach. This suggests a co-evolutionary solving approach is very promising. Finally, the branch and
bound enhancement [1] being closer to the cut based GA than the edge based one, it seems that a hybridization of
the two methods is another promising research path. 
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Appendix: Number of graph cuts and representations

1 Number of cuts

In a connected graph with  m vertices there are 2m-1-1 cuts. Indeed, a cut splits the graph in two complementary subsets of
vertices. Since we can get 2m subsets from a set of cardinality m, we have 2m-1 couples of complementary subsets. By taking
away the special couple of the complete and the empty sets yields the number of cuts.

2 Representing cuts

We consider the graph of figure 1. The number of cuts is 25-1-1=15. Each cut can be derived from a combination of basic cuts
that yields a unique integer number. This integer representation is very useful since it defines a one-to-one relation between
the set of cuts and the set of integers in the interval [1, 2m-1-1].

Table A.1 Different representations of cuts

Integer 
representation

Representation with basic cuts Edge representation

w({M1}) w({M2}) w({M3}) w({M4}) (e1,e2,e3,e4,e5,e6,e7,e8)

1 1 0 0 0 (1,1,1,0,0,0,0,0)
2 0 1 0 0 (0,0,0,1,1,1,0,0)
3 1 1 0 0 (1,1,1,1,1,1,0,0)
4 0 0 1 0 (1,0,0,1,0,0,1,0)
5 1 0 1 0 (0,1,1,1,0,0,1,0)
6 0 1 1 0 (1,0,0,0,1,1,1,0)
7 1 1 1 0 (0,1,1,0,1,1,1,0)
8 0 0 0 1 (0,1,0,0,1,0,0,1)
9 1 0 0 1 (1,0,1,0,1,0,0,1)
10 0 1 0 1 (0,1,0,1,0,1,0,1)
11 1 1 0 1 (1,0,1,1,0,1,0,1)
12 0 0 1 1 (1,1,0,1,1,0,1,1)
13 1 0 1 1 (0,0,1,1,1,0,1,1)
14 0 1 1 1 (1,1,0,0,0,1,1,1)
15 1 1 1 1 (0,0,1,0,0,1,1,1)

Table A.1 depicts the set of cuts with their different representations for the previous graph. Note that basic cuts (boldface 
typed) are powers of two.
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1 Abstract

Particle swarm optimization is an intelligent optimization algorithm, which belongs to the famous
category of optimization problems called meta-heuristics. Based on the pattern of swarm intelli-
gence, PSO is inspired by social behavior of animals like fish and birds. This paper discusses the
optimal slope of each region of the working area of the company in charge of building a water
pipeline from point A to point D. Under some assumptions, the objective function, which initially
depends on many variables, becomes a nonlinear function of two variables. The aim is to mini-
mize largely the total cost of the set of entire tasks of the company project. It also describes the
simulation result, which is carried out, on a two variable function with the help of a PSO.

Keywords - optimization, intelligent algorithm, Particle swarm optimization, nonlinear function.

2 Introduction

The major priority of every company, namely big business is to pursue maximum profits, secure
tax breaks, and exploit cheap labor. In the case of a construction company, its major concern, inter
alia, is to reduce largely the cost price of the set of the entire tasks of the project to be carried
out. Thats why, special attention should be given to the project cost optimization (minimization).
Depending on the complexity of the obtained mathematical model, the management committee
has to find the suitable technique to solve efficiently the optimization function of the project to be
performed.

3 Problem Formulation

A large company plans to build a water pipeline from point A up to point D, and must pass through
three different and rugged terrain where the construction cost, differ from one region to another.
In the following the description of each region according to difficulty level in terms of construction.
The first region is almost a flat region, and the construction in such a region can be qualified as
easy to do. The second region is rocky with varying degrees of similarity and complexity. The third
region is a hill with elevation twice that of the second region. The project evaluation and studies has
established; considering some assumptions; that the construction costs of both the second and the
third regions are twice and three times that of the flat (first) region respectively. Since the project
is a large-scale one, and by devoting the necessary resources, it is customary when it comes to fix
the duration of each task to retain the one that would prove to be the least expensive. The problem
is represented geometrically in figure 1 below. The horizontal distance between the extreme points
A and D is approached to be 10 length units. This measurable distance is taken as a round number
to simplify the calculus. Considering the point D; the highest point of the working regions; as the
origin of the horizontal axis, x and y values are considered as radii of the hill region and the rocky
one respectively, their values change from one point of their circumference to another. Expressing
the z variable equals to z = (10− y), reduces the objective function by one variable; consequently,
the building cost function is now depending only upon two variables instead of three.
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Fig. 1. Pipeline route

The total cost of the entire project is

Cost(x, y) = 3
√
x2 + 4 + 2

√
(y − x)2 + 1 + (10− y) (1)

Equation 1 represents the objective function. It is an unconstrained function, with respect to two
independent variables, nonlinear and with radicals.

4 Mathematical Model of the PSO

PSO covers a population of eventual solutions called a swarm or particles. Every particle is a
candidate for being a solution to the optimization problem. Within the search space, every particle
takes a position. The search space is composed of all the possible solutions to the optimization
problem. We would like to find the best solution among all provided ones. [1] [2] [3]
The position of every particle i is denoted by a vector −→x i(t) ∈ X as an element of the search space
X. In order to show the iteration number of the algorithm, a discrete time step t is added to this
position. Thus, i is the index of the particle and −→x i(t) is the position vector. The particle velocity,
which is a vector of the same search space, is denoted by −→v i(t). The dimensions of the position and
the velocity are the same. Therefore, every particle is characterized by its time step t, its position
−→x i(t) and its velocity −→v i(t) see figure 2. [1] [2] [3] However, this particle, which is an element of

Fig. 2. Representation of a moving particle

a swarm, is not acting alone; it interacts harmoniously with the rest of the other particles. They
are interacting together and learning from each other according to some simple rules in order to
find the best solution for the problem. The mathematical model of particles movement in the PSO
is considered as a powerful tool to solve the optimization problem.

−→
P i(t) denotes the personal best

of each particle, it is the memory of its best position. ∆g(t) denotes the common best experience
among the members of the swarm, it belongs to whole the swarm. All these concepts, contribute
to the development of the mathematical model of the PSO, where on every iteration, position and
velocity of every particle is updated according to a simple mechanism. Instantaneously the personal

371 sciencesconf.org:meta2018:210618



Swarm Intelligence Algorithm PSO

Fig. 3. Instantaneous position of a moving particle

best as well as the global best are represented with dotted vectors in figure 3.
In order to move to a new position, the particle travels parallel to the velocity vector, parallel to
the vector connecting −→x i(t) to

−→
P i(t), and parallel to the vector connecting −→x i(t) to g(t). The

result is a new position −→x i(t+ 1) with a new velocity −→v i(t+ 1). See figure 4. [1] [2] [3]

Fig. 4. New position of a moving particle

Then, the new position of each particle is created according to the previous velocity, the previous
personal best and the previous global best. This new position −→x i(t + 1) is a candidate for being
eventually a better location.

The mathematical motion model of particles in the PSO is described as follows: [1] [2] [3]

{
vi(t+ 1) = wvi(t) + c1(Pi(t)− xi(t)) + c2(gi(t)− xi(t))
xi(t+ 1) = xi(t) + vi(t+ 1)

(2)

With: w, c1 and c2 are real value coefficients.

The standard model of the PSO is given as follows:

{
vij(t+ 1) = wvij(t) + r1c1(Pij(t)− xij(t)) + r2c2(g(t)− xij(t))
xij(t+ 1) = xij(t) + vij(t+ 1)

(3)

with:
w: the inertia coefficient
r1, r2: uniformly distributed random numbers in the range 0, 1. r1, r2 ≈ U(0, 1)
c1, c2: acceleration coefficients

The new velocity vector is composed of three components: the inertia term, the cognitive com-
ponent, and the social component.
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5 Structure of the basic PSO [4]

1. Initialize a population of particles with random positions and velocities;
2. Evaluate the fitness value of every particle;
3. If the fitness value is better than the previous best fitness value, then set current value as the

new best;
4. Choose the particle with the best fitness value of all the particles as the global best;
5. If the stopping criterion is met, then output its objective value; otherwise, go step 2.

6 Results and Discussion

The particle swarm algorithm is implemented in Matlab system where the cost function labeled
(1) has to be minimized. The cost function is with respect to two variables (x, y) ∈ <2. The PSO
is executed under the following parameters: [5] [6] [7]

1. The number of decision variables =2.
2. The matrix size is [1 2].
3. Range of decision variables 0 ≤ x ≤ y ≤ 10
4. Maximum number of iterations= 500.
5. Population size (swarm) =100.
6. Inertia coefficient =1.
7. Acceleration coefficients =2.

After initializing the position, the velocity, and the cost function of all the swarm, the algorithm
converges to the following best values:

x = 0.707107 y = 1.284457

The corresponding cost is:

Cost(x = 0.707107, y = 1.284457) = 17.38891 M. Units

7 Conclusion and Perspectives

It is verified using rules of calculus that the result is quite good. During the PSO iterations, we
have seen an exponential decay of the personal best, which leads us to certify that the PSO is a
global optimization algorithm, due to two factors: communication and learning.
In perspective, we intend to optimize the code of the PSO for parallel programming of a goal-
programming problem and check to what extent the running time will be lowered.

References

1. Won. Y. Y. Wenwu C. Tae-Sang C. John M, Applied numerical methods using MATLAB, A John Wiley
sons, Inc. 2005.

2. Federico Greco Travelling Salesman Problem, ISBN 978-953-7619-10-7 - 2008 In-teh.
3. Randy L. Haupt, Sue Ellen Haupt Practical genetic algorithms Published by John Wiley Sons, Inc.,

Hoboken, New Jersey. Copyright 2004.
4. Hemlata S. Urade Rahila Patel Study and Analysis of Particle Swarm Optimization: A Review 2nd Na-

tional Conference on Information and Communication Technology (NCICT) 2011 Proceedings published
in International Journal of Computer Applications (IJCA).

5. B. Jan, T. Vladimir, Optimization: Insights and Applications, Princeton University Press, Princeton
Series in Applied Mathematics, 2005.

6. L. George, P. John, Numerical Methods using Matlab, Prentice Hall, Upper Saddle River, New Jersey
07458, 2000.

7. F. S. Hillier, G. J. Lieberman, Introduction to Operations Research, McGraw-Hill international, ninth
edition 2010.

373 sciencesconf.org:meta2018:210618



A Genetic Algorithm for selecting feature extraction strategy and data mining algorithm 

to optimize GPCR classification 

S. Bekhouche
1 

and Y. Mohamed Ben Ali
2

1. Université Badji Mokhtar. Annaba, Algeria

Safia.bekhouche@gmail.com 

2. Université Badji Mokhtar Annaba Algeria

Benaliyam2@yahoo.fr 

Keywords: GA, Classification, GPCR, Machine learning algorithms, Optimization, Protein 

representation method. 

I. Introduction 

GPCRs are the largest family of membrane proteins and mediate most cellular responses to 

hormones and neurotransmitters, as well as being responsible for vision, olfaction and taste. At the most 

basic level, all GPCRs are characterized by the presence of seven membrane spanning α-helical segments 

separated by alternating intracellular and extracellular loop regions [1] as shown in figure 1. Therefore, they 

are the most intensively studied drug targets, mostly due to their substantial involvement in human

pathophysiology and their pharmacological tractability [2].  

/

Figure1. Representation of G-protein coupled receptor structure [3] 

Due to their importance and role in the human body, the identification of GPCR function is a very 

important task in the bioinformatics domain, that is why we must always optimize it and looking for the best 

possible solution. 

Several works aimed at identifying the GPCRs function and improving predictive accuracy, by 

performing a classification step that require a numerical representation for each protein sequence made from 

one of the existing Feature Extraction Strategies (FES) in the literature, note that each FES produces an 

attribute vector of different size. For a better prediction of the function, several contributions must be taken 

into account among them:  

 How to obtain a good accuracy and a minimal error rate of the classification?

 For each level what is the appropriate data mining algorithm to perform the classification?

 Which protein representation method will be selected for the extraction of the digital vector?

 Using a large database, does the size of the vector influences the classification results and

the execution time of the selected classifiers?

In this work, we are adopted to treat the part of the classification at sub sub-family level by choosing the best 

FES and the convenient algorithm that result us an optimal classification with the most minimal error rate 

and maximum accuracy.  
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The bio inspired methods are still the best refuge for combinatorial problems; they can improve the results 

and produce the optimal solution. The FES and DMA selection is done using Genetic Algorithm (GA) that 

gave almost the best results for all domains [4]. Furthermore, there have been many attempts to use GAs to 

solve the fields of computational intelligence problems such as: Chehouri et al. [5] propose a GA to 

clustering applications, Djellali and Adda [6] use a new variables selection scheme based on GA meta-

heuristic, also a Genetic Algorithm based approach for solving the minimum dominating set of Queens

problem is described in [7],...etc. 

We divide this paper into four parts: The first focuses on presentation and definition of concepts and related 

works according to the GPCR classification. The second is dedicated to explaining our proposed system, 

thus all realization steps, the third part is the experimentation for assessment of our method, and finally we

terminate by some conclusions.  

II. Backgrounds

Before explanation of our proposed system, we give an overview about concepts definition and 

works existing in this area. We divide this section into three parts, the first devoted to giving a quick view on 

the GPCR definition, their roles, their usefulness in the pharmaceutical domain, the second dedicated to the 

representation of these proteins thus a bunch of strategies used to transform an alphabetic protein sequence 

into a numeric vector, easy to use for any computer processing, as for the last part, We will talk about the

existing classification methods to predict the GPCRs function. 

2.1.GPCRs definition: Looking at the GPCRs term we can extract that it consists of two essential 

concepts which are: Receptors and G protein. Before defining GPCRs concept, we will give a quick

view concerning these two notions.  

 Receptor: It's a kind of target protein [8] (enzyme, ion channel; carrier, receptor) used to

cling to ligand that can be a drug, hormone, neurotransmitter or chemical substance for give

the desirable actions as a recognition site. The figure A and B show the functioning

principle of the receptors thus their site in the cell.

Figure1: A: Functioning principle of the receptors. (B): Site of receptors. 

 G protein, that are so-called because they bind the GDP and GTP. They are heterotrimerics

[9] owing to making of three different subunits which are: Gα, Gβ and Gγ. It allows the

transfer of information inside the cell. It thus participates in a mechanism called signal

transduction. To perform their functioning they must be linked to the receptors [10].

Figure 02: Signaling mechanism of heterotrimeric G-protein. 

From those figures, we can remark that if the extracellular ligand bind to the GPCR in the cell membrane, 

this cause a confirmation change which where the inactive G-protein become the active G-protein; 
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Heterotrimeric G-protein will be activated if GTP instead of GDP is bound to Gα subunit. This activation

can lead to multiple intracellular events trough a variety of intracellular proteins. 

GPCRs represent one of the largest and most important families of multifunctional proteins known in the 

molecular biology of modern times, they are membrane proteins characterized by seven transmembrane 

(7TM) helices [9], they respond to different ligands. These proteins are very important for the understanding 

of human physiology and disease. The prominent role that GPCRs play in many physiological processes 

means that GPCR make up a large fraction of the targets of approved drugs [11] [12], and their functions are 

extremely various in that they regulate many physiological processes related to neurological and 

neurodegenerative, cardiovascular and metabolic control mechanisms. The estimated number of GPCRs in 

the human genome is 800, which is approximately 3% of the human genome [13]. Many efforts in the 

pharmacology domain are intended to understand their structures and their functions, that's why we aim to

prove their applicability in this area, the following table summarize the related works. 

Organ GPCR roles Targets for Work 

gut–brain–

pancreatic 

GPCR are key players in the postprandial control of 

metabolism and food intake 

type 2 diabetes [14] 

myelinating 

glial cell

biology 

GPCRs  have  essential  and  diverse functions  in 

the  nervous  system,  but have  only  recently  been 

implicated  in this organ 

remyelination  in 

disease  and  after 

injury 

[15] 

epithelial

prostate 

GPR158 is associated with neuroendocrine 

transdifferentiation (NED) of epithelial prostate 

tumor cells, which plays a critical role in 

development of resistance to contemporary 

androgen receptor-target therapies 

new prostate cancer 

drugs 

[16] 

The breast 

Example protease-activated receptor1 (PAR1) is 

responsible for development of metastases in BCa 

patients. 

GPR116, plays an important role in cell adhesion 

and is found to be a novel regulator of BCa 

metastasis 

Breast cancer (BCa) 

[17] 

[18] 

Tumor cell PAR1 is also  known to promote detachment and 

migration of the epithelial cancer cells, which is a 

key step in tumor metastases 

Tumor metastases [19], [17] 

Colon Low concentrations of recombinantly expressed 

KLK14 can stimulate colon cancer cell 

proliferation, presumably through PAR-2 receptor 

Colon cancer cell 

proliferation 

[20] 

Table 1: Summary table of related work of GPCRs pharmacology. 

2.2. Feature Extraction Strategies “FES”: The protein sequence can be represented by two 

different forms [21]: one is the sequential form where the protein is represented by a series of amino 

acids, this representation reflect all the information about the sequence order and length of protein 

but it leads to the difficulty when used in computing process, One of the most impo111rtant criteria 

was to formulate an effective mathematical expression that truly reflected the correlation between 

the intrinsic features of the sequences and the protein types to be predicted this is why the second 

form is created, which is the discrete form where the protein is represented by a set of discrete

numbers or an attributes vector following to protein representation method.  

a. Amino Acid Composition "AAC" method: It contains 20 components with each reflecting the 

occurrence frequency for one of the 20 native amino acids in a protein. If  𝑃 = {A1 , A2 , A3 , ....., An} 

It can be expressed by: 𝑃' = { 𝑓1 , 𝑓2 , 𝑓3 , ..... , 𝑓20} are  the normalized occurrence frequencies of the

20 amino acids in 𝑆 calculating using the equation 1, In spite of its simplicity, facility, the main 

shortcoming that all the sequence-order information is lost. Where N represents the sequence length

and N(Ai) is the total number of amino acid Ai represent in the sequence. 

𝑓 𝑎𝑖 =
𝑁(𝑎𝑖)

𝑁 (01) 
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b. Pseudo Amino Acid Composition "PseAAC" method : It has been rapidly and widely used in nearly

all the areas of computational proteomics [22]. It uses an additional feature by varying the value of

λ, which represents the rank of sequence order [23]. It preserves sequence order and sequence length

information. PseAAC = {A1;A2;...;A20;A20+1.

..;A20+λ} The first 20 elements are the occurrence frequencies of the 20 amino acids. The remaining

A21,A22,...,A20+λ elements are first-tier to λ-tier correlation factors of amino acid sequences in the

GPCR chain [24]. The components corresponding to the sequence correlation factors may be < 0, 

c. Dipeptide Composition: The dipeptide components are important parameters for protein 

representation. P' = { 𝑓1 , 𝑓2 , 𝑓3 , ..... , 𝑓400} are the absolute occurrence frequencies of the 400 

dipeptides (pair of amino acid: AA, AC, .., AY, CA, CC,..,CY....YA,....YY) obtaining using 

equation (02). 

𝑓 𝑎𝑖𝑎𝑗  =
𝑁 𝑎𝑖𝑎𝑗  

𝑁 𝑎𝑖𝑎𝑗  
20

𝑗=1

20

𝑖=1

(02) 

Where 𝑁 𝑎𝑖𝑎𝑗  
20

𝑗=1

20

𝑖=1
represent the total number of  all dipeptides in the sequence and 𝑁 𝑎𝑖𝑎𝑗  

is the total number of 𝑎𝑖𝑎𝑗  dipeptides in the protein chain [23] [25]. 

2.3. Existing methods of GPCR identification: Based on pharmacological knowledge, the 

GPCRDB information system organizes the GPCR superfamily into a hierarchy of families, 

subfamilies, sub-subfamilies, and types. In all, GPCRs can be grouped into 7 classes [MUN 16] 

which are: Class A "Rhodopsin", Class B1 "Secretin", Class B2 "Adhesion", Class C "Glutamate", 

Class F "Frizzled", Class T "Taste2" and Class O "Other" that includes all 7TM receptors not 

belonging to any of the above classes. To arrive at such classification, several methods have been 

proposed in the literature, we can divide them into three categories: classification using alignment 

[26], flat classification [27] and hierarchical classification [24]. 

III. Proposed approach

In this section, we will detail our proposition and the necessary steps for its achievement. The

following figure shows the general diagram of the proposed system. 

        Figure 2: General architecture system. 

Genetic algorithms operate on a population of individuals to produce better and 

better approximations.  At each generation, a  new population is created by the process of  

selecting individuals according to their  level of f i tness in the problem domain, and 

recombining them together using operators borrowed from natural  genetics.  The 

offspring might also undergo mutation.  This process leads to the evolution of  

populations of individua ls that  are better suited to their  environment than the individuals  

that  they were created from, just  as in natural  adaptation. A state diagram for the 

training process  with the genetic algorithm is depicted next.  
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Input  :  

FES: AAC, PseAAC, DC 

DMA: BN, NB, C4.5,  Bag, KStar,  PART, RF. 

MaxIteration; ProbCross;  ProbMutation;  

Output :  The best  set  of (FES,  DMA)  

Init ial ize Population 

While  not MaxIteration do  

Evaluate each individual’s f i tness  using 

equation N°05.  

    Selection (CrossOver & Mutation)  

    Survival (Select  a new Population)  

EndWhile .  

End.  

Figure3:  Flo w d iagram of GA Search .  Algorithm1.  GA search for  se lect ing FES and DMA  

In our case, each individual in the population represents a predictive model.  The number 

of genes is the total  number of used FES and DMA. Genes here are binary values, and 

represent the activation or not of particular FES, DMA in the model.  The number of 

individuals,  or population s ize, must be chosen for each application. Usually, this is set  to 

be N*M, such as: N the FES number and M the DMA number . 

Now we are going to describe in detail the operators and the corresponding parameters 

used by the genetic algorithm.  

1 .  I n i t i a l i z a t i o n

The first  step is to create and initialize the individuals in the population. As the genetic 

algorithm is a stochastic optimization method, the genes of the individuals are usually 

initialized at  random. In order to illustrate this operator,  consider a predictive model 

represented by figure 4. If  we generate a population of 4  individuals, then we will  have 4 

different random FES and DMA. The next figure illustrates this population.  

FES DMA 

AAC PseAAC DC NB BN C4.5 Bag Kstar RF  PART 

Figure 4: Predictive model for FES and DMA selection. 

1 0 0 0 0 1 0 0 0 0 

Individual 1 

0 1 0 0 0 0 0 0 0 1 

Individual 2 

1 0 0 1 0 0 0 0 0 0 

Individual 3 

0 1 0 0 0 0 0 0 1 0 

Individual 4 

FES

•AAC 

•PseAAC

•DC

DMA

•NB, BN, C4.5

•Bag, KStar,  RF

•PART
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As we can see, each individual is represented by 10 binary genes. The first  three genes are 

devoted to the FES representation and the remaining are dedicated to the DMA. Eac h 

positive gene means that  the corresponding Strategy/Algorithm is included in the model.  

2. Fitness assignment

Once we have generated and initialized the population, we need to assign the fitness to 

each individual.  To evaluate the fitness, we need to train the predictive model with the 

training data, and then evaluate its classification error rate and predictive accuracy with 

the selection individuals.  Obviously, a high classification error rate means a low fitness. 

Those individuals with greater fitness wil l have a greater probability of being selected for 

recombination. The fitness value assigned to each individual will  be calculated using 

Algorithm2:  

The following depicts the classification  error rate (ER) and the accuracy (ACC). Note that 

the corresponding objective function  of each individual  is difference between the ACC 

measurement and the ER. 

ER ACC Fitness value 

Individual 1 0.09 83.13% 83.04 

Individual 2 0.16 90.12% 89.96 

Individual 3 0.09 85.05% 84.96 

Individual 4 0.04 96.34% 96.3 

3 .  S e l e c t i o n

After fitness assignment has been performed, the selection operator chooses the 

individuals that will  recombine for the next generation. The individuals most likely to 

survive are those more fitted to the environment. Therefore, the selection operator selects 

the individuals according to their  fitness level.  The numbe r of selected individuals is S/2,

being S the population size.  

Elitism selection makes the fittest individuals to survive directly for the next generation. 

The elitism size controls the number of individuals which are directly selected. One of the 

most used selection methods is roulette wheel,  that  is turned and the individuals are 

selected at  random. The corresponding individual is selected for recombination. The next 

figure illustrates the selection process for our example. In this case,  the individual 4 has 

been selected by elitism, and the 3 has been selected by roulette wheel.  Note  that, 

although the individual 2 has more fitness than the 3, it  has not been selected due to the 

stochastic nature of the genetic algorithm.  

Algorithm 2 : Fitness Function 

Input :  

FES = A chosen strategy 

DMA =  A chosen classifier;  

Output : 
MinER = Error Rate : Calculated using equation N° 04  

MaxAcc =  Accuracy : Calculated using equation N° 03 

Begin   

          Make a classification step according to the selected individuals. 

          Compute ER, ACC using DMA;  

          Compute the fitness function of each selected individual using equation N° 05. 

End. 
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Figure 5: Selection process.  

Here the number of selected individuals is half  of the population size.  

4 .  C r o s s o v e r

Once the selection operator has chosen half  of the population, the crossover operator 

recombines the selected individuals to generate a new population. This operator picks two 

individuals at  random and combines their  features to get  four offspring for the new 

population, until the new population has the same size than the old one.  

We choose the single point crossover method , fixed at point  3 of each individual .  The next 

figure illustrates the  crossover step for our example. Here we have generated two children 

from two selected parents.  

Parent 1 

0 1 0 0 0 0 0 0 1 0 

Child1 

0 1 0 1 0 0 0 0 0 0 

Parent 2 

1 0 0 1 0 0 0 0 0 0 

Child2 

1 0 0 0 0 0 0 0 1 0 

Figure 6: The crossover process.  

5 .  M u t a t i o n

The crossover operator can generate children that are very similar to the parents. This 

might cause a new generation with low diversity. The mutation operator solves this 

problem by changing the value of some genes in the children  at random. 

The mutation operator alters the characteristics of a solution in a completely random 

manner, which allows us to introduce and maintain diversity within our population of 

solutions. This operator plays the role of a "disruptive element", it  introduces "noise" 

within the population. In order to decide if  a gene  will be mutated, we generate a random 

number between 0 and 1. If  this number is lower than a value called the mutation rate, that 

variable is flipped. The mutation rate is a very low probability pm, genera lly between 

0.001 and 0.01. With that  value for the mutation rate,  we will  mutate one of each 

individual (statistically).  

The next image shows the mutation of one of the children  of the new generation. As we 

can see, the fourth and sixth genes of the child ren have been mutated. 

0 1 0 0 0 1 0 0 0 0 

At this point, we have the new population.  

IV. Experimental part

A. Materials and methods 

Fitness

Individual 1

Individual 2

Individual 3

Individual 4

Crossover point
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Tests took place on a laptop PC with an Intel(R) Core(TM) i5 processor running at 2.3 Ghz and 4 Go of 

RAM. Programs developed using eclipse neon environment with jdk 1.8 installed with Microsoft Windows

10 operating system. 

Database: The data base that we mainly used for the training and assessment of our experimentation was 

downloaded from the website
1
. We did a GPCRs classification at sub sub-family level for evaluating the 

proposed method and looking for the best FES and DMA using GA search.  

Weka: Weka (Waikato Environment for Knowledge Analysis) is a set of tools for manipulating and 

analyzing data files. It is written in java, available on the website
2
 and implementing most of the artificial 

intelligence algorithms, among them, we used Naïve Bayes (NB), Bayes Net (BN), C4.5, Random Forest 

(RF), Meta Bagging (BAG), PART and KStar. We used weka for the assessment of the objective function 

for each individual using the performance measurements cited bellow. 

B. Performance measurements 

To measure the performance of our method, we emphasized on accuracy and error rate based classification,

these measures are used to find the value of the fitness function of each solution. 

The following table recapitulate all the measures used in this work thus their calculating formulas: 

Abb Description Equation N° 

ACC Accuracy 
𝐴𝑐𝑐 =

TP + TN

TP + FP + FN + TN
03 

ER Error Rate 
𝐸𝑅 =

Nombre d′exemples mal classés

Nombre total d′exemples 

04 

Fitness Fitness Function 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = Acc − 𝐸𝑅 05 

Table 3. The performance measurements formulas. 

Table 4 shows the progression of the fitness value variation, all results are produced with a iteration

number equal to 100, the crossover probability = 0.5 and mutation probability = 0.01. 

It is obvious that there is a difference between one DMA and another in each FES, and a same DMA 

in the used FES, for example in the AAC Strategy, the value of fitness provided by the AG is maximum and 

close for classifiers BN and C4.5, unlike the BAG and PART which result the poorer fitness value. As for 

the PseAAC method, the best fitness is carried out by the RF algorithm with 96.3% rate, the NB and KStar 

classifiers give close and worst results. Furthermore, the GPCR classification at sub sub-family level using 

DC strategy give a good and closer fitness for BN, NB, RF, BAG, PART and C4.5 DMA, so that the best 

fitness equal to 98.04 is achieved using PART algorithm and the RF classifier give the worst fitness which is 

equal to 90.56. The KStar data mining algorithm provides the null value. 

FES DMA ACC ER Fitness 

AAC 

BN 91,35 0,11 91,24 

NB 89,15 0,13 89,02 

C4,5 90,3 0,09 90,21 

RF 88,5 0,05 88,45 

KSTAR 83,69 0,08 83,61 

BAG 82,75 0,07 82,68 

PART 82,92 0,09 82,83 

PseAAC 

BN 90,12 0,16 89,96 

NB 79,54 0,22 79,32 

C4,5 90,57 0,09 90,48 

RF 96,34 0,04 96,3 

KSTAR 78,65 0,09 78,56 

BAG 91,25 0,07 91,18 

PART 86,04 0,09 85,95 

1
 : www.gpcrdb.org  

2
 : www.cs.waikato.ac.nz/ml/weka 
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DC 

BN 96,9 0,11 96,79 

NB 92,01 0,13 91,88 

C4,5 97 0,09 96,91 

RF 90,63 0,07 90,56 

KSTAR 0 0 0 

BAG 96,7 0,06 96,64 

PART 98,12 0,08 98,04 

Table 4: Fitness value and performance measurements for DMA using different FES.  

The following figure shows the progression of fitness values of each FES according to used DMA, we can 

extract the following points: 

1. There isn’t a powerful algorithm for all strategies; a DMA gives a good result with a method but not

for the remaining. 

2. The best algorithm used for the classification of GPCR at sub sub-family level through AAC

strategy is BN that reached the 4th degree for the PseAAC method and the 3rd degree for the DC method. 

3. The best algorithm used for the classification of GPCR at sub sub-family level through PseAAC

strategy is RF, which reached the 4th degree for the AAC method and the 6th degree for the DC method. 

4. The best algorithm used for the classification of GPCR at sub sub-family level through DC strategy

is PART, which reached the 6th degree for the AAC method and the 5th degree for the PseAAC method. 

5. The KStar classifier is omitted for GPCR classification using DC method because of the large

number of attributes produced by this method (400 Attributes). 

Figure 7: Progression of fitness values according to FES and DMA. 

V. Conclusion and future work 

As we have seen, the major problems of GPCR classification are the choice of appropriate FES for 

protein representation into numerical form and the convenient DMA for a good predictive accuracy also 

minimum error rate. 

We have proposed and investigated a GA based feature extraction strategies selection and seven 

classifiers. A FES, DMA subsets are selected as the best for GPCR classification. The highest classification 

rate of 96.34% for testing set is achieved using the PseAAC method with a RF classifier. By using the

statistical techniques we validated that GA for FES & DMA selection is very effective. 

A further research needs to be conducted by adding more FES and DMA in the whole set for further 

selection on larger and several databases. 

0
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100

150

BN NB C4,5 RF KSTAR BAG PART

Fitness AAC

Fitness PseAAC

Fitness DC
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Abstract. In this paper we present an optimized domain decomposition method to resolve
a reaction advection diffusion equation. We use a differential fractional derivative condition
on the interface between sub-domains. We use The Fourier transform to compute and study
the convergence of this method and we show that the rate of convergence of this method
is zero. Then domain decomposition method operate in only two iterations. This is relevant
because the method will process fast without using a preconditioner to accelerate it.
Several test-cases of analytical problems illustrate this approach and show the efficiency of
the proposed new method.

Key word: equation of reaction advection diffusion, Optimized domain decomposition, Parallel
computation, Caputo derivative.

1 Introduction

Many equations in the field of fluid mechanics could be modified to a reaction advection diffusion
equation type. For instance, the implicit scheme of the Navier stokes equation or the linear and
non linear models of turbulence could be linearized (we propose a modified fixed point method for
linearization: articles [1], [2] and [3]) to these types of equations. Thus, the purpose of our work is
to propose a method that is accurate with less cost for these equations. A general equation of a
reaction advection diffusion equation could be:

{
cu+ a∂u∂x + b∂u∂y − µ∆u = f(x, y) on Ω

u = g on ∂Ω
(1)

We use a domain decomposition method (DDM) to solve the equation. The principle of this method
is to change a problem with large size to a decoupled consecutive sub-problems of small size that
could be solved in parallel. The gain in time is significant.
We give a short story of these methods: the First mathematician to use DDM was Schwarz in
order to prove the existence of harmonic functions on a complex domain [4]. After the invention
of parallel softwares and computers in the seventies, a lot of theoretical works comes to use DDM
for solving engineering problems, We cite S.-L. SOBOLEV [5], I. BABUSKA [6] and P.-L. LIONS
[7-8], Lions was the first one to propose and prove an overlapping domain decomposition method
(The Robin Robin method [9, 10]). In the nineties, we developed optimized domain decomposition
methods that are faster in convergence: Especially by using Taylor Formula to approximate the
steklov Poincarre operator [10,11]. In [11,12], we use The Fourier transform to approximate this
operator and determine its eigenvalue: In our work we tried to perform the known optimized domain
decomposition method of two order (OO2)introduced in [12]. This method is the fastest method
knew in the DDM history. The OO2 method uses a specified differential interface condition between
sub-domains in two order right the tangential direction and of one order in the normal direction,
the method is accelerated by solving the interface condition with a preconditionneur (Krylov type,
GMRES, Big Stab...).In this work we propose new differential equations in the interface somhow,
our DDM converges in two iterations avoiding the use of preconditionneur that could be local
for some partial differential equation. The condition of transmission in the interface between two
subdomains are fractional derivative conditions.
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In the first part of this work, we present the optimized decomposition domain of second order and
the new proposed method. In the second part, we prove the convergence of our method and finally
we give some numerical results that prove the efficiency of the proposed method.

2 Optimized domain decomposition methods

In what follows we present the principle of OO2 and our proposed method. We take for example
the case of two sub-domains decomposition.
Consider the two sub-domains Ω1 and Ω2 with an interface Γ (see figure1 )

Fig. 1. splitting of the domain in two sub-domains

2.1 The OO2 method

We built two sequences up1 and up2 as follows:
Considering two initials functions u0

1 and u0
2 defined on Ω1 (respectively Ω2), we compute then up1

and up2 by solving the problems:





L(up+1
1 ) = f(x, y) on Ω1

up+1
1 = g on ∂Ω

B1(up+1
1 ) = B1(up2) on Γ

(2)

and 



L(up+1
2 ) = f(x, y) on Ω2

up+1
2 = g on ∂Ω

B2(up+1
2 ) = B2(up1) on Γ

(3)

where:

L(u) = cu+ a
∂u

∂x
+ b

∂u

∂y
− µ∆u (4)

and
B1(u) = ∂u

∂n − C1u+ C2
∂u
∂τ − C3

∂2u
∂τ2

B2(u) = − ∂u∂n − (C1 − a
µ )u+ C2

∂u
∂τ − C3

∂2u
∂τ2

n and τ are the normal and the tangent on Ω1. B1, B2 are the artificial transmission condition on
the interface Γ and L is the reaction advection diffusion operator of equation (1).
Because of the Fourier analysis we show that the rate of convergence of our algorithm in the fourier
way is (see [12]for more explanation)

ρ(C1, C2, C3, k) = (
λ−(k)− C1 + ikC2 + C3k

2

λ+(k)− C1 + ikC2 + C3k2
)2 (5)

where

λ+̄(k) =
a+̄
√
a2 + 4cµ− 4iµbk + 4k2µ2

2µ
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are the eigenvalue of the steklov operator [12].
We don’t have convergence of the OO2 method for any coefficients C1, C2 and C3, but the conver-
gence of the method is ensured if we have max|k|<π

h
ρ(C1, C2, C3, k) < 1 ([12]) and the convergence

is optimized. However numerical test case show that the method is not so fast for high viscosity µ
(see [1] for explanation).

2.2 A new domain decomposition method with two iteration (AlgDF)

The aim of this section is to provide a domain decomposition with fractional derivative transmission
condition (AlgDF) in the interface between sub-domains. The goal of this procedure is to create
a method for the reaction advection diffusion equation with a rate of convergence equal to zero,
which means that our domain decomposition method is converging only by two iteration to the
solution of problem (1). This method is relevant comparing to OO2 method which could make
more than two iterations to converge to the solution of our problem.
In the next we also consider the splitting of our domain on two sub-domains (The general case of
several domain splitting is constructed and treated by the same way). We take the notations of
the section (2).

2.3 Case where a=b=0

In the case a=b=0, L is the operator that can represent the heat equation, it’s eigenvalues λ+ and
λ− are :

λ+ =
√
c+ νk2 et λ− = −

√
c+ νk2

Notice that:
√
c+ νk2 =

1√
ν

√
k + i

√
c

ν
×
√
k − i

√
c

ν

This term is none other than the Fourier transform of 1√
ν
e−π

c
ν y ∂

1
2

∂y e
π cν y ∂

1
2

∂y . This lead us to con-

siderate the method with the two iterations: considering an initial function u0 defined on Ω, we
consider this next two iterations to build the solution of problem (1) on Ω1 and Ω2:
We solve

L(u1) = f on Ω1

u1 = g on ∂Ω
∂u0

∂n + 1√
ν
e−π

c
ν τ ∂

1
2

∂τ e
π cν y ∂

1
2 u0

∂τ = ∂u1

∂n + 1√
ν
e−π

c
ν τ ∂

1
2

∂τ e
π cν y ∂

1
2 u1

∂τ on Γ

Then we resolve the next iteration

L(u2) = f on Ω1

u2 = g on ∂Ω

−∂u0

∂n + 1√
ν
e−π

c
ν
∂

1
2

∂τ e
π cν y ∂

1
2 u0

∂τ = −∂u0

∂n + 1√
ν
e−π

c
ν
∂

1
2

∂τ e
π cν y ∂

1
2 u0

∂τ on Γ

u
1
2 is the Caputo fractional derivative of the function u (for more detailed definitions of this

operator, see for example [17]):

∂
1
2u =

1

Γ ( 1
2 )

∫ x

0

(x− t)− 1
2u(t)dt

Γ is the gamma function: Γ ( 1
2 ) =

√
π

As we construct the Fourier rate of convergence for the OO2 method, we prove by mean of the
Fourier transform that the rate of convergence is null which mean that this specific domain de-
composition method, operate only with two iterations to build the solution of our heat equation.
To show that the rate of convergence is null we use the results bellow:

F(∂
1
2 f
∂τ ) =

√
ikF(f(x))

F(eaπyf) = F(f)(k − ia)
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2.4 General case

In this case, a and b are arbitrary coefficients. The eigenvalues of the reaction advection diffusion
operator L calculated in [12] are:

λ± =
a±

√
4(νk2 + ibk + c)− a2)

2ν
=
a

ν
±
√
k2 + ibk + c+ (

a

ν
)2

As we have done for the case a=b=0, we build a domain decomposition method with fractional
derivative condition transmission in the interface between the two sub-domains AlgDF that provide
the solution of our problem solution (1) only by two iterations: there exist two real numbers α and
β such that: √

k2 + ibk + c+ (
a

ν
)2 =

√
k + iα×

√
k + iβ

The two iterations of the domain decomposition method that we propose is then:

L(u1) = f on Ω1

u1 = g on ∂Ω
∂u0

∂n + 1√
ν
e−πατ ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u0

∂τ = ∂u1

∂n + 1√
ν
e−πατ ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u1

∂τ on Γ

then, we solve the next iteration problem:

L(u2) = f on Ω1

u2 = g on ∂Ω

−∂u0

∂n + 1√
ν
e−πα ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u0

∂τ = −∂u2

∂n + 1√
ν
e−πα ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u2

∂τ on Γ

3 convergence of the AlgDF

The AlgDF consist of solving in parallel the two iterations:

L(u1) = f on Ω1

u1 = g on ∂Ω
∂u0

∂n + 1√
ν
e−πατ ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u0

∂τ = ∂u1

∂n + 1√
ν
e−πατ ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u1

∂τ on Γ

(6)

and

L(u2) = f on Ω1

u2 = g on ∂Ω

−∂u0

∂n + 1√
ν
e−πα ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u0

∂τ = −∂u2

∂n + 1√
ν
e−πα ∂

1
2

∂τ e
πβy ∂

1
2 e(π(β−α))u2

∂τ on Γ

(7)

where u0 is an initial function.
Theorem:
The solutions of equations (6) and (7) are the restriction of the solution of equation (1) on Ω1 and
Ω2 respectively.
Proof.
We explain the demonstration in the case of which the interface is the line:

Γ : x = 0 (n =
−→
i and τ =

−→
j )

we get by substraction

L(u1 − u) = 0 and L(u2 − u) = 0B1(u1 − u) = B1(u0 − u) and B2(u2 − u) = B2(u0 − u)

Where u is the exact solution of the problem (1) and

B1(u) =
∂.

∂n
+

1√
ν
e−πατ

∂
1
2

∂τ
eπβy

∂
1
2 e(π(β−α)).

∂τ
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B2(.) = − ∂.
∂n

+
1√
ν
e−πατ

∂
1
2

∂τ
eπβy

∂
1
2 e(π(β−α)).

∂τ

If ω1 and ω0
1 is the Fourier transform of u1 − u and u0 − u respectively on Ω1, we deduce:

cω + a
∂ω1

∂x
− ibkω1 − ν ∂

2ω1

∂x2
+ k2νω1 = 0

k is the Fourier frequency. If we take a solution in the form of ω = ω(0, k)eλx we obtain:

c+ aλ− ibk − νλ2 + νk2 = 0

It’s an equation of two order which have two solutions:

λ+̄(k) =
a+̄
√
a2 + 4cν − 4iνbk + 4k2ν2

2ν

since lim
x→−∞

ω1(x, k) = 0 we take ω1(x, k) = ω1(0, k)eλ
+x(remark that λ+ > o and λ− < o)

by the same way if ω2 and ω0 is the Fourier transform of u2 − u and u0 − u on Ω2, we have:
ω2(x, k) = ω2(0, k)eλ

−x

The two conditions:

B1(ω1(0, k)) = B1(ω0
1(0, k)) and B2(ω2(0, k)) = B2(ω0

2(0, k))

lead to:

0 = (λ− − λ−)ω0
1(0, k) = (λ− − λ+)ω1(0, k) and 0 = (λ+ − λ+)ω0

1(0, k) = (λ+ − λ+)ω2(0, k)

we get: ω1 = 0 and ω2 = 0 and then the solution u1 = u in the Fourier way on Ω1 and u2 = u in
the Fourier way on Ω2 and this gives the result of our theorem.
Remark:
The problem (6) and (7) has one unique solution (we can prove it by Lax Milgram theorem [17,
18]) that make our method consistent and even when the coefficient c is zero or the boundary
condition of problem (1)is a Neumann condition instead of the dirichlet condition.

4 Numerical results

To show Numerically the efficiency of our method compared to the OO2 method, we conceder
equation (1) on a squared domain (Ω = [0, 1] × [0, 1]), where an exact solution uexact is chosen
someway the associated terms g and f of equation (1) are determined such that uexact is the solution
of the problem (1) for given coefficient c,a,b and µ that we change.We take for example:

uexact = 2sin(2πx)cos(2πy)

We split our domain into four squared sub-domains and we apply the described domain decompo-
sition methods OO2 and AlgDF (one can split the domain to the minimum number of computer
unit of execution). We solve equation (2), (3), (6) and (7) by a same finite volume (we use the
grunwald scheme [19] to discretize the caputo derivative conditio on the interface in equation (6)
and (7)).

To implement our codes in Matlab and Freefeem++ or C++ Language, we work our programs
with an intel(R) processor core 2 duo for our computer. We use the parallel package of matlab
(parfor, gather, multithread...) and openMP for C++ and we make the discretized(algebraic)
equations from problem (1) or (6), (7) on a vectorial and optimal form.
The table 1 show the time that take the OO2 method and the AlgDF to resolve each problem (1)
for some given coefficient c, a,b, µ. h is the mesh of the finite volume method.

The table show that the proposed method AlgDF is too fast and optimal in time compared
to classical OO2 method For our academic test. The same results is founded for several other
academic test cases.
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Table 1. On the right CPU time for the OO2 with sex iteration and AlgDF for different coefficient of the
equation (1)

Differents coefficients OO2 method AlgDF

c=10 a=1 b=0 µ = 1 h = 0.0001 27.621 0.562
c=10 a=-10 b=2 µ = 2 h = 0.0001 32.681 0.910
c=10 a = sin(xy) b = −cos(xy) µ = 0.1 h = 0.0001 29.713 0.496

The table 2 show the infinite error between the exact solution and the approximate solution
using OO2 and AlgDF method. The resulte of the table show that the proposed method is

Table 2. On the right, the infinite norm between the exact solution and the approximated solution by the
OO2 with sex iteration and AlgDF for different coefficient of the equation (1)

Differents coefficients OO2 method AlgDF

c=10 a=1 b=0 µ = 1 h = 0.0001 3.4 ∗ 10−7 7.8 ∗ 10−15

c=10 a=-10 b=2 µ = 2 h = 0.0001 4.5 ∗ 10−5 3.52 ∗ 10−14

c=10 a = sin(xy) b = −cos(xy) µ = 0.1 h = 0.0001 1.72 ∗ 10−8 6.52 ∗ 10−16

accurate even with one iteration. It take for the OO2 method at least 20 iteration to have a good
accuracy.
I notice that the OO2 method take a lot of time to converge for a high viscosity µ (We have studied
this case in [1]) but we don’t have this issue using our AlgDF. Another important thing to notice
is that the OO2 method is sensitive to the accuracy of the mesh eventually when using freefem++
(classical Voronoi and Delanouie mesh) the accuracy of the approximate solution is not efficient.

5 Conclusion

In this work we have developed a new optimized order four DD algorithm applied to a reaction
advection diffusion equation. We firstly have computed rate of convergence of this method using
the Fourier transform. The fundamental result is that is that our method need one iteration, it
doesn’t need nor condition of transmission nor optimization time for computing coefficient (like
C1, C2, C3) for the transmission condition in comparison with global calculation using classical
solvers (OO2, Robin,...). We also proved theoretically and numerically that AlgDF algorithm is
more faster than the classical OO2 method. One difficult issue of our method is the calculation
of the Fourier transform of non constant and discontinuous coefficients, but in matlab, there is a
toolbox to do this job.
Secondly we have presented several test-cases to show the efficiency of this approach.
As perspective of the present work, we can study the following ideas:
- Prove that the method is symmetric. - Perform the method to have one iteration domain de-
composition for the Navier Stokes and the Euler compressive equations. We are thinking use some
operator decomposition or preeconditionner
- show that the method is dual.
- Perform this method to the equation of Turbulence (The method could be applied by the same
way for boundary problem with vector equations) .
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A. Baldominos1, M. González-Evstrópova1, E. Martin1, and Yago Saez1

Computer Science Department, Universidad Carlos III de Madrid, 28911 Leganes (Spain)
Corresponding author: abaldomi@inf.uc3m.es

Abstract. This paper describes an application of Ant Colony Optimization (ACO), a well-
known biologically-inspired technique for graph search, for solving a complex multi-objective
task posed in the form of a video game, namely Planet Wars, which is itself based on a popular
video game known as Galcon and was presented in the Google AI Challenge 2010.
Throughout the paper we introduce the game mechanics and rules and describe how we have
applied ACO to solve it, by working on different strategies (expansion, defense and troops
rebalancing) and different heuristics which are later submitted to evaluation and whose
results are discussed by the end of the paper. These results show that the best performing
heuristic is able to beat at least half of the times the Google baseline bots, while in some
cases they are defeated in all games and maps.

Keywords. Planet Wars, Video Games, Ant Colony Optimization

1 Introduction

For many years there has been an increasing interest to apply artificial intelligence (AI) tech-
niques to the field of video games. The concept of intelligent non-player characters (NPCs)
turns out to be quite promising, and as a result the application of many different AI tech-
niques to video games is explored.
In Fall 2010, Google sponsored the Google AI Challenge [1], which was organized by the
University of Waterloo Computer Science Club. In this challenge, contestants had to develop
intelligent agents (bots) to win the game Planet Wars. By the end of the challenge, more
than 4,600 solutions had been sent by people from 112 different countries.
In this paper, we propose a solution to this problem and challenge using ant colony opti-
mization (ACO), a biologically-inspired AI technique for graph search, where some domain
knowledge is introduced in the form of specified heuristics, which tackle different strategies
that we have identified as key for solving the game.
The paper is structured as follows: section 2 introduces some related work of recent appli-
cations of ACO to the video games domain; section 3 provides the context of the problem
by explaining the game mechanics; section 4 describes in a formal manner the solution to
the problem using ACO, including the formulation for domain-specific heuristics and the
pheromone evaporation and update; section 5 evaluates the proposal by confronting our
ACO-based agent to different baseline bots provided by Google; and finally section 6 pro-
vides some conclusive remarks and identifies some future lines of work.

2 Related Work

ACO is a technique used for solving combinatorial search problems, and its applications
involves many different fields and problems. In a broad sense, only in the last two years
applications of ACO include estimating electricity domestic consumption [2], managing water
resources [3], rescheduling and rerouting trains [4], planning and controlling robots [5, 6],
matching images [7] or evolving deep neural networks [8] to mention a few.
Regarding the field of video games, ACO has also been extensively used. For instance, in
2015 Estrada-Mart́ınez et al. discussed the development of a competitive agent in real-time
video games, when fluidity is a critical factor [9]. Chen et al. have studied the problem of
integral offensive in the 2D Soccer Simulation League, attaining outstanding performances
[10]. Gonzalez-Pardo et al. have compared ACO and GA to solve the Lemmings video game
[11] and have also provided a formal solution using ACO to CSP-based strategy board games
such as N-Queens [12].
Not only the development of intelligent NPC agents is studied, as in the work from Po lap
et al., where the advantages and disadvantages of ACO and BCO (standing for Bee Colony
Optimization) are presented for the process of constructing boards [13].
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Fig. 1: Sample map for a new game with two players in Planet Wars, showing symmetry around
the dashed line.

3 Planet Wars

Planet Wars was a game first introduced in the Google AI Challenge 2010, while being at
the time inspired in a popular game available for both iPhone devices and computers known
as Galcon and developed by Phil Hassey. The game takes place in a galactic setting, where
several players must obtain space troops and conquer planets. A player wins when either
he/she has defeated all the enemy troops or has the larger number of troops after the time
limit expires.
When the game begins, a map is loaded containing several planets, and following either a
central or axial symmetry. Planets are characterized by the next features:

– Location: the planet coordinates are used to compute the relative distance among it
and its neighbors, measured as the number of game turns required for travelling from
one to another.

– Owner: the planet may belong to one of the players or to none of them at all. In the
latter case, it is designated as a neutral planet. When the game starts, all planets are
neutral except one for each player.

– Cost (C): each planet requires a certain number of troops to be sacrified in order to be
conquered.

– Production rate (g): planets can produce a certain number of troops in each game
turn, as long as it is not a neutral planet.

When troops are sent from one planet to another, they cannot receive further instructions
until they have reached their destination. In the case of a confrontation between the players
for a planet already owned by one of them, the player with more troops in the planet will
win.
Fig. 1 shows an arbitrary map for a new game with two players. Planets are symmetric with
respect to the axe depicted with a dashed line. Neutral planets are displayed in light gray
along with their cost, whereas the owned planets have a different color for each player.
Players start with 100 troops which must be used to conquer planets, retrieve further troops
and defeat the enemy. However this problem remains non-trivial, as players must carefully
study their best options in each turn in order to plan a strategy based on the current state
of the game to eventually win the game. To simplify the problem, we have defined three
srategies which can be played:

– Expansion: in the game, attacking the enemy planet in the first turn is not a viable
strategy which leads to success. This is due to the fact that when the troops arrive to
the enemy planet they will be exceeded in number by the local troops (who, remember,
were the same in the beginning of the game but has increased in t × g individuals). For
this reason, the first strategy involves expansion: the agent must decide how to move
troops from its own planets to conquer neutral planets.
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– Defense: at some point in time both players may find themselves fighting for the same
planet. In case the enemy wants to take a planet that the agent already owns, the agent
must decide whether it makes sense to send troops to that planet, and if so, how many
and from which other planets (and more specifically, at what turns).

– Troops balancing: after a turn, some troops may remain unused if they have not been
sent neither for expansion nor for defense. In that case, the agent might decide to send
them elsewhere, so that they can turn useful resources for future strategies.

In many cases, after some turns the agent will have to decide whether to expand to further
planets or defend their own ones from the troops of the enemy.

4 Proposal

This section describes the ACO-based system proposed for playing Planet Wars. First, the
problem is formalized in terms of graphs and algebra; and later we describe how the agent
tackles each of the tasks defined above (expansion, defense and troops balancing).
The problem can be modelled as a graph, where a node represents a planet and a link
represents a route between those planets. In fact, this graph will be a complete graph, as all
planets are connected among them, i.e. a player can move between every two planets. Let n
be the number of planets and P = {P0 . . . Pn} be the set of planets and P (p) ⊆ P the subset
of planets owned by player p. The graph can be expressed as a matrix of routes:

R =




r11 r12 . . . r1n

r21 r22 . . . r2n

...
...

. . .
...

rn1 rn2 . . . rnn


 (1)

Every value rij ∈ R describes the route between planets i and j, and comprises the following
parameters, where D is the route distance, C is the route cost, η is a heuristic value and τ
is the amount of pheromone in the route:

rij = 〈Dij , Cj , ηij , τij〉; D, C ∈ Z; η, τ ∈ R (2)

At this point, it should be noticed that an agent cannot send troops from a planet to itself.
Also, player p can only traverse routes starting in planets he/she owns. For this reason, the
next general constraints are established:

rii = ∅; rij = ∅ if i /∈ P (p) (3)

4.1 Expansion

In this case, we want to search for solutions describing which planets must be conquered and
in which order, in order to maximize profit. Ants will start this search from the first planet
owned by the agent, and as more planets are conquered, ants can also come out from those
before deciding where to move. Let Pv be the set of already visited planets and Pc the set
of candidate planets for each ant, which is defined as follows:

Pc(p) = {Pi} /∈ P (p) where Pi /∈ Pv(p)∀i (4)

Each ant will move to a candidate planet according to the next formula, where i is the
current planet where the ant is placed:

j =





arg max
j

(τα
ij × ηβ

ij); if Q < Q0

m; Pim =
τα

im×η
β
im∑n

k=1
τα

ik
×η

β
ik

; otherwise
(5)

In the previous equation, Q is a random number Q0 is a defined parameter, where Q, Q0 ∈
[0, 1]. Parameter Q0 is determining the relative importance between exploitation and explo-
ration, and the smaller it is, the most likely will be that the ant will move randomly, yet
based on a probability distribution which is proportional to the product of the pheromone
and heuristic value of each planet.
When estimating the profit of conquering a planet, we must take into account that planets
have a growth rate g, but they also have a cost in troops, who are sacrificed during conquest.
We have defined four different heuristic functions:
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η
(1)
ij =

gj

D2
ij × Cj

; η
(2)
ij =

1

Cj
; η

(3)
ij =

1

Dij
; η

(4)
ij =

gj

Cj
(6)

After ants traverse a route, they release pheromone over it; and some gets evaporated. The
pheromone update follows the next equation:

τ0
ij =

1

n × Lmin
; τ t+1

ij = (1 − σ)τ t
ij + στ0

ij (7)

In the previous equation, σ ∈ [0, 1] established the pheromone decay parameter and Lmin is
the shortest path in game turns traversing all the planets.
After an ant moves, the already visited planets are inserted into Pv, and cannot be visited
again during the same game turn. When Pc is empty, the ant cannot move towards new
planets. Once all ants have finished moving, the solutions they built will be evaluated. To
do so, and given that the eventual goal of the expansion phase is to generate troops, we will
compare solutions by the number of troops generated by moving to those planets, with P (p)

being the set of planets conquered by player p in the evaluated solution; and T and t being
the game time limit in turns and the current turn respectively:

F =
∑

j∈P (p)

((T − t − Dij) × gj − Cj) (8)

Once the best solution is chosen, a global update of the pheromone levels take place according
to the next equation, where ∆ij is the number of troops obtained by the best solution if rij

is part of this solution, or 0 otherwise:

τ t+1
ij = (1 − σ)τ t

ij + σ∆ij (9)

4.2 Defense

Expansion-only is not a useful strategy, since at some point in time enemy will eventually
try to conquer the agent’s planets. In practice, this often happens even when there are still
neutral planets, as some of the best expansion routes will involve conquering the opponent’s
planets.
In this case, the goal is no longer finding the most suitable planets for troops generation,
but rather finding which of our planets are threatened by the enemy and must be defended.
This objective is often opposed to that of the expansion: defending a planet involves sending
troops, which could potentially be used for conquering new planets, to them. As a result, a
careful decision of whether it is worthy to defend the planet or it is acceptable to lose it in
order to gain new ones must be taken.
For the problem formalization, we must include a new constraint over those already observed
in equation 3. In particular, this constraint involves being able to send troops only to planets
which belong to us, as otherwise would not be a defensive act:

rij = ∅ if j /∈ P (p) (10)

The ACO process is quite similar to the expansion case, and ants can start the search from
any planet owned by the agent; but in this case we want our solution to state which planets
to defend and in which order to keep an advantage over the enemy. Also, only planets under
attack are considered for the set of candidate planets Pc in a defensive scenario. As a result,
equation 4 must be adjusted, with U (p) being the set of troops of player p, Ui the number
of troops in planet i and Uij the troops flying from planet i to j:

Pc(p) = {Pi} ∈ P (p) where Pi /∈ Pv(p), ∃Uji ∈ U (¬p)∀i (11)

The transition rule is the same as of equation 5, but the heuristic must be revised for the
defense scenario. In this case, the growth rate (gj) remains an interesting value, as the agent
will not want to loose planets which are generating many troops, and so does distance (Dij),
as we may not want to defend a planet which is far away, as troops cannot be operated
while in-flight. However, cost (Cj) is no longer a parameter to be taken into account, as goal
planets are already own by the agent. Also, we will introduce a new parameter, known as
the vulnerability of planet j (Vj), defined as follows:

Vj = Uj +

T∑

t′=t

(
gj +

∑

i

(U t′
ij ) −

∑

i′
(U t′

i′j)

)
; i ∈ P (p), i′ ∈ P (¬p)∀i, i′ (12)
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In the previous equation, U t′
ij refers to the troops flying from i that will arrive at planet j in

time t′. After this definition, we can establish a heuristic:

ηij =
gj × Vj

1 + Dij
(13)

Finally, the fitness function for evaluating different solutions remains as described in equation
8, which makes sense as, after all, defending a planet can be seen as conquering a planet which
otherwise would be gained by the enemy. The pheromone evaporation and global update rules
also follow equations 7 and 9 respectively; whereas this value is stored separately from the
pheromone in the expansion scenario.

4.3 Troops balancing

While expansion and defense are key strategies, we must remember that when troops are
sent to one planet, they cannot be operated while on-flight. For this reason, it is interesting
to have troops near the hot-spots, so that if troops have to be sent to conquer a new planet
or defend another, travel times are reduced. Often, these hot-spots will be those planets near
the front, i.e. those which are located in the regions between the agent’s and the enemy’s
planets. On the other hand, the rearguard is often a safe place, as it is not likely that the
enemy will send troops there and, in case that happens, the agent will often have time to
defend the planets.
To formalize this concept, we define the danger index (Ij) for each planet j as the number of
enemy’s planets which are closer to j than any of the agent’s planets, computed as follows:

Ij =
∑

i

1 where Dij < Dkj ; ∀i ∈ P (¬p), k ∈ P (p)

The troops balancing phase is rather simple: once the expansion and defense stages are
completed, all the generated troops who remain with no destination will be sent to the planet
with greater danger index. By doing this, the agent will move troops from the rearguard to
the front, where they can play an important role later for further expansion or defense.

5 Evaluation

In this section, we will evaluate our proposal. To do so, we will confront our agents to the
bots provided by Google in the starter package. There are five of these bots, which behave
as follows:

– DualBot: it keeps a constant number of on-flight troops, which are sent from the
strongest planet to the weakest enemy or neutral planet. When a certain number of
troops arrive, the same number are sent to keep the on-flight troops constant. The
planet strength is computed as Sp =

Up

1+gp

– RageBot: it only attacks enemy planets and never neutral ones. First, it looks at its
own planets p fulfilling Up > 10×gp, and then for each of these planets the closest enemy
planet is located and all the troops are sent to that planet.

– ProspectorBot: it behaves as DualBot, but there will only be one on-flight troop at
any time.

– BullyBot: it will attack the enemy’s strongest planet, based only of the number of
troops in that planet (Up), with half of the troops it has available.

– RandomBot: it moves troops randomly.

For the evaluation, we have arranged 6 games against each of these bots in 20 different
maps and for each of the 4 expansion heuristics, thus leading to a total of 2,400 games. The
agent will be tested incrementally, by first considering only the expansion strategy, and later
considering also the defense strategy, finally taking troop balancing into account.
Figure 2 shows the percentage of won and lost games per each heuristic. Also, as the agent
is developed incrementally, the wins are separated by whether the strategy is (a) expansion-
only, (b) expansion + defense or (c) expansion + defense + troops rebalancing. It can be
seen how expansion by itself is insufficient. The defensive strategy leads to a slight increase in
the number of won games, whereas troops rebalancing is critical for significantly improving
the agent’s performance.
The best heuristics are η(1) and η(4), i.e. those considering the production rate g, which are
able to win 80% and 75% of the games respectively.
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Losses

Troop Rebal.

Defense

Exploration

Fig. 2: Percentage of games won/lost for each heuristic, with different strategies.

(a) Expansion (b) Defense

(c) Troops rebalancing

Fig. 3: Games won for each heuristic and bot type, with different strategies.

Further detail is provided in Fig. 3, which depicts the number of games won per bot and
heuristic, from a maximum of 120. In this case it is quite noticeable how adding the defense
and troop rebalancing strategies improves the agent’s performance, and also decreases the
percentage difference between the best and worst performing agents. In all cases, the random
bot is easy to beat, but with expansion-only the agent faces real difficulties to beat DualBot
and RageBot, which were the bots considering the planets strength or production rate. When
all the strategies are observed, the agent with heuristic η(1) wins more than half of the games
in all cases except for RageBot (57/120). RandomBot, BullyBot and ProspectorBot are easily
defeated in all cases.

6 Conclusions and Future Work

Throughout this paper we have explored the application of ant colony optimization (ACO)
for solving the Google AI Challenge presented in 2010, which consists in the Planet Wars
video game. In this game, players compete for conquering planets and having the larger
number of troops.
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We have described how ants explore solutions taking into account domain-specific heuristics
which follow two major strategies: expansion and defense. Also, we have complemented this
solution with a third strategy (not ACO-based) for rebalancing the troops in each game turn.
An evaluation shows that heuristics observing the troops production rate and distance pro-
vide better results, and when all the strategies are considered the agents are able to win more
than half of the games for all Google baseline bots, and in three particular cases (BullyBot,
ProspectorBot and RandomBot) agents win all the games. Also, we have proven that expan-
sion by itself in insufficient, and while introducing a defensive behavior improves the agent’s
performance, troops rebalancing is critical for achieving top results.
However, there is still room for improvement when fighting the more offensive enemies,
namely DualBot and RageBot. It is left as future work to explore further defense strategies
to increase agent’s performance when fighting these bots.
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Abstract. In this paper, we are interested by tackling the steganography task as an optimization problem carried out by a bio-

inspired approach. Indeed, a novel embedding scheme using the substitution principle of LSB and related to an improved version of 

particle swarm optimization algorithm is proposed. Therefore, to fulfill the requirement of a good steganographic tool, some 

updating at the evolution rules of a particle were done. The improved-PSO embedding scheme looks for the best pixels locations, 

and eventually the best pixels bits to hide secret messages -both text and image- without degrading the quality of the original image. 

Thus, the robustness of the proposed steganographic scheme relates strongly on the strength of the improved-PSO algorithm in order 

to achieve higher imperceptibility. Three test cases were undertaken  to highlight the performance of the improved-PSO embedding 

scheme.  

Keywords. Adaptive particle swarm optimization, Adaptive inertia weight, Steganography based LSB, PSO embedding scheme. 

1. Introduction

The steganography can be considered as a branch of cryptography that tries to hide messages within others [1,2], 

avoiding the perception that there is some kind of message. Thus, there are two trends to implement steganographic 

algorithms: the methods that work in the spatial domain, and the methods that work in the transform domain. While the 

algorithms that work in the transform domain are more robust, that is, more resistant to attacks, the algorithms that

work in the spatial domain are simpler and faster.   

The most common steganographic technique in spatial domain is the simplest Least Significant Bit Insertion method -

LSB- [3,4] in which the hidden message is converted to a stream of bits which replace the pixels values in the cover 

image. This sort of steganography is only suitable for images stored in bitmap form or losslessly compressed. 

Unfortunately, it is vulnerable to even a slight image manipulation like converting an image from a format like GIF or 

BMP [5]. Therefore, many works were done based on both conventional and adaptive scheme of LSB method [6, 7, 8]. 

However, others researchers  looked at others issues such the use of discrete cosine transform -DCT- and others 

techniques as more powerful steganographic tool [9, 10, 11, 12, 13, 14]. Improving the steganography relies also on the 

use of bio-inspired algorithms as optimization tool. Indeed, Jackson et al. [15, 16] proposed a computational immune 

system approach to blind steganography detection. In [17], the authors attempt to use genetic algorithms for achieving 

the optimal data imperceptibility. Wu et al. in [18] applied the LSB substitution and genetic algorithm to develop two 

different optimal substitution strategies. A novel steganographic method, based on JPEG and particle swarm 

optimization algorithm (PSO), is proposed in [19]. In the same trend for achieving more imperceptibility of 

communicating images, Fazli et al. [20] presented a novel method to embed secret message in the cover-image so that 

the interceptors will not notice about the existence of the hidden data. In [21] the authors presented a genetic algorithm 

based method for breaking steganalytic systems. In [22], Wang et al. proposed for more performance to involve both 

genetic algorithm and a dynamic programming. In [23], the authors applied the ant colony optimization algorithm to 

construct an optimal LSB substitution matrix. Brazil et al. in [24] proposed a hybrid heuristic, combining a genetic 

algorithm and the path relinking metaheuristic. Others works have also been reported in [25, 26, 27].  

In this paper, a novel improve-PSO embedding scheme is introduce in order to hide a secret message, both text and 

image, in a cover image with the aim of achieving a higher imperceptibility. The proposed approach uses an improved 

version of the  particle swarm optimization algorithm to carry out the steganography as an optimization problem. Thus, 

the paper is organized as follows: section 2 describes the used bio-inspired approach PSO, while section 3 describes the

proposed approach. In section 4, we provide some experimental tests, and conclude our work by a conclusion.   

2. Particle Swarm optimization

PSO is a population-based stochastic optimization technique developed in 1995 [28, 29] inspired by the social behavior 

of bird flocking or fish schooling. A population of particles randomly initialized in a search space tries to look for the 

optimal movement. Indeed, each particle 𝑖 is assigned to it three flying parameters: its current position in the search 
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space 𝑥 𝑖 , its current velocity 𝑣 𝑖 , in addition to its memorized  best past position 𝑥 𝑖𝑝𝑏𝑒𝑠𝑡 . However, for the next flying

direction at 𝑡 + 1, the particles must coordinate with each others to update their positions and velocities relating to the 

global best particle movement designed by 𝑥 𝑔𝑏𝑒 𝑠𝑡 . The movement of PSO individuals can be described by Eq. 1 and

Eq. 2:  

𝑣 𝑖(t + 1)  = 𝜔𝑣 𝑖(t)  + 𝑐1𝑟1 𝑥 
𝑖𝑝𝑏𝑒𝑠𝑡 − 𝑥 𝑖(𝑡) + 𝑐2𝑟2 𝑥 

𝑔𝑏𝑒𝑠𝑡 (𝑡) − 𝑥 𝑖(𝑡)     (1) 

𝑥 𝑖(t + 1)  = 𝑥 𝑖(𝑡) + 𝑣 𝑖(𝑡 + 1) (2) 

The parameter 𝜔 is called the inertia factor, 𝑐1 , 𝑐2 are acceleration factors and the random values 𝑟1, 𝑟2 which taking

values from  0, 1 . to best understanding the PSO behavior, let us consider the following algorithm which corresponds 

to the canonical PSO version. For an n-dimensional problem, the particles are n-dimensional vectors randomly 

initialized through the search problem space.   

3. Optimization Proposed Approach

3.1 Global view 

The proposed approach introduces an adaptive embedding scheme based on LSB principle, i.e. hiding a digit of a secret 

message in one pixel Bit. The objective is then not only to avoid the detection of the hided message but also to avoid 

that a third person think that such hiding is possible. Figure 1 outlines the principle of the embedding scheme related on 

the improved PSO algorithm. Thus, each particle at time 𝑡 represents a stego image (original image incremented with 

the hidden message) and then must evolve during generations looking for the best stego image that which leads to a 

more imperceptibility as pertinent criterion. In fact, the encoded parameters of a particle are two vectors of m-

dimensions representing respectively the encoded image pixels and bits and where 𝑚 is the length of the hidden 

message. The following steps show the main algorithm steps.  

 Step1: Introduce the hidden message under the text form.

 Step2: Convert the text to a binary message. Each symbol in the text is replaced by its ASCII code. At this step, we

obtain a binary message constituted by the bytes of symbols.

 Step3: Determine the number of pixels needed to hide the binary message.

 Step4: Initialize a population of particles with respectively random pixels and random bits positions. Then, hide the

“bits of the message in their binary form” in the cover-image at the positions provided the proposed algorithm.

 Step5: Evaluate each particle according to the appropriate fitness function (distance) devoted to the steganography

purpose.

 Step6: Select the best particle that embodies the good pixels (respectively good bits) able to hide the secret

message. The best stego-image must be the most similar as the original image with less damage.

 Step7: Reiterate the adaptive particle swarm optimization process by updating the particles positions and velocities

of pixels and bits until the best stego-image is reached after the termination stopping criterion.

3.2 Improved PSO-embedding scheme

The main improvements reported to the PSO algorithm aim the updating position and velocity rules. Effectively, to 

accelerate the moves of particles and to provide them the ability to explore far regions of the search space, we have 

introduced an adaptive inertia weight.  
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           Fig.1 Particle swarm schema to optimize the stego-image 

 
Equation 3 highlights the updating made on this acceleration parameter which promotes at the first generations a higher 

evolution speed in favor of the   exploitation strategy    

𝜔 𝑡 + 1 = 𝑒−𝜔(𝑡)    (3) 

Where 𝜔(𝑡 = 0) is set to the empirical value 0.4. However, in order to avoid stagnation in a local optimum especially 

after some evolution steps, we introduced a second acceleration parameter in Eq. 4 which is devoted to an exploration 

with large steps jumps. By this mean, we improve considerably the convergence speedup. 

 
𝜂 𝑡 = 𝛽 ∗ 𝑁(0,1)    (4) 

Where 𝛽 ∈  1,10  is a constant that increases in this range as well as the problem size increased. Thus, the new 

updating rules inspired from Eq. 1 and Eq. 2 were rewritten according to our requirements to highlight respectively the 

velocity rule (Eq. 5) and the position rule (Eq. 6). 

   

𝑣 𝑖(t + 1)  = 𝜔(𝑡)𝑣 𝑖(t)  + 𝑐1𝑟1 𝑥 𝑖𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥 𝑖(𝑡) + 𝑐2𝑟2 𝑥 

𝑔𝑏𝑒𝑠𝑡 (𝑡) − 𝑥 𝑖(𝑡)  (5) 

 

𝑥 𝑖(t + 1)  = 𝑥 𝑖(𝑡) + 𝜂 𝑡 𝑣 𝑖(𝑡 + 1) (6) 

 

Obviously, and like any optimization problem, herein a minimization one, the improved embedding scheme requires an 

objective function that fulfills all prerequisite cited above such as the higher imperceptibility. For this purpose, we  

used as the mean square error (MSE) measure as the fitness function 𝑓 by comparing the original and the stego images 

as illustrated in Eq.7.  

 

𝑀𝑆𝐸 =
1

𝑀𝑥𝑁
   𝐼 𝑥,𝑦 − 𝐼′ 𝑥, 𝑦  

2

𝑦𝑥

 
 (7) 

Where 𝑀𝑥𝑁  is the size of the image, and 𝐼 𝑥, 𝑦  and 𝐼′ 𝑥, 𝑦 are resp. the intensities of a pixel at the position (𝑥, 𝑦) 

before and after hiding the secret message. Figure 2 detailed the proposed algorithm.  

 

Improved-PSO embedding scheme 

 

Step 1.  

 Initialize the global algorithm parameters: 𝑁 = 15; 𝑤 = 0.7; 𝑐1 = 𝑐2 = 2; 
                         𝑣𝑚𝑖𝑛 = −4;𝑣𝑚𝑎𝑥 = 4;𝑛𝑏𝑖𝑡 = 8; 𝑑𝑖𝑚 = 𝑠𝑖𝑧𝑒 𝑠𝑒𝑐𝑟𝑒𝑡_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ∗ 𝑛𝑏𝑖𝑡, 𝐼𝑚𝑠𝑖𝑧𝑒

; 

 Initialize the time counter 𝑡 = 0; 

   Step 2. Initialize all particles in the swarm population, i.e. 𝑁 Stego-images 𝑆𝑚  

  for 𝑖 = 1 to 𝑁 do  

    for 𝑗 = 1to 𝑑𝑖𝑚 do 

          𝑆𝑚  𝑖, 𝑗 .𝑃ixel = randi (𝑖𝑚𝑎𝑔𝑒𝑠𝑖𝑧𝑒 ); 

          𝑆𝑚  𝑖, 𝑗 .𝐵it = randi (nbit); 

          𝑆 𝑖, 𝑗 . 𝑣𝑒𝑙 = 𝑟𝑎𝑛𝑑  𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥  ; 
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     end 

 Keep the best stego-image of particle 𝑖

𝑆 𝑚
𝑖𝑏𝑒𝑠𝑡 = 𝑆 𝑚 (𝑖, : );

   end 

Step 3. Evaluate all the particles fitness 𝑓𝑖(𝑡) according to Eq.7

Step 4. Select the global best stego image 𝑆 𝑚
𝑔𝑏𝑒𝑠𝑡

 at time 𝑡;
 Repeat 

   Step 5. Increment the time counter 𝑡 = 𝑡 + 1 

   Step 6. Find new stego-images according to the improved PSO updating rules 

for 𝑖 = 1 to 𝑁 do

  for 𝑗 = 1to 𝑑𝑖𝑚 do 

 Updating the inertia parameters 𝜔 and  𝜂 according to resp. Eq.3 and Eq.4

 Updating the new 𝑆 𝑖, 𝑗 . 𝑣𝑒𝑙        according to Eq.5 

 Updating the new  𝑆𝑚  𝑖, 𝑗 .𝑃ixel  according to Eq.6

 Updating the new 𝑆𝑚  𝑖, 𝑗 .𝐵it      according to Eq.6 

        end 

       end 

Step 7. Evaluate all the particles fitness 𝑓𝑖(𝑡)
   for 𝑖 = 1 to 𝑁 do 

 if 𝑓𝑖(𝑡) < 𝑓𝑖(𝑡 − 1) then  𝑆 𝑚
𝑖𝑏𝑒𝑠𝑡 = 𝑆 𝑚 (𝑖, : )  is the new best local solution

    end 

 Keep the global best stego-image 𝑆 𝑚
𝑔𝑏𝑒𝑠𝑡

 at time 𝑡 
 Until Stopping criterion is satisfied. 

Fig. 2 The improved-PSO embedding scheme 

4. Experimental Setup

To evaluate the performance of approach, we have developed an algorithm with Java (programming language) under 

Eclipse environment using Pentium ® Dual-Core CPU 1.93 GB of RAM. The experiments are divided up in three sub-

sections showing each one a performance facet of the proposed embedding scheme.   

4.1 Experimental Case1 

This experiment aims to compare the performance results between the improved-PSO algorithm and the conventional 

LSB technique. For this purpose, three cover images illustrated in Figure 3 are considered for the test, in addition to the 

use of three messages with different sizes 𝑀1 =303 bytes,  𝑀2 =342 bytes, and  𝑀3 = 1078 bytes.  

The performance measures undertaken are the MSE (described above), the Peak Signal-to-Nose Ratio -PSNR- as

described by Equation 8, and the Signal-to-Noise Ratio (SNR) described by Equation 9.  

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

𝐼𝑚𝑎𝑥
2

𝑀𝑆𝐸

 (8)

Where 𝐼𝑚𝑎𝑥  represents the maximal intensity in the image. In the case of grey-level images,   𝐼𝑚𝑎𝑥 = 255. The PSNR

value approaches infinity as the MSE approaches zero. Thus, a higher PSNR value implies a higher imge quality, and s 

smaller PSNR value implies a higher differnce between the original image and the best stego image.  

Fig. 3 Three images considered for the first experimental case, from left to right: 

cameraman, clown, medical.  
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𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

𝐼𝑎𝑣
2

𝑀𝑆𝐸

 (9) 

Where 𝐼𝑎𝑣  represents the average intensity of the target image.

Table 2 shows the achieved comparison results. As we can see, for all tests the improved-PSO algorithm outperforms 

than LSB. Related to the higher PSNR values (in decibel), the algorithm ensures a higher imperceptibility and excludes 

the degradation of the cover image. In general, the quality of the stego image is sensitive to the size of the embedded 

secret message. Indeed, the results show that as well as the message size increases the PSNR and SNR values decrease 

but still rationally tiny to preserve as even a good performance.  
Table 1 Comparison performances between the improved-PSO scheme and LSB. 

Images Cameraman Clown Medical 
Improved-
PSO 

LSB Improved-
PSO 

LSB Improved-
PSO 

LSB 

M1 

MSE 9.46E-3 2.42E-2 9.05E-3 2.43E-2 8.12E-3 2.32E-2 

PSNR 68.3684 64.2801 68.5599 64.2630 69.0342 64.4736 

SNR 62.6701 58.5818 63.0026 58.7057 62.9933 58.4327 

M2 

MSE 1.02E-2 2.73E-2 1.03E-2 2.74E-2 9.37E-3 2.30E-2 

PSNR 68.0191 63.7658 67.9887 63.7467 68.4127 64.4961 

SNR 62.3208 58.0674 62.4314 58.1894 62.3719 58.4553 

M3 

MSE 3.37E-2 8.11E-2 3.32E-2 8.09E-2 3.03E-2 5.11E-2 

PSNR 62.8435 59.0368 62.9151 59.0471 63.3093 61.0436 

SNR 57.1452 53.3385 57.3578 53.4897 57.2685 55.0028 

4.2 Experimental Case2 

In this experiment, we intend to compare the improved-PSO scheme with two efficient steganography methods, the 

algorithm described in [17] and JQTM described in [24] based upon PSNR performances. For this purpose, six 

grayscale images secret images of Lena, Mandrill, Woman, Boat, Goldhill and Girl with size 256x256 are considered. 

The size of the secret image in [24] is 104x64, and those of [17] is 128x72. For testing our algorithm, we choose to take 

as message size the higher, i.e. also 128x72. Figure 4 shows three selected results achieved by our algorithm. Visually, 

we can observe that compared to the original images, the best stego images seem similar and show no degradation at 

the colors level. Unfortunately, although the worst stego images remain visually understandable, the distinguishable 

colors degradation suggests that some anomalies like hiding a message inside is strongly recommended.  

Table 2 The image quality (PSNR) of JQTM, [17], and the proposed scheme. 

Methods Lena Mandrill Woman Boat Goldhill Girl 

JQTM 36.81 31.17 35.42 36.05 36.43 37.64 

[17] 37.06 31.28 35.71 36.29 36.78 38.02 

Improved-PSO 41.81 39.15 41.41 41.05 41.44 42.56 

Table 3 illustrates the achieved results provided by the improved-PSO scheme and those reported by their authors in 

respectively [24] and [17]. It is clear that not only the improved-PSO scheme outperforms as algorithm compared to its 

competitors but provides acceptable PSNR values in the range of the invisible hiding. 

4.3 Experimental Case3 

This experiment emphasis on the fact that not only the imperceptibility is a crucial criterion to reach also preserving the 

quality of the stego image against some attacks when communicated it is a second criterion to aim.  
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Indeed, three JPEG cover images of resolution 512x512 in addition to a secret image of size 64x64 are used. Thus, to 

measure the robustness of the used approach, we take into account the normalized correlation (NC) coefficient

described by Equation 10.   

𝑁𝐶 𝑋,𝑌 =
 𝑋 𝑖, 𝑗 ∗  𝑌 𝑖, 𝑗 𝐿

𝑗=1
𝐿
𝑖=1

 𝑋2 𝑖, 𝑗 𝐿
𝑗=1

𝐿
𝑖=1

(10) 

where 𝐿 is the size of embedded image, and 𝑋 and 𝑌 are respectively the embedded image (after hiding) and its 

extraction after undergoing attacks. As cited in literature, conventional attacks in image processing further to geometric 

attacks are performed. The first category gathers Gaussian noise with zero mean and 0.01 variance, salt and pepper 

noise, Poisson noises are added to the stego image, in addition to mean and median filters of size 3x3 and 5x5. The 

second category gathers cropping attacks with different rates 10%, 20%, and 40%, scaling attacks with 0.8, 1.2 and 1.5 

ratios, the 1- degree rotation attack, histogram equalization, and the compression attack. Obviously, the results shown 

in Tables 4-5 are reported from their respective references [24] and [25].    

As we can see on Table 4, and in comparison with the results of reference [25], the proposed algorithm outperforms 

and exhibits real improvement especially with regard to the noise generated by the mean filter of size 3x3 and 5x5. This 

phenomenon is due to the fact that the noise is dispersed in the entire image without any distinction between specific 

zones. On the other hand, against geometric attacks, Table 5 highlights less successful results in respect of the proposed 

approach and compared to the results of [24]. Indeed, the cropping attack decreases relatively the performance of the 

proposed method since whenever the attacked zone increases the normalized correlation value decreases in 

consequence until reaching a NC value of 0.4781 on Mandrill image. The same behavior is also observed for the 

scalex0.8 attack. Thus, for these two kind of attacks, the results reported in [24] are better compared to ours. This 

phenomenon is due to the fact that the attacked zone is compact and the pixels of the same neighborhood have 

undergone to serious intensities modifications. For the rest of attacks, the proposed algorithm shows best results than 

those of reference [24].  

Table 4 Robustness performances against conventional image processing attacks (NC values). 

Image Algorithm Noise addition 

Gaussian Salt &Pepper Poisson 

Lena Improved-PSO 1.0019 0.9964 1.0003 

[25] 0.9204 0.9149 0.9562 

Mandrill Improved-PSO 0.9905 0.9980 0.9990 

[25] 0.8511 0.8975 0.9387 

Peppers Improved-PSO 0.9764 0.9888 0.9963 

[25] 0.9196 0.9010 0.9493 

Image Algorithm Median 

3x3 

Median 

5x5 

Mean 

3x3 

Mean 

5x5 

Lena Improved-PSO 0.9991 0.9982 0.9986 0.9968 

[25] 0.9785 0.9029 0.6577 0.6577 

Mandrill Improved-PSO 0.9826 0.9754 0.9798 0.9714 

[25] 0.8806 0.8867 0.6730 0.6722 

Peppers Improved-PSO 0.9991 0.9977 1.0051 1.0075 

[25] 0.9599 0.9053 0.6419 0.6419 

Fig. 3 From left to right : Original image, best stego-image, and  worst stego-image of 

respectively Lena, Mandrill, and Boat images.    
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Table 5 Robustness performances against conventional geometric attacks (NC values). 

 
Image Algorithm Crop 10% Crop 20%  Crop 40% Hist. 

Equalization 

Lena Improved-PSO  0.9056  0.8450   0.6193  1.0227 

 [24]  0.9378  0.8861   0.7803  0.9503  

Mandrill Improved-PSO  0.8461  0.7102   0.4781  1.0495 

 [24]  0.9243  0.8757   0.8204  0.7936  

Peppers Improved-PSO  0.8898  0.7890   0.6060  0.9864 

 [24]  0.9283  0.8722   0.7654  0.9698  

Image Algorithm  Scale x0.8 Scale x1.2   Scale x1.5 Rotation 

1-degree 

Lena Improved-PSO  0.7586  0.9575 0.9483  0.9825 

 [24]  0.9478  0.9388 0.9046  0.8757 

Mandrill Improved-PSO  0.7490  0.9364 0.9060  0.9592 

 [24]  0.8608  0.8586 0.8144  0.7881 

Peppers Improved-PSO  0.7827  0.9715 0.9519  0.9842 

 [24]  0.9599  0.9633 0.8933  0.8593 

 

 

5. Conclusion 

 
This paper presents a steganographic approach as an improved-PSO embedding scheme which uses the substitution 

principle to embed a secret message inside an  image. Thus, the approach consists at looking for the best pixels and best 

bits in order to maximize the imperceptibility and then to minimize the error between the original cover image and the 

stego to avoid discrimination between them. The proposed approach easy to implement has shown good results with 

regard to the size of the  embedding secret message. Other performances which consist in adding image processing 

attacks have also been carried out in order to evaluate the robustness of the approach. Provided the achieved results, we 

can say that the reported results in comparison with other algorithms in literature highlight more performance.  
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Abstract 

The fault diagnosis is important to ensure normal operation of an engine. An effective way to 

diagnose engine fault is to schedule maintenance operations by adopting the concept of condition-based 

maintenance (CBM). It consists on a predictive maintenance that helps to make cost saving decisions by 

observing the equipment’s health and act only when maintenance is necessary. This technique reduces the 

spent effort and the economic losses and leads to make wise decisions with a reduced error probability and

minimal environmental damages [1]-[2].  

There are two ways to diagnose faulty engines: supervised learning classification and unsupervised 

learning classification called clustering. Classification has been widely used in several domains, especially 

engine condition-based maintenance [2]. 

Many classification algorithms have been proposed for equipment health prediction [3]. Different 

techniques for fault detection and isolation in process of engine monitoring are suggested such as Neural 

Networks [4]-[6], Particle Swarm Optimization technique [7]-[8], Genetic Algorithms [9] and Support 

Vector Machine [10]. 

In this work, we attempt to apply an improved classification algorithm based on Backpropagation 

Neural Network for solving multi-objective detection and diagnosis of fault signals in industrial processes 

using real data. Robust stochastic optimization techniques like Particle Swarm Optimization (PSO) and

Genetic Algorithm (GA) are compared with Backpropagation (BP).  

We mainly focus on classifying some machines sound signals data into 4 classes corresponding to a 

normal class and three anomalous gear sound signals classes. We consider three types of engine faults: 

faulty bearings, joints problem, and mechanical loosening. We model the data using six discriminative sound 

signals features in order to classify them into the four classes defined above with higher performances.  

The performances of the proposed approaches (BP Neural Network, PSO and GA based Neural 

Networks) are evaluated by using the efficiency and the purity of classifications. 

The results demonstrate the effectiveness of the PSO and GA based Neural Networks compared to 

Backpropagation Neural Network. Our approaches compare favorably with other machine learning

techniques. 
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Abstract. Customer Order Scheduling Problem (COSP) is NP-Hard. COSP has important
practical applications e.g. in the paper industry and the pharmaceutical industry. In this
paper, we empirically advance the state of the art of COSP by outperforming a very recently
presented Greedy Search Algorithm and by finding new upper bounds for 728 out of 960
benchmark instances. We achieve these results by using a new scattered wolf pack (SWP)
algorithm that works on discrete combinatorial optimisation problems. SWP hybridises var-
ious elements of scatter search and grey wolf optimisation. SWP encompasses wolf pack
characteristics such as leadership hierarchy and hunting mechanisms that are mostly inten-
sification oriented. SWP further encompasses plausible wandering behaviours and scattering
mechanisms that are essential for search diversification.

1 Introduction

A customer order scheduling problem (COSP) [1] has n customer orders and m parallel machines.
Each customer order j is composed of m items. Each item i is processed by only a particular
machine i. Machines are able to process different items of a single customer order j at the same
time. Each item i of a customer order j needs a known, deterministic and a non-negative period
of processing time pij ≥ 0 at machine i. The completion time Cj of a customer order j is the time
point when processing of all items of the customer order is finished. The aim for COSP is to find a
sequence of the customer orders at each machine such that the summation of the completion times
of the customer orders is minimised. There are as many possible sequences of customer orders as
the permutations on all machines and the number is (n!)m. However, the optimal solution is found
when the permutation of the customer orders is the same for all machines [2]. Therefore, the search
space of COSP with n customer orders comprises n! permutations.

COSP has several real-life applications. In a car repair shop [3], there are several mechanics
and each arriving car has several broken parts. Each broken part requires service from a particular
mechanic and mechanics can work on the same car at the same time. A car leaves the repair shop
only when all of its broken parts are fixed. This car repair shop model can also be adapted to
aircraft maintenance and ship repair [3]. Moreover, COSP is also relevant in the pharmaceutical
industry [4], in the manufacturing of semi finished lenses [5], and in the paper industry [6].

COSP is an NP-Hard problem [6] meaning it is difficult to be optimally solved especially
when the problem is large. Therefore, researchers recently put much more attention on developing
approximate and metaheuristic COSP algorithms. The current state-of-the-art results are obtained
by a very recent Greedy Search Algorithm (GSA) [7]. In this paper, we empirically advance the
state of the art of COSP by outperforming GSA and by finding new upper bounds for 728 out of
960 benchmark instances. We achieve these results by using a newly proposed Scattered Wolf Pack
(SWP) algorithm that works on discrete combinatorial optimisation problems.

SWP hybridises various elements of Scatter Search (SS) [8] and Grey Wolf Optimisation (GWO)
[9]. SWP encompasses wolf pack characteristics such as leadership hierarchy and hunting mech-
anisms that are mostly intensification oriented. SWP further encompasses plausible wandering
behaviours and scattering mechanisms that are essential for search diversification. Technically, like
GWO, to intensify the search, we combine three best solutions to generate new solutions. Other
solutions in the population are like the diverse population in SS. We combine these other solutions
and the generated solutions. We use a multi-neighbourhood local search to escape local optima.
We further use an explicit diversity control mechanism.

In the rest of the paper, the COSP model and related work are discussed in Section 2, SS and
GWO are briefly covered in Section 3, the proposed SWP algorithm is described in Section 4,
computation results are provided in Section 5, and conclusions are presented in Section 6.
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2 Customer Order Scheduling Problems

Assume π ≡ πn is a permutation of n customer orders 1, 2, . . . , n and [k] denotes the kth customer
order in πn where k ∈ [1, n]. Also, assume Ci[k] is the completion time point of customer order [k] at
machine i. Given the processing time pi[k] for a customer order [k] at machine i, Ci[k] = Ci[k−1]+pi[k]
when k > 1 and Ci[1] = pi[1]. For a customer order [k], the completion time point is C[k] =
maxni=1 Ci[k]. For a permutation π ≡ πn, the total completion time is C(π) = C(πn) =

∑n
i=k C[k].

Fig. 1 depicts a COSP with 3 machines and 4 customer orders. C[1], C[2], C[3], and C[4] are the
customer order completion times and the total completion time is C(π) = C[1] +C[2] +C[3] +C[4].

m

1

2

3
Time

C[1] C[2] C[3] C[4]

Fig. 1. A COSP with three machines and four orders.

Various heuristic methods have been presented for COSP. Shortest Total Processing Time
(STPT) heuristic [10] starts with an empty sequence. Then it constructs a schedule by putting
the unscheduled customer order with the smallest total processing times into the last spot of the
partial sequence. STPT is very fast but the performance significantly decreases especially with the
increasing of the problem size since it only focuses on the last spot of the partial solution. Earliest
Completion Time (ECT) [6] inserts all unscheduled customer orders one by one at the last position
of the partial sequence, and the lowest one in terms of the objective function is chosen. This process
continues until all customer orders are scheduled. SPT-B [7]. FP heuristic [7] (named abbreviating
the authors’ names) starts with an initial sequence obtained by SPT-B. Next, similar to ECT,
customer orders are tested on the last spot of the partial sequence. However, FP always considers
a complete sequence considering those unscheduled customer orders based on the STP-B ordering
as the rest of the partial sequence. Focusing only again on the last spot leads to performance
degradation for both FP and ECT especially with increasing size of the problem.

Among metaheuristic methods, a Tabu Search (TS) [6] and a Greedy Search Algorithm (GSA)
[7] are also proposed for COST. TS used ECT for generating an initial solution and then used the
swap operator in local search. GSA employed FP for the initial solution. Then it goes through the
main loop which contains three steps. At the first step, one customer order is randomly selected
and moved to the last spot. At the second step, GSA finds the best neighbour for the customer
order newly occupied the last spot, and finally applies an exhaustive swap operator on the solution
obtained from the second step. It is continued until the stopping criterion is met. Experimental
results showed the efficiency of GSA over the TS algorithm. However, both algorithms exhaustively
used all possible swap moves; which increases the required CPU times as well as the risk of getting
stuck in the local optima.

3 Scatter Search and Grey Wolf Optimisation

Scatter Search: SS [8] is an evolutionary metaheuristic for integer programming. SS creates two
reference set of solutions of similar sizes: one containing the best solutions found so far and the
other containing diverse solutions. In each iteration, SS then intelligently combines solutions from
the two reference sets to generate new solutions that encompass both quality and diversity. Each
generated solution then undergo a local improvement method. The reference sets are updated at
the end of each iteration. The main characteristic of SS is the diversification of the solutions as a
means to high quality optimisation.

Grey Wolf Optimisation: GWO is a recently emerged population-based metaheuristic for con-
tinuous optimisation problems. GWO borrows its ideas from basic living and hunting behaviours
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of grey wolves [9]. Wolf packs exhibit a leadership hierarchy: Alpha, Beta, and Delta wolves are
the three highest level leaders in the order, while the rest of the wolves in the pack are Omega
wolves. Lower level wolves always follow higher level wolves in performing activities that include
hunting, sleeping, group protection, and territorial inspection. GWO starts with a random initial
population of wolves. Each wolf represents a solution of the problem. In each iteration, the three
best solutions are considered to be the Alpha, Beta, and Delta wolves in the order and GWO
computes each Omega solution combining itself with the Alpha, Beta, and Delta solutions.

4 Proposed Scattered Wolf Pack Algorithm for COSP

As mentioned before, our proposed SWP population-based algorithm combines various elements
of SS and GWO. We borrow three ideas from SS: keeping diverse solutions in the population,
combining good solutions with diverse solutions, and applying local search algorithm on generated
solutions. From GWO, we borrow the idea of keeping only three best solutions, and combining
these three best solutions with each diverse solution. Moreover, we use a multi-neighbourhood
local search to escape local optima. We further use an explicit diversity control mechanism.

Algorithm 1 shows the pseudocode of the the SWP algorithm. Below we describe each compo-
nent of the SWP algorithm in details. However, before that we give an overview. After initialisation
of the population of a given size N , the three best solutions α, β, and δ (in terms of the objective
function) in the population undergo local search. In each iteration of the algorithm, each of the
other solutions in the population gets replaced by a new solution. The new solution is found by
applying a combination method name SB3OX on the three best solutions and then applying a
path-relinking procedure. With some probability, local search is also performed on the new so-
lution. In each iteration, a certain percentage (PLS) of the worst solutions in the population are
then replaced by randomly generated solutions. The three best solutions then again undergo local
search. When the search terminates, the best solution is returned.

Algorithm 1: The proposed SWP algorithm
1 Parameters: population size N , diversity controller proportion PDC%, local search probability PLS

2 Population Initialisation: Generate one solution using a given heuristic and the others randomly.
3 Best Solution Selection: Three best solutions in the population are α, β, and δ respectively.
4 Perform Local Search: π ← performLocalSearch(π) where π ∈ {α, β, δ}.
5 while termination condition is not met do
6 for each solution ω in the population except α, β, δ do
7 Update Solution: ω ← performPathRelinking(performSB3OX(α, β, δ), ω).
8 Perform Local Search: ω ← performLocalSearch(π) with probability PLS.

9 Diversity Control Mechanism: Replace PDC% of worst solutions with new random ones.
10 Best Solution Selection: Three best solutions in the population are α, β, and δ respectively.
11 Perform Local Search: π ← performLocalSearch(π) where π ∈ {α, β, δ}.
12 Output: The best solution found.

4.1 Popolation Initialization

Initial solutions could be typically generated randomly. However, using heuristic algorithms can
improve the quality of the solutions and obtain an initial population with a high level diversity
[11]. SWP uses Earliest Completion Time (ECT) heuristic [6] to generate one solution, and the
remaining solutions are generated randomly. ECT starts with an empty sequence π, and all un-
scheduled costumer orders are placed in a list L. At each iteration 1 ≤ k ≤ n, ECT separately
inserts each unscheduled customer order to the kth spot (the last spot) of the partial sequence π.
The customer order that leads to the lowest objective function is picked for position k, and is then
removed from list L. This process continues until L is empty.
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4.2 Perform Local Search

As can be seen in Algorithm 1, we always apply local search on each of the three best solutions in
the population. Also, we apply local search on the other solutions in the population, but with some
probability; this is to avoid too much exploration of the inferior solutions. A careful observation of
the algorithm might also reveal that for some best solutions, local search is applied on the same
solution more than once. This is not a bad aspect since our local search does not explore the
neighbourhood of a given solution exhaustively. Each time the local search is applied to the same
solution, it will probabilistically explore new areas around the solution.

Algorithm 2 shows the local search algorithm that we use in SWP for COSP. In each iteration,
with 50%-50% probabilities, we apply either insert or swap moves. Insert and swap moves are
typically used when solutions can be represented by permutations. In the insert move, a random
customer order [k′] is removed from its position k′ in the permutation and then reinserted at a
random position k′′ 6= k′. In the swap move, two random customer orders [k′] 6= [k′′] are selected
from the solution and their positions are exchanged. The parameter 20n in the termination criteria
is set after some preliminary experiments and denote the maximum allowed plateau length.

Algorithm 2: performLocalSearch
1 Let π is the input solution, and l← 1.
2 while ++l ≤ 20n do
3 π′ ← insert(π) or swap(π)
4 with probability 50%.
5 if C(π′) < C(π) then
6 π ← π′, l← 1

7 return π

Since calculation of the objective function from scratch for each new solution would be time-
consuming, in this work, we present a fast neighbourhood evaluation strategy called acceleration
method. The acceleration method is simple but effective and is similar to the one in [12]. The idea
is to compute only the completion time of the changed part of the permutation after applying each
move and reuse the unchanged part of the permutation. Suppose permutation π be the current
solution. First, a matrix size n×m is created that retains the completion times of each customer
order on each machine. If k is the minimum of k′ and k′′ used in the insert or swap moves, then
the completion times of the first k customer orders can be easily reused in computation of the new
solutions after applying the move.

4.3 Update Solutions

For each solution ω in the population except α, β, and δ, in Algorithm 1, we first combine the
three best solutions α, β, and δ by using a method named SB3OX to generate a new solution ω′.
We then apply path-relinking on ω′ and ω to get a solution that replaces ω in the population.
The motivation to use the path-relinking procedure is to mimic the behaviour that an ω wolf is
moving from its current position to the position obtained by combining the three best solutions.
The path-relinking procedure also helps obtain diversity since the SB3OX for each ω in the same
iteration will create a new solution always from the same α, β, and δ.

SB3OX. This method is based on a crossover operator named Similar Block 2-Point Order
Crossover(SB2OX) [13]. SB2OX showed its effectiveness over other typical crossover operators used
in genetic algorithms and other population based metaheuristics. In the original SB2OX operator,
it creates two child solutions from two parent solutions. In this paper, we modify this crossover
so that it creates one solution from three solutions α, β, δ and name it as Similar Block 3-Point
Order Crossover(SB3OX). In SB3OX, first all positions of the three best solutions are checked.
The blocks of at least two consecutive customer orders that have exactly the same position in all
three solutions are directly copied to the new solution. Next, two cut points are randomly chosen
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to divide the solutions in three parts. Then, the first part of the new omega solution is filled in
from the first part of α, the second part is filled in by the second part of β, and the third part
is filled in by the third part of δ. In the filling in process, any duplicates in the new solution are
replaced by unused customer orders in the other parts of the source solutions.

Path-Relinking Procedure. Path-relinking [14] is originally used in the tabu search to incorpo-
rate intensification and diversification strategies. Path-relinking creates a route from a given source
solution s to a given target solution t by applying a sequence of moves. Starting from the source s,
at each step a given type of move is applied on the current solution on the route to obtain the next
solution on the route. The intermediate solutions on the route thus have varying levels of similari-
ties with the source and destination solutions. In this paper, we use swap moves to move from s to
t. To show few steps using an example, consider s = (2, 6, 3, 1, 5, 4) and t = (3, 5, 6, 2, 4, 1). Swap-
ping customer orders 2 and 3 in s will produce s′ = (3, 6, 2, 1, 5, 4), which has the same customer
order 3 at the first position as t has. Next swapping customer orders 5 and 6 in s′ will produce
s′′ = (3, 5, 2, 1, 6, 4), which have the same first two customer orders as t has.

4.4 Diversity Controlling Mechanism

Since three best solutions are used to generate the other solutions in the population, diversity of the
generated solutions are still an issue. In order to tackle that, we use a diversity control mechanism
[15, 16]. As part of the mechanism, we replace the worst PDC% solutions from the population with
randomly generated solutions. However, maintaining a certain level of distance between a newly
generated solution and the solution being replaced should be considered in order to take the search
to a different area of the search space. For this, in this work, we use two distance-based measures,
which are described below. For convenience, assume [k]π and [k]π′ denote the customer orders at
the kth positions of the solutions π and π′ respectively.

The first distance measure is D the most common one found in the literature in various prob-
lems. It is the number of positions where the two solutions have different customer orders scheduled.

D(π, π′) =
∑n
k=1 d([k]π, [k]π′) where d(j, j′) = 1 if j 6= j′ else 0

Unfortunately, this measure is not much effective. For example, when π = (1, 2, 3, 4, 5, 6) and
π′ = (6, 1, 2, 3, 4, 5), D is the highest distance 6. However, if we see carefully, only one relocation
of 6 at the beginning of π will result in π′. So the distance between π and π′ should perhaps be
1 instead. To address this issue to some extent, the second distance measure we use is D′ [11].
This distance measure takes into account pairs of customer orders at successive positions in either
direction. If [k] and [k+ 1] in π neither match respectively with any [k′] and [k′+ 1] in π′ nor do so
with any [k′+ 1] and [k′] in π′, then a mismatch is counted. According to D′, the distance between
π = (1, 2, 3, 4, 5, 6) and π′ = (6, 1, 2, 3, 4, 5) is 1 since only (5, 6) pair in π is not in π′.

D′(π, π′) =
∑n−1
k=1 d

′([k]π, [k + 1]π, π
′) where

d′(j, j′, π′) = 0 if ∃k′(([k′]π′ = j ∧ [k′ + 1]π′ = j′) ∨ ([k′ + 1]π′ = j ∧ [k′]π′ = j′)) else 1

Given the definition of D and D′, for each candidate worse solution ω to be replaced by a new
solution ω′, we enforce D(ω, ω′) = n and D′(ω, ω′) = n − 1. These are the maximum distances
possible for the measures respectively and indicate high diversity levels.

5 Computational results

We use the benchmark set generated by [7] to evaluate our algorithm. This benchmark is made up
of 1680 instances: 720 small and 960 big instances. In this paper, only the 960 big instances are used.
The 960 big instances are categorised into two subgroups, Test-1-B and Test-2-B, each containing
480 instances. The difference between these two groups is that in the former, each customer order
comprises m items with pij > 0, while in the latter, pij ≥ 0 [7]. In further details, both these
subgroups contain 16 n × m combinations where n ∈ {20, 50, 100, 200} and m ∈ {2, 5, 10, 20}.
Thus, each combination includes 30 instances making 480 in total.

413 sciencesconf.org:meta2018:213246



Riahi, Newton, Polash, Sattar

The best known metaheuristic for COSP is GSA [7]. Therefore, in this paper we compare the
proposed SWP algorithm with GSA. Because of space restriction, we leave the comparison of the
SWP approach against the original SS and GWO based algorithms for an extended report. Both
SWP and GSA algorithms are implemented in C programming language. The stopping criterion
for both the algorithms were the maximum elapsed CPU time limit of Tmax = ρ× n×m millisec-
onds, where ρ was tested with three values: 90, 180 and 270. The algorithms were run on the same
computing cluster named Gowonda at Griffith University, Australia. Each node of the cluster was
equipped with Intel Xeon CPU E5-2670 processors @2.60 GHz and FDR 4x InfiniBand Intercon-
nect, having a system peak performance of 18,949.2 Gflops. All statistical tests were carried out
with minitab 18.1. To compare the performances of the algorithms, we use the relative percentage

deviation RPD =
(Cπ′ − Cπ)

Cπ
× 100, where Cπ′ is total completion time of the solution return by

a given algorithm, and Cπ is the reference total completion time for the problem instance. The
smaller the RPD value, the better the algorithm performance. For convenience of comparison, we
also take average of RPD (called ARPD) over the runs of the same instance, over all the instances
in a given combination or even in all combinations.

5.1 Parameter Tuning

Calibration of parameters has a great impact on the efficiency of stochastic algorithms. The
proposed SWP has three parameters: N the size of population, PLS local search probability,
and PDC diversity controller percentage. The following levels are considered for each parameter:
N ∈ {10, 20, 30}, PLS ∈ {0.05, 0.15, 0.25}, and PDC ∈ {10, 20, 30, 40} resulting in to 3× 3× 4 = 36
variants. To avoid biased results, the benchmark problem set used for parameter calibration
is different from that used for algorithm comparisons. Here, we generated 60 instances with
n ∈ {20, 50, 100, 200} and m ∈ {5, 10, 20}, 12 n × m combinations and 5 instances each. Each
instance in each combination was executed 5 times. The maximum elapsed CPU time was set as
Tmax = 270×n×m milliseconds. In RPD calculation, the reference Cπ is the best solution obtained
by all 36 parameter variants.

Table 1. ANOVA test results for SWP parameter calibration.

Source DF Adj SS Adj MS F-Value P-Value

P LS 2 0.04016 0.02008 374.79 0.000

P DC 3 0.17551 0.058504 1091.98 0.000

N 2 0.68764 0.34382 6417.38 0.000

P LS*P DC 6 0.00006 0.00001 0.19 0.979

P LS*N 4 0.00024 0.000061 1.14 0.336

P DC*N 6 0.00053 0.000089 1.66 0.126

Error 10776 0.57734 0.000054

Total 10799 1.48149

To analyse the results of the experiment, the Analysis of Variance (ANOVA) method is used.
The ANOVA table is shown in Table 1. As can be seen, all factors have high F-ratios and are
statistically significant as p-values are close to zero. Furthermore, N (size of population) has the
highest F-ratio which means that it has a great effect on the proposed algorithm. We also show
the ARPDs and the 95% confidence intervals with Tukeys Honest Significant Difference (HSD)
of the factors in Figure 2. Note that non-overlapping confidence intervals of each pair indicates a
significant difference. Based on the Figure, we fix N to 20, PLS to 0.15, and PDC to 20 for our
further experiments.

5.2 Effectiveness of SWP Components

The proposed SWP algorithm has three important components: a path relinking (PR) technique,
a diversity controller (DC) mechanism, and local search algorithm (LS). To test the effectiveness
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Fig. 2. ARPDs and 95% confidence intervals with Tukeys Honest Significant Difference (HSD) for different
levels of parameters.

of these components, we create several variants of the SWP algorithm. One is SWP itself that
has all the components; another is +PR which has only the PR component but not the other
two; yet another is −LS which does not have LS but has PR and DC component, and the last
one is NIL which has none of three components. In this experiment, the same stopping criterion of
270nm milliseconds is used for all four variants. Also, the benchmark problems instances are the 60
generated problem instances explained in Section 5.1. All algorithm variants are executed 5 times
and the ARPDs are calculated using the best solution found by these variants as the reference. The
ANOVA table and Means plot with Tukey’s Honest Significant Difference (HSD) 95% confidence
intervals are given in Table 2 and Figure 3 respectively. From these results, we can find that each of
the components improve the efficiency of the proposed SWP, the path relining procedure making
the most improvement.

Table 2. ANOVA test results for SWP variants.

Source DF Adj SS Adj MS F-Value P-Value

Algorithms 3 165.9 55.3026 367.39 0.000

Error 1196 180.0 0.1505

Total 1199 345.9

Fig. 3. ARPDs and 95% confidence intervals with Tukeys Honest Significant Difference (HSD) for different
variants of SWP.
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5.3 Effectiveness of the proposed SWP algorithm

Finally, we compare the proposed SWP algorithm against GSA [7] the best performing existing
algorithm designed for the same problem. The ARPD calculation uses the best known solutions
found in the literature and also found in this paper. Each algorithm over five runs are reported in
Tables 3 and 4 for TEST-1-B and TEST-2-B respectively.

Table 3. ARPDs of the algorithms for TEST-1-B. Best values in each timeout is in bold.

TEST-1-B ρ = 90 ρ = 180 ρ = 270

n×m SWP GSA SWP GSA SWP GSA

20×2 0.000 0.150 0.000 0.147 0.000 0.144
20×5 0.000 0.369 0.000 0.369 0.000 0.376
20×10 0.000 0.634 0.000 0.608 0.000 0.613
20×20 0.000 0.686 0.000 0.693 0.000 0.687
50×20 0.000 0.133 0.000 0.136 0.000 0.144
50×5 0.007 0.604 0.004 0.612 0.003 0.620
50×10 0.029 0.990 0.018 1.003 0.015 1.001
50×20 0.037 1.048 0.041 1.049 0.031 1.038
100×20 0.005 0.157 0.003 0.120 0.003 0.118
100×5 0.054 0.577 0.040 0.557 0.021 0.561
100×10 0.080 1.075 0.049 1.076 0.038 1.067
100×20 0.096 1.334 0.075 1.318 0.068 1.353
200×2 0.007 0.570 0.004 0.359 0.003 0.256
200×5 0.061 0.801 0.036 0.635 0.027 0.552
200×10 0.110 1.211 0.070 1.083 0.036 1.027
200×20 0.119 1.450 0.079 1.422 0.060 1.387

Average 0.038 0.737 0.026 0.699 0.019 0.684

Table 4. ARPDs of the algorithms for TEST-2-B. Best values in each timeout is in bold.

TEST-2-B ρ = 90 ρ = 180 ρ = 270

n×m SWP GSA SWP GSA SWP GSA

20×2 0.000 0.115 0.000 0.121 0.000 0.122
20×5 0.000 0.433 0.000 0.424 0.000 0.411
20×10 0.000 0.738 0.000 0.712 0.000 0.771
20×20 0.000 0.552 0.000 0.535 0.000 0.549
50×20 0.000 0.140 0.000 0.138 0.000 0.145
50×5 0.005 0.649 0.003 0.669 0.002 0.666
50×10 0.010 0.999 0.004 1.031 0.005 1.010
50×20 0.008 1.311 0.007 1.300 0.005 1.308
100×20 0.003 0.172 0.002 0.134 0.002 0.129
100×5 0.060 0.736 0.040 0.674 0.025 0.682
100×10 0.081 1.211 0.062 1.155 0.047 1.141
100×20 0.087 1.548 0.069 1.530 0.057 1.529
200×2 0.005 0.563 0.004 0.366 0.003 0.310
200×5 0.069 1.548 0.048 1.158 0.032 0.936
200×10 0.120 1.915 0.077 1.557 0.064 1.369
200×20 0.154 2.306 0.094 2.057 0.085 1.987

Average 0.038 0.933 0.026 0.848 0.020 0.817

From Tables 3 and 4, we can see that the proposed SWP algorithm is much better than GSA
with all stopping criterion. To be sure that these results are statistically significant, first an ANOVA
test is done considering the two algorithms as the factors. The ANOVA results in Table 5 shows
that there is a significant difference between algorithm as p-value was 0.000 for both testbeds. The
95% confidence interval plot of the algorithms based on ARPDs of each of the 480 instances is
shown in Figure 4 to find out the significance of difference between the pair of algorithms. From this
figure we can see that the differences between proposed SWP and GSA is statistically significant.

To see the behaviour of the algorithms for various numbers of customer orders and machines,
the interactions between m and n with the algorithms are shown in Figure 5. As can be seen
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Table 5. ANOVA test results for compared algorithms on TEST-1-B and TEST-2-B.

Source DF Adj SS Adj MS F-Value P-Value

TEST-1-B

Algorithm 5 1664 332.729 2529.48 0.000

Error 14394 1893 0132

Total 14399 3557

TEST-2-B

Algorithm 5 2546 509.172 2022.47 0.000

Error 14394 3624 0.252

Total 14399 6170

Fig. 4. Average RPD and 95% confidence intervals with Tukeys Honest Significant Difference (HSD) for
compared algorithms.

from this figure, for both the numbers of customer orders and machines, the performance of the
proposed SWP algorithm is less affected, but GSA performs poorly in both cases especially when
the numbers of machines increases.

Finally, it must be mentioned that out of 960 instances, new best solutions are found for 728
instances by the proposed SWP. To be more particular, out of 240 instances with size n = 200 i.e.
in the largest problems, the proposed SWP finds new best solutions for 239 instances. Note that
due to space restrictions, the new best know solutions are not shown here in detail, but we will
report these in an extended version of the paper.

6 Conclusions

In this paper, we study the Customer Order Scheduling Problem (COSP) that has realistic appli-
cations such as in the paper industry and the pharmaceutical industry. The COSP is known to be
NP-hard. In this paper, we empirically advance the state of the art of COSP by outperforming a
very recently presented Greedy Search Algorithm and by finding new upper bounds for 728 out
of 960 benchmark instances. For this we have developed a new scattered wolf pack (SWP) algo-
rithm that works on discrete combinatorial optimisation problems. The proposed SWP hybridises
various elements of scatter search (SS) and grey wolf optimisation (GWO). SWP encompasses
wolf pack characteristics such as leadership hierarchy and hunting mechanisms that are mostly
intensification oriented. SWP further encompasses plausible wandering behaviours and scattering
mechanisms that are essential for search diversification. Technically, like GWO, to intensify the
search, we combine three best solutions to generate new solutions. Other solutions in the popu-
lation are like the diverse population in SS. We combine these other solutions and the generated
solutions. We use a multi-neighbourhood local search to escape local optima. We further use an
explicit diversity control mechanism. Each distinct SWP component significantly improves the per-
formance. In future, we intent to perform an extended study of the algorithm particularly in terms
of the comparison with original SS and GWO algorithms.
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Fig. 5. 95% confidence interval of the competing algorithms on various numbers of machines (left) and
customer orders (right).
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1 Introduction

This paper introduces a new variant of the vehicle routing problem named the multi-depot fleet size
and mix open vehicle routing problem (MDFSMOVRP). In the MDFSMOVRP, the vehicle fleet is
composed of vehicles having different capacities and different fixed and variable costs starting from
different depots and ending ate the last customer served. An example of this problem appears when
a transportation company having different depots hires different vehicles to perform some deliveries.
The objective of the MDFSMOVRP is to minimize the routing costs. Although the problem has a
wide applicability in real-life applications, it has not been studied in any research work so far, to the
best of our knowledge. Some works in the literature studied some reductions of the MDFSMOVRP
such as the multi-depot fleet size and mix vehicle routing problem (MDFSMVRP), the single-depot
fleet size and mix open vehicle routing problem (FSMOVRP), and the multi-depot open vehicle
routing problem (MDOVRP) with homogeneous fleet. These three variants will be briefly reviewed
in what follows.

Few attempts have been made recently to solve the closest variant to the MDFSMOVRP which
is the MDFSMVRP. In 2014 Vidal et al. [14] proposed a unified dynamic programming methodology
to solve several vehicle routing problem variants including the MDFSMVRP. The authors presented
a multi-start Iterated Local Search (ILS) and an Hybrid Genetic Search with Advanced Diversity
Control (HGSADC). Salhi et al. [11] proposed a mixed integer linear program and a variable
neighborhood search algorithm to solve the problem. Recently, in 2018, Lahyani et al. [4] proposed
five distinct formulations to model the MDFSMVRP and a branch-and-cut and a branch-and-
bound algorithms to solve it. Other works solved extended versions of the MDFSMVRP, e.g., the
MDFSMVRP with time windows in [2] and the pickup and delivery MDVRP with heterogeneous
fleet in [3].

In what concerns the FSMOVRP, Ren [9] proposed an efficient genetic algorithm using a se-
quence of a real numbers coding. Yousefikhoshbakht et al. [16] developed a bone route algorithm
followed by a tabu search algorithm as a local search procedure. In 2015, the authors proposed a
mixed integer program along with an ant colony algorithm and generated a new set of instances
to test the problem in [17]. Recently, Yousefikhoshbakht et al. [18] proposed a combined heuris-
tic algorithm called SISEC based on column generation (CG). Compared to the exact and CG
algorithms, the proposed algorithm is better in terms of running time and solution quality.

Many exact and approximate methods have been proposed to study the MDOVRP. The prob-
lem was firstly studied by Tarantilis and Kiranoudis [13] to solve a real-life distribution problem
through a list-based threshold accepting algorithm. Liu et al. [6] proposed a mixed integer program
and a hybrid genetic algorithm while [8] developed an integer linear programming model and a
branch-and-cut bound algorithm to solve small size MDVRP’s benchmarks along with a simulated
annealing algorithm to solve medium and large-sized benchmarks. Yao et al. [15] proposed an ant
colony optimization to solve the MDOVRP occuring in a seafood delivery application encountered
in Dalian in China. Later on, Lalla-Ruiz et al. [5] proposed a mixed integer program to model the
MDOVRP and propose some new lifting constraints. Soto et al. [12] presented a general multiple
neighborhood search hybridized with tabu search algorithm.
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The remainder of this paper is organized as follows. Section 2 provides a description of the
problem studied. A mathematical formulation to model the problem is presented in Section 3.
In Section 4 we propose an hybridized Adaptive Large Neighborhood search (ALNS) to solve
the MDFSMOVRP. Computational results on small and large classes of benchmark instances are
reported in Section 5. Section 6 is devoted for conclusions.

2 Problem description

The MDFSMOVRP can be defined on a direct graph G = (V, A) where V is the vertex set and A
is the arc set. The set of arcs A is composed of {(i, j) : i, j ∈ V, i 6= j}. The set V = Vd∪Vc includes
the subset Vd = {1, . . . ,m} that represents m depots whereas the subset Vc = {m+ 1, . . . ,m+ n}
represents n customers. A demand qi is associated with each customer i ∈ Vc, while qi = 0 ∀i ∈ Vd.
The travel distance from node i to node j ∈ V is represented by βij . Loop arcs, (i,i), between
customers i ∈ Vc and between depots i ∈ Vd are forbidden. This is imposed by defining βij = ∞
∀i ∈ V and βij = ∞ ∀i, j ∈ Vd. G is a complete graph as it includes all arcs connecting distinct
pairs of vertices, with the exception of loops. An heterogeneous fleet of vehicles K = {1, ...,K}
having different capacities start from different depots d ∈ Vd and complete their mission on the
last customer. The capacity of all vehicles of type k ∈ K is denoted by Qk. A fixed cost F k and a
variable cost αk per unit of distance are associated to each vehicle type.

A solution to the problem must determine routes that minimize the total costs such that each
route must originates at one of the depots and terminates at one of the customers, each customer
is visited exactly once, and the total demand of each route does not exceed the capacity of the
selected vehicle. In addition, the vehicle fleet composition will be determined for each depot. An
illustration of the MDFSMOVRP solution with 2 depots, 10 customers and 3 vehicle types is shown
in Figure 1.

Fig. 1. An example of a MDFSMOVRP solution

3 Mathematical formulation

In this section, we present a mixed integer linear program to model the MDFSMOVRP. This
formulation is derived from the commodity flow model proposed inLahyani et al. [4] for the MDF-
SMVRP. This formulation is based on routing variables and loading variables. Let xkdij be binary
routing variables that take value one if arc (i, j) ∈ A is traversed by vehicle type k housed at depot
d and zero otherwise. Binary variables ykdi are equal to one if customer i is visited by vehicle k that
starts from depot d and zero otherwise. Loading continuous variables zkij are used to determine the
vehicle type on each arc. The MDFSMOVRP can be formulated as follows:

minimize Z =
∑

i∈Vc

∑

k∈K

∑

d∈Vd
F kxkddi +

∑

(i,j)∈A

∑

k∈K

∑

d∈Vd
αkβijx

kd
ij (1)
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subject to ∑

k∈K

∑

d∈Vd
ykdi =1 i ∈ Vc (2)

ykdi ≤ykdd i ∈ Vc, k ∈ K, d ∈ Vd (3)

∑

j∈V
xkdij +

∑

j∈V
xkdji =2ykdi i ∈ Vc, k ∈ K, d ∈ Vd (4)

∑

i∈V
xkdij =

∑

i∈V
xkdji j ∈ V, k ∈ K, d ∈ Vd (5)

ykdd ≤
∑

(i,j)∈A
xkdij k ∈ K, d ∈ Vd (6)

2ykdd ≤
∑

j∈Vc
xkdjd +

∑

j∈Vc
xkddj k ∈ K, d ∈ Vd (7)

∑

i∈Vd

∑

j∈Vc

∑

k∈K
zkij =

∑

j∈Vc
qj (8)

∑

i∈V
zkij −

∑

i∈V
zkji =

∑

d∈Vd
qjy

kd
j j ∈ Vc, k ∈ K (9)

zkij ≤
∑

d∈Vd

(
Qk − qi

)
xkdij i ∈ V, j ∈ Vc, k ∈ K (10)

xkdij ∈ {0, 1}, ykdi ∈ {0, 1}, zkij ≥ 0 i, j ∈ V, k ∈ K, d ∈ Vd (11)

The objective function (1) minimizes the total cost composed of fixed vehicle costs and variable
routing costs. Equations (2) enforce that each customer must be visited exactly once. Constraints
(3) impose that if a customer is served by vehicle k housed at depot d, then vehicle k must leave the
depot. Constraints (4) and (5) guarantee the flow conservation. Constraints (6) and (7) ensure that
a customer i is served by vehicle k only if vehicle k housed at depot d is used. Constraints (8)–(10)
impose both the connectivity of the solution and the vehicle capacity constraints. In particular,
constraints (8) ensure that each customer demand is satisfied. Summing up these constraints yields
constraint (9) which states that the total load leaving all depots must be equal to the total customer
demands. Constraints (10) bound the load on each arc (i,j), i.e., after visiting node i the load on
arc (i,j) plus the demand of node i cannot exceed the capacity of the vehicle used. Constraints
(11) are the non-negativity constraints.

4 Hybridized Adaptive large neighborhood search

The MDFSMOVRP is an NP-Hard problem as its reduction the MDFSMVRP is NP-Hard [4],
which justifies the limited capacity of exact methods in solving large instances. Therefore, an
heuristic method becomes necessary to solve larger instances. In this section, we propose an hy-
bridized Adapative Large Neighborhood Search (ALNS) metaheuristic embedded with local search
procedures. The ALNS was firstly proposed in 2006 by [10] and it is based on the combination
of several destroy and repair operators. The idea of the ALNS is to perturbate the solution by
destroying a part of it then re-inserting the part destroyed in a better place in a way that im-
proves the overall solution. The choice of the removal and insertion operators is controlled by a
roulette wheel mechanism. The principle is the following: for each operator we choose a score and
a weight, the choice depends on the past performance of those operators (a very good score, an
average score and a low score). At each iteration, the scores are reset. The stop criterion can be
the resolution time and/or the number of iterations. We have also developed three local search
procedures described in section 4.2 and which aim to improve the solution found by ALNS.

The algorithm can be initialized by a feasible initial solution which can be randomly generated.
Usually, the choice of the initial solution does not influence the performance of the ALNS as many
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iterations will be able to improve the initial solution, [1, 7]. In the proposed method, we randomly
assign a depot and a vehicle with a given type to each customer and we create one direct trip per
customer to build the initial solution considering that the fleet is unlimited.

4.1 Destroy and repair methods

The objective of destroy operator is to diversify the search while maintaining the promising parts
of the incumbent solution, without spending too much computational time. Each destroy operator
removes q customers. On the other hand, the insertion operators aim to re-insert the removed
customers back in their original routes, or in other routes originating from their original depot,
or in any other route starting from a different depot. The proposed metaheuristic is based on five
destroy operators and three repair operators, described as follows.

. Random removal: This operator randomly selects a number of customers to be removed.

. Worst customer removal: The worst customer removal aims to remove the most costly cus-
tomers. The idea is to select a number of customers that increase the total traveled distance.

. Worst vehicle removal: The idea of this heuristic is to remove the customers served by the
most costly vehicle.

. Last customer removal: This heuristic aims to remove the last customer visited in all routes.

. Cluster removal: The cluster removal heuristic aims to remove a set of customers that are
similar with respect to a predefined similarity criterion.

. Random insertion heuristic: This heuristic randomly inserts a customer in one route. We
randomly select a depot and a vehicle, and we insert the customer at a random feasible position.

. Basic greedy insertion heuristic: This heuristic inserts a customer in the best possible position
of a route.

. Regret insertion heuristic: The regret heuristic tries to circumvent this problem by considering
more relevant information when selecting the customer to insert.

4.2 Local search

1-0 exchange: This heuristic tries to improve the solution by removing a customer from one route
and cost-effectively inserting it in the best position in the same or another route.

2-opt heuristic: The 2-opt heuristic exchanges two pairs of arcs in the same route or in two distinct
routes in a way that it reduces the total cost of the solution. The process repeatedly applies 2-opt
swaps by systematically testing all possible pairs of arcs until no further improvement is possible.

3-opt heuristic: The 3-opt heuristic is a 3-swap improvement heuristic. It is achieved by replacing
three arcs by three new ones without modifying the orientation of the route.

5 Computational experiments

In this section, we provide details on the implementation and we report the results provided by
the commercial solver and the ones obtained by the hybrized ALNS. The algorithm was coded
with C++ and executed on an ”Intel Core i3-6006U with 4 GB of RAM”. A large data set of
21 benchmark instances are presented. Instances are firstly solved with IBM CPLEX Concert
Technology 12.5.1. We set the time limit of one hour on running CPLEX for each instance. For
the proposed metaheuristic, we fix the maximum number of iterations to 3.000.000 for each run
for each instance.

5.1 CPLEX results

Table 1 displays the characteristics of the instances considered and presents the results provided
by CPLEX. We consider the open version of the MDFSMVRP instances used in [4, 11, 14]. Let
N be the number of customers and P the number of depots. The instances contain between 10
and 100 customers, and between two and five depots. Five types of vehicles are considered in all
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Table 1. CPLEX results on MDFSMOVRP instances

Instance N P UB LB Gap CPU

1-4-55 55 4 1416.15 1277.41 9.80 3601
2-3-85 85 3 2251.74 1914.63 14.97 3602
3-3-85 85 3 1592.07 1329.01 16.52 3601
4-4-50 50 4 1619.28 1283.72 20.723 3601
5-4-50 50 4 1158.70 859.55 25.82 3601
6-5-75 75 5 1955.42 1383.16 29.27 3602
7-2-100 100 2 2588.18 1968.51 23.94 3602
8-2-100 100 2 1849.68 1291.93 30.15 3601
9-3-100 100 3 2659.23 1941.77 26.98 3602
10-4-100 100 4 2658.21 1935.64 27.18 3603
15-2-80 80 2 2423.61 1629.19 32.78 3601

Average 23.47 3601.55

c-2-10-60 10 2 382.02 382.02 0.00 1
c-2-15-60 15 2 587.88 587.85 0.01 33
c-3-20-80 20 3 592.19 592.13 0.01 729
c-3-25-80 25 3 697.76 697.69 0.01 1689
c-3-30-80 30 3 848.43 809.16 4.63 3608
p-2-10-60 10 2 410.55 410.55 0.00 1
p-2-15-60 15 2 616.27 616.21 0.01 119
p-3-20-100 20 3 515.76 515.73 0.01 148
p-3-25-100 25 3 624.46 624.40 0.01 1299
p-3-30-100 30 3 769.20 766.58 0.34 3601

Average 0,50 1122,8

instances. For each instance, we provide the bounds found by CPLEX in columns headed UB and
LB. We also report the average gap and the running time in seconds in the last two columns.

Results in Table 1 report the average gap of 23,47% for large instances and the average gap of
0,50% for small instances. CPLEX proves the optimality for 2 instances and found an average gap
of 0.01% for 6 instances. One can conclude that on small instances, CPLEX performs very well,
however on large instances, CPLEX may be less efficient with an average gap that can reach 32%
for large-sized instances with 2 depots and 80 customers.

5.2 Hybridized ALNS results

Table 2 reports the results provided by the proposed metaheuristic on open MDFSMVRP instances.
For each instance, we report the best cost found over two runs, the number of vehicles used NV ,
the best running time in seconds and the average gap compared to the lower bound provided by

CPLEX and calculated as follows: Gap= 100∗(CostALNS−UBCPLEX)
CostALNS

.
Obviously, the running time of the proposed matheuristic to solve all instances is considerably

lower than the running time of CPLEX with an average equals to 113,62 seconds. The hybridized
ALNS was able to find two optimal solutions as CPLEX and improves 8 best known solutions
provided by CPLEX and which are highlighted in bold in Table 2. The average gap is low on small
instances but it is considerably high on larger instances. Indeed, for some large instances with 3
or more depots (e.g., 1-4-55, 2-3-85, p-3-25-100, p-3-30-100) the hybridized ALNS was not able to
improve the results provided by CPLEX. A solution to overcome this drawback is to increase the
maximum number of iterations as the proposed method is very fast.

6 Conclusions

In this paper we have studied the MDFSMOVRP, an extension of several classical problems such as
the MDOVRP, the MDFSMVRP and the FSMOVRP. We have proposed a mathematical model and
an hybridized ALNS to solve the problem. As a future work, we may consider to test the proposed
metaheuristic on those reduced versions and to conduct some parameter tuning to enhance its
performance.
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Table 2. Computational results provided the metaheuristic on MDFSMOVRP instances

Instance N P CostALNS NV CPU Gap

1-4-55 55 4 1568.51 13 126 18.56
2-3-85 85 3 2292.65 17 193 16.49
3-3-85 85 3 1690.87 14 196 21.40
4-4-50 50 4 1497.75 10 123 14.29
5-4-50 50 4 962.52 6 118 10.70
6-5-75 75 5 1675.45 13 224 17.45
7-2-100 100 2 2340.65 17 207 15.90
8-2-100 100 2 1499.64 10 201 13.85
9-3-100 100 3 2309.54 16 254 15.92
10-4-100 100 4 2315.78 17 290 16.42
15-2-80 80 2 1916.50 14 146 14.99
c-2-10-60 10 2 382.02 2 14 0.00
c-2-15-60 15 2 593.04 3 20 0.88
c-3-20-80 20 3 624.05 4 34 5.11
c-3-25-80 25 3 745.05 5 42 6.36
c-3-30-80 30 3 867.64 5 51 6.74
p-2-10-60 10 2 410.55 3 13 0.00
p-2-15-60 15 2 622.19 4 19 0.96
p-3-20-100 20 3 551.96 4 30 6.56
p-3-25-100 25 3 716.57 5 38 12.86
p-3-30-100 30 3 871.82 6 47 12.07

Average 8.95 113,62 10.83
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Abstract

In memetic algorithm, a population based global search technique is used to broadly locate good
areas of the search space, while repeated usage of a local search heuristic is employed to locate
optimum. Intuitively, evolutionary operators that generate individuals with genetic material inher-
ited from the parents and improved performance ability should be the right option for improved
performance of the algorithm in terms of time and solution quality. Evolutionary operators with
such properties were devised and used in memetic algorithm for solving multi-objective matrix
tri-factorization problem. It was shown, by comparing deterministic naive approach with two vari-
ants of memetic algorithm with different level of inheritance, that evolutionary operators do not
improve performance in this case. Further analysis showed that even though proposed evolutionary
operators inherit high fitness from its parents, local search does not perform well on such offspring
which results in poor performance.

Keywords: Memetic algorithms, Non-negative matrix factorization, Multi-objective optimization,
Gradient descent

1 Introduction

The level of data generated within different area of our life has drastically increased with the
expand of information technology. As a consequence, an interests to extract meaningful information
out of collected data significantly grew and the knowledge discovery has become widely studied
research area. Within this research, we try to understand data by forming groups of instances, i.e.
clusters, where instances in the same cluster are in some sense more similar to each other than the
instances in other clusters. The problem studied in this paper is non-negative matrix factorization
(NMF) problem which generalizes kernel k-means clustering, bipartite graph k-means clustering
and spectral clustering problem [1]. Original NMF factorizes input non-negative matrix R into two
non-negative matrices so that R ≈ GQT , where R ∈ Rn×m

+ , G ∈ Rn×k
+ , and Q ∈ Rm×k

+ . NMF’s
main objective is clustering of columns of R. While NMF can capture two types of relations, non-
negative matrix tri-factorization (NMTF) R ≈ GSQT can capture more types of information [2].
Both approaches are used for revealing hidden patterns in large real-world datasets and give a
good framework for simultaneously clustering the rows and columns of R. NMTF problem can be
encountered in image processing, text mining, hyperspectral unmixing and bioinformatics [3, 7, 8].
Additionally, Buono and Pio proved that NMTF has several advantages compared to the original
NMF approach [4].

This paper is concerned with the behavior of evolutionary operators used in solving NMTF prob-
lem with presence of additional local search strategies. In Evolutionary algorithm (EA), mechanisms
inspired by biological evolution such as selection, crossover and mutation influence the evolution
of population and implicitly lead the performance of evolutionary search. Mitchell and Holland
analyzed promising features of genetic algorithm for its speedup and suggested that crossover in
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idealized genetic algorithm should create instances with higher fitness [5]. Doerr et al. provided first
theoretical proof for usefulness of crossover for non-artificial problem [6]. In this work, we develop
a mutation and crossover operator which, applied on matrices, are able to provide solutions with
lower objective values and we compare memetic algorithms (with and without suggested crossover)
and deterministic naive approach on non-negative matrix tri-factorization problem (NMTF).

2 Multi-objective non-negative matrix tri-factorization problem

The aim of NMTF is to extract insights of intra-relations of some data set. If the intra-relations
are expressed by non-negative symmetric matrix R, then by NMTF of the form R = GSGT , where
G and S are non-negative matrices of dimensions much smaller than dimension R, some insights
how data is clustered and what are relations among those clusters can be provided. Further, in a
co-clustering version of NMTF problem a set of matrices Ri needs to be factored using the same
G as it is shown in Eq. (1).

∀i : Ri = G · Si · GT (1)

Here, the columns of G can be interpreted as clusters, while components of Si can be interpreted
as interactions among these clusters.

This problem can be stated as an optimization problem by minimizing relative square error

RSE =

∑
i‖Ri −GSiG

T ‖2F∑
i‖Ri‖2F

, (2)

where ‖·‖F is the Frobenius norm. Note, that optimal solution has RSE = 0, while trivial solution
(G = 0 and Si = 0) has RSE = 1. Given that G matrix is common to all Ri tri-factorizations,
all dimensions of Si are the same. This dimensions’ number can be interpreted as the number
of clusters and it is not known in advance. In order to assure high ability of data relationships’
interpretation, the second objective is to minimize

k = dimSi. (3)

In this respect, RSE minimization ensures the accuracy of tri-factorization and k minimization
ensures that the size of representation is as small as possible. Note that the objectives in Eq. (2)
and (3) are contradictory because the capacity of GSGT model grows with k.

3 Naive approach

If k is fixed, RSE can be minimized via gradient descent since RSE from Eq. (2) is a differentiable
function of G and Si. Libraries for automatic differentiation such as tensorflow, theano or CNTK
can be used to calculate the gradient of RSE with respect to G and Si and update them in direction
of the gradient. It must be stressed that the second objective k is not differentiable, hence gradient
descent can only be used to minimize one objective.

In this work, special version of gradient descent algorithm called Adam [9] is used. This algo-
rithm is well suited for large problems and has two main benefits. One is is the adaptive learning
rate control which changes step size during descent in response to changes in gradient magnitude.
The second benefit is the use of momentum which prevents oscillations in narrow valleys of the
search space and gives the descent an ability to skip shallow local minima. Both traits reduce the
number of steps needed to find a local minimum.

The non-negativity constraint encountered in problem definition can be easily fulfilled if ab-
solute value is applied to G and Si before every RSE calculation. In this way a step of gradient
descent going through the bound of the feasible region is effectively bounced back to the feasible
region.

A stopping criterion for gradient descent was devised where relative differences in objective
function among successive steps are used as an indicator of convergence. Median of the several
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past differences was found to be a reliable estimate of the pace of convergence.4 When this pace
falls far below previously encountered ones the gradient descent is stopped. Additionally, descent
is also stopped if maximum number of steps is exceeded.

Even though k is not differentiable, it is possible to solve the two-objective optimization problem
using only gradient descent. In naive approach (NA) Adam is performed for many different k until
satisfactory approximation of Pareto front is acquired. However, there are no guidelines how large
the desired k might be and the search can be concentrated to a region where k is too small. In
such cases, valuable computational time is being wasted.

4 Memetic algorithm

The term memetic algorithm is used to describe a synergetic combination of an evolutionary
approach and local improvement procedure. In this work memetic algorithm for above described
NMTF problem is developed with the main motivation to benefit from the combination of good
hereditary features of EA and efficient Adam, which is used as local improvement procedure.
Stopping criteria for Adam are the same as in naive approach.

4.1 Evolutionary algorithm

Standard EA operators are adapted in such a way that offspring inherit good traits from its
predecessors, i.e. no matter what is the dimension of S, a comparably low RSE value is ensured. The
aim of EA is to provide good starting individuals with various dimension k for further treatment
with Adam, which is usually able to further decrease RSE. In this manner evolutionary algorithm
is used only to find good initial points for gradient descent which should reduce the computational
load to a high degree.

The difference between suggested adapted EA and the classical one is that in the suggested
algorithm the evolutionary process starts with a very small initial population which is growing
linearly over time. As a selection of individuals for breeding, a tournament selection is used. We
privilege individuals, where Adam was successful, hence the criteria to win the tournament is the
lowest RSE. Evolutionary search is also slowly switched from exploration to exploitation; in the
beginning parents are selected at random, while in the later generations individuals with lower RSE
are preferably chosen to become parents. This is accomplished by setting the proportion between
the tournament size and the number of individuals in the population constant over all generations.

Crossover operator used in this work combines two parents and produces one offspring. Off-
spring’s G matrix is a concatenation of parents’ G matrices along rows, while offspring’s Si matrices
are a direct sum of parents’ Si matrices, see Fig. 1 for an illustration. Note, that by crossover op-
erator individuals with enlarged dimension k are obtained but it holds that

RSE(offspring) ≤ 1/2 (RSE(parent1) + RSE(parent2)). (4)

In order to prove statement (4) it is sufficient to show that this inequality holds for a single
summand in Eq. (2). Let M1,M2 be GSGT -products of the parents, while the offspring’s GSGT -
product is 1/2(M1 +M2) by definition. Using this fact, it follows

‖R− 1/2(M1 +M2)‖2 ≤ 1/4 (‖R−M1‖+ ‖R−M2‖)2 (5)

≤ 1/2
(
‖R−M1‖2 + ‖R−M2‖2

)
, (6)

where in (5) triangle inequality and in (6) the fact that 2xy ≤ x2 + y2 was used5. Clearly, an
offspring inherits comparable low RSE value from its parents.

Mutation operator used in this work either deletes or adds columns to matrix G and corre-
sponding rows and columns to matrices Si, see Fig. 2 for an illustration. Columns and rows added
by mutation are populated with small random values. In case of deletion, columns and rows that
contribute the least to the ‖GSiG

T ‖F are chosen. If columns of G are normalized, then by in-
specting the smallest values of Si components it is easy to determine which columns contribute

4 Mean was found to be too susceptible to outliers which are also encountered during gradient descent.
5 2xy ≤ x2 + y2 is equivalent to 0 ≤ (x− y)2
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Fig. 1: Crossover of two parents.

Fig. 2: Mutation where deletion of one column of G was applied.

the least. In this regard, those rows and columns of Si and corresponding ones in G are deleted
that are least significant. By applying a mutation on the selected individual, new offspring with
different k and minimally altered RSE is obtained.

New individuals, constructed by crossover and mutation operators, are improved using Adam
algorithm at the end of every generation.

Offspring created by mutation or crossover both inherit good RSE from their predecessors. In
this regard, the main purpose of proposed evolutionary operators is their ability to construct good
initial points for gradient descent from already descended individuals from the population. By using
evolutionary operators, information about good clusters and their interactions is able to flow across
individuals that have matrices of different dimensions. More importantly, good clusters found in
lower dimensions can be passed to higher dimensional individuals for which computational load of
using Adam is more pronounced. By passing this information to large individuals, the number of
gradient descent steps should be reduced to a large degree.

Two versions of memetic algorithm were used in this work. The M1, performs only mutations
and the second, M2, performs both crossovers and mutations.

5 Experiments

A test problem was constructed with 5 matrices Ri of dimension 800 that have a known minimum
at RSE = 0 and k = 50. Approximately 1/3 of Ri components were non-zero and their magnitude
was around one. Three algorithms were used to solve this problem, i.e. M1, M2, and NA. Each
algorithm was run 12 times due to limited computational resources.

Basic component of all algorithms in this work is Adam. The parameters of Adam algorithm
were manually tuned beforehand, starting with values proposed in the literature [9]. The optimal
parameters found were α = 0.001, β1 = 0.9 and β2 = 0.99 where notation from [9] is assumed.
In order to ensure reasonable execution time, maximum number of steps for Adam was chosen to
be 5000. Convergence criterion was fulfilled when median of last 150 relative differences dropped
below one third of the worst seen median. This convergence criterion was devised by observing how
gradient descent progresses for this type of problems. Initial experiments showed that when this
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criterion is fulfilled, there is a small probability that continuing gradient descent will bring further
improvements.

Initial matrices G and Si for all algorithms were chosen randomly where matrix components
were drawn from uniform distribution on interval [0, 0.01]. In this way initial matrices are close
to the trivial solution (G = 0 and Si = 0) with RSE ≈ 1. Initial experiments have shown that
taking larger initial components of the matrices results to a larger number of steps before gradient
descent converges.

Algorithm NA started with k = 1 and incremented k by one in each generation. For each k
Adam is executed starting from initial random matrices. NA was stopped when it encountered an
individual with RSE < 0.01.

Both M1 and M2 started with a population of 4 individuals whose k was chosen from a uniform
distribution on set {1, 2, . . . , 7}. M1 preforms only mutations, while M2 preforms both crossovers
and mutations. For each crossover M2 performs two mutations. The number of columns deleted or
added during mutation was drawn from geometric distribution with expected value equal to 3.0.
At the end of each generation gradient descent was performed on all new individuals. Crossover
of a parent with itself was prevented due to the inability of gradient descent to improve such an
offspring. The stopping criterion is the same as for NA which is fulfilled when RSE < 0.01 for some
individual in the population.

6 Results

A comparison was done among M1, M2 and NA algorithms with regard to the hypervolume and
the number of evaluations. Fig. 3 and 4 depict the distributions of these two indicators. A depiction
of Pareto front approximations obtained over all runs by each algorithm is shown if Fig. 5.
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Fig. 3: Box plot of hypervolumes for 12 runs of al-
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Fig. 4: Box plot of number of evaluations for 12 runs
of algorithms M1, M2 and NA.

The number of runs is rather small for statistical comparison, however it can give indications
for further work. The data for both comparisons was analyzed using the traditional approach [10]
and the Deep Statistical Comparison (DSC) approach [11]. Using the traditional approach, the
normality condition (checked with the one-dimensional Kolmogorov-Smirnov test for normality)
with regard to the number of evaluations was satisfied, while with regard to the hypervolume was
not satisfied. For both comparisons, the homoscedasticity of the variance was checked with Levene’s
test and for both comparisons the condition was not satisfied. For this reason, the Kruskal-Wallis
test was selected as an appropriate omnibus statistical test.

With regard to the hypervolume, there is a statistical significance between the three algorithms,
and this significance comes from the difference between the pairs M1, NA and M2, NA. For the
same comparison the DSC approach showed that there is a statistical significance between the
three algorithms M1, M2 and NA, and they are ranked as 2, 3, and 1, respectively, which can also
be seen in Fig. 3.

Regarding the number of evaluations, the Kruskal-Wallis test showed there is a statistical
significance between the three algorithms, however the post hoc test according to Dunn showed
that the significance comes with regard to the pairs M1, M2 and M1, NA, while there is no difference
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Fig. 5: Summary attainment surfaces of Pareto fronts over 12 runs for algorithms M1, M2 and NA.
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between M2, NA. However the traditional approach with Kruskal-Wallis test is made with regard
to the medians and not taking into account different standard deviation of the distribution. For
this reason, a recently proposed DSC approach was used, where the comparison is made taking
into account the whole distribution of the data. The result is that there is a statistical significant
difference among M1,M2 and NA, and they are ranked as 1, 2, and 3, respectively, from which it
follows that the NA needs most evaluations on average.

The fact that NA finds better quality solutions compared to M1 and M2 is very surprising.
Even though evolutionary operators generate initial points with lower values of RSE, it seems
that those initial points do not lead gradient descent to good regions. Evidently, starting with low
RSE does not guarantee good convergence. This indicates that low RSE should not be the sole
trait to be inherited in order to ensure efficient evolutionary operators. To further explore this
counterintuitive behavior, the data gathered during optimizations was analyzed. All instances of
individuals with k = 10 that was generated during M1, M2 or NA was gathered. Such individuals
can be produced by crossover or mutation followed by a gradient descent or it can be produced
solely by gradient descent starting from random initial point.

Fig. 6 shows the progression of gradient descent for individuals generated by crossover and
for randomly generated individuals. Because crossover combines previously optimized parents, the
offspring has low initial RSE compared to the random point whose RSE ≈ 1 at the start of gradient
descent. When gradient descent is used on individuals created by crossover, RSE steeply falls but
shortly after the convergence becomes very slow. It seems that gradient descent enters a region
of slow convergence which could indicate a plateau in the optimization landscape. On the other
hand, when gradient descent starts from random initial point, the convergence is quite even and
no quick changes in steepness are present. It seems that crossover introduces such initial points for
gradient descent that are drawn to a plateau with very small gradient.
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Fig. 6: Progress of gradient descent when initial
points are individuals created by crossover com-
pared to the random individuals. All solutions here
have k = 10 and crossovers were performed using
already descended individuals with k = 3, 4, 5, 6, 7
(3 + 7, 4 + 6 and 5 + 5). Full lines are the medians
and the shaded areas represent the range of central
66% of runs.
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Fig. 7: Median progress of gradient descent when
initial points are random individuals compared to
mutated individuals. All solutions here have k = 10
and mutations were performed using already de-
scended individuals with k = 4, 5, . . . , 9. Quantity
∆k tells how many columns were added via muta-
tion and represents the extent to which an individ-
ual was mutated.

Fig. 7 shows the progressions of gradient descent for individuals generated by mutation. Only
mutations where columns were added were considered. The extent to which an individual is mutated
is measured by the number of columns that was added to an individual ∆k. Gradient descent
performed on mutated individuals converges to higher values of RSE compared to the one performed
on random individuals. The only mutation that leads gradient descent to RSE values close to the
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ones in nonmutated case is the addition of one column (∆k = 1). The number of steps needed to
reach convergence in this case is also approximately three times smaller compared to nonmutated
case. This is one explanation why M1 requires less evaluations compared to M2 and NA. The
distributions of RSE values after gradient descent for mutated individuals is shown in Fig. 8. Like
with crossover, the mutation seems to lead gradient descent to unfavorable regions of the search
space.
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Fig. 8: Distributions of RSE after performing gradient descent on mutated individuals compared to non-
mutated ones. Mutation considered here is the addition of specific number of columns (x axis) to matrices
G and Si to already descended individuals. All solutions here have k = 10, therefore mutations were
performed on already descended individuals with k = 3, 4, . . . , 9.

7 Conclusion and future work

The comparison of the three algorithms showed that the naive approach consistently surpasses
memetic algorithms in the quality of solutions. Even though, memetic algorithms can generate
individuals which inherit low RSE, these offspring do not lead Adam to solutions of the same
quality compared to random starting points. This was further proved by analyzing gradient descent
progress of individuals that were generated via crossover, mutation or generated randomly. This
can indicate an interesting property of the fitness landscape that needs to be further explored. In
particular, Adam in memetic algorithms starts on matrices with few dominant non-zero entries
provided by evolutionary operators, while in naive approach Adam starts its search from matrices
with entries which are uniformly distributed between [0, 0.01]. This might be the reason for low
local search performance and might indicate that the choice of evolutionary operators should also
be dependent of the local search used and not only on good hereditary features. Also, it seems
that inheritance of traits from good individuals of lower dimension somehow guides the gradient
descent to regions where gradient has very small magnitude.

Non the less, memetic algorithms proved to be significantly faster than the naive approach.
For the future work we will continue our studies of efficient evolutionary operators for the

research problem. Since further testing of evolutionary operators behavior for this problem re-

433 sciencesconf.org:meta2018:213569



Evolutionary operators in memetic algorithm for matrix tri-factorization problem

quires great computational resources, acceleration of gradient descent step will be implemented on
GPGPU.

Evolutionary algorithm presented in this work will be further developed so that matrices G have
orthogonal columns. This constraint restricts the problem and enforces classical interpretation of
clustering. This algorithm will also be adapted so that asymmetric matrices Ri can be used which
in consequence introduces several different G matrices of different dimensions, one for each data
type. In this regard, the algorithm will be able to perform both classical and soft clustering for
possibly heterogeneous data.
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10. Salvador Garćıa, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the cec’2005
special session on real parameter optimization. Journal of Heuristics, 15(6):617, 2009.
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1 Introduction

Systems-on-Chip (SoC) integrate a complete system into a single chip. The number of integrated compo-
nents continues to increase to meet the requierments of nowadays applications. Thereby, the design of SoCs
focuses in communications more than computations [1]. Network-on-Chip (NoC) emerged as a viable so-
lution to on-chip communication bottlenecks. It is similar to a general network, but with limited resources,
power and area.

Each component of the NoC is an Intellectual Proprety (IP) block that can be a processor, memory and
DSP [1]. A NoC is designed to run a specific application, which are, generally, limited by the number of
the tasks that are implemented in IP blocks. An IP block can implement many tasks and execute them as
a general-purpose processor does. In contrast, an IP block is conditioned to execute some types of tasks.
Therefore, it is necessary to choose the adequate IP block before designing an efficient NoC-based system
for any application. The choice becomes harder when the number of tasks increases. It is also necessary
to map these blocks onto the NoC available infrastructure, which consists of a set of cores communicating
through switches.

Different optimization criteria can be pursued depending on the detailed information of the application
and IP blocks. The application is viewed as a graph of tasks called Task Graph (TG). The features of an
IP block can be determined from its companion library [2]. The objectives involved in task assignment
and IP block mapping are multiple and have to be optimized simultaneously. Some of these objectives are
conflicting because of their nature. So, IP assignment and IP mapping are classified as NP-hard problems[3].
Thus, it is mandatory to use Multi-Objective Evolutionary Algorithms (MOEAs) with specific objective
functions.

In this paper, we propose a multi-objective evolutionary strategy to help NoC designers to select the
most suited IP blocks chosen during the assignment step. For this aim, we use the structure representation
of TG in [4] and IP repository data from the Embedded Systems Synthesis benchmarks Suite (E3S) [5]
as an IP library for the proposed tool. We use the Differential Evolution for Multi-objective Optimization
(DEMO) algorithm [19], which was modified to suit the specificities of the assignment problem and also to
guarantee the NoC designers constraints .

The rest of the paper is organized as follows. First, in Section 2, we present the related work. Subse-
quently, in Section 3, we present the model used for the application structure and IP repository. Section 4
provides an overview of the assignment problem. Then, in Section 5, we present the Differential Evolution
for Multi-objective Optimization algorithm used in this work. After that, in Section 6, we define the objec-
tive functions to be optimized by DEMO. There follows, in Section 7, some experimental results and their
comparison with some existing works. Finally, in Section 8, we draw some conclusions and present new
directions for future work.

2 Related Work

The problems of allocating IP blocks to application tasks and mapping those blocks into a NoC have been
addressed in some previous works. Some of these works treat the assignment and mapping as one single
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NP-hard problem while others consider them as two distinct NP-hard problems that can be solved sepa-
rately. Also, some of these works did not take into account the multi-objective nature of the problems and,
thus, adopted one single objective. In the following, we describe some works wherein the assignment and
mapping problems are handled via multi-objective optimization.

Zhou et al. [6] suggested a multi-objective exploration approach, treating the mapping problem as two
conflicting objective optimization problems, that attempts to minimize the average number of hops and
achieve a thermal balance. The number of hops is incremented every time data cross a switch before reach-
ing its target. The NSGA multi-objective evolutionary algorithm was used in this case. The authors formu-
lated a thermal model to avoid hot spots, which are areas with high computing activity.

Jena and Sharma [7] addressed the problem of topological mapping of IPs/cores into a mesh-based
NoC in two systematic steps using NSGA-II. The main concern was to obtain a solution that minimizes the
energy consumption due to both computational and communicational activities and also minimizes the link
bandwidth requirements under some prescribed performance constraints.

Da Silva et al. [4] devised an efficient IP assignment multi-objective optimization for NoC platforms. It
did so using both NSGA-II and microGA. The work’s main concern was the optimization of hardware area,
power consumption and execution time.

Radu [8] used three methods to assign tasks into IP blocks: (i) random assignment, wherein many tasks
can be assigned to the same IP; (ii) direct assignment, wherein a task is assigned to the first IP that can run
it; (iii) minimum assignment, wherein the selection is driven by the minimum run time, and thus it always
assigns a task to the IP that runs the fastest. After that, Simulated Annealing is used to perform mapping
aiming at minimizing the energy consumption.

In [9], SPEA-II and NSGA-II were used with some different crossover and mutation operators for
application mapping. The work aimed at optimizing two objectives, which are energy consumption and
thermal balance.

3 Application and IP Repository Models

In order to formulate the IP assignment problem, it is necessary to define the application internal model
that will be used. An application can be represented by a set of tasks that can be executed sequentially or in
parallel. It is represented by a directed acyclic graph, called Task Graph (TG) [4].

Definition 1 [4]: A task graph G = (T,D) is a directed graph, wherein a node represents a task ti ∈ T and
a directed arc dij ∈ D between tasks ti and tj represents the data dependency between these tasks. The arc
label v(dij) characterizes the volume of bits exchanged in communication between tasks ti and tj .
IP assignment determines the association between each task of the application and the IP block that would
execute that task. The result of this step is another graph of IP representing the IPs used to implement the
application. This graph is called Application Characterization Graph (ACG).

Definition 2 [4]: An application characterization graph G = G(C,A) is a directed acyclic graph, wherein
each vertex ci ∈ C represents a selected IP block and each directed arc aij ∈ A characterizes the commu-
nication process between ci and cj .

In order to help NoC designers and standardize the proposed solution, we structured the used application
repository, which is the E3S benchmark suite [10] using XML. XML schema provide a neat and well-
accepted model for the task graph and IP repository.

3.1 Task graph representation

A TG is divided into three major elements. The task graph element is the TG itself, which contains tasks
and edges. A task element includes a task element for each task of the TG, while an edge element includes
an edge element for each arc in the TG.

Each task has two main attributes: an unique identifier (code) and a task type (type), chosen among
the 46 different types of tasks included in the E3S library [11]. Each edge has four main attributes: an
unique identifier (id), an identifier of its source node (src), another of its target node (tgt) and an attribute
representing the communication cost imposed (cost). Figure 1(a) shows the XML representation of a simple
TG of E3S.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<task_graph>
<tasks>
<task code ="0" name="src" type="45" />
<task code ="1" name="text" type="44" />
<task code ="2" name="sink" type="45" />
<task code ="3" name="rotate" type="43"/>
<task code ="4" name="dith" type="42" />

</tasks>
<EDGES>
<edge name="a0_0" from="0" to="1" cost="1000"/>
<edge name="a0_1" from="0" to="3" cost="7070"/>
<edge name="a0_2" from="3" to="4" cost="7070"/>
<edge name="a0_3" from="4" to="2" cost="7070"/>
<edge name="a0_4" from="1" to="2" cost="1000"/>

</edges>
</task_graph>

(a) Example of a TG

<?xml version="1.0" encoding="ISO-8859-1"?>
<repository>
<ips>
<ip procName="AMD_ElanSC520-133_MHz--square"
price="33.0" taskTime="9e-06" taskPower="1.6"
area="9.61E-6" taskName="Angle2Time Conversion"
type="0" procID="0" id="0"

/>
<ip procName="AMD_ElanSC520-133_MHz--square"
price="33.0" taskTime="2.3e-05" taskPower="1.6"
area="9.61E-6" taskName="Basic floating point"
type="1" procID="0" id="1"
/>
<ip procName="AMD_ElanSC520-133_MHz--square"
price="33.0" taskTime="0.00049"taskPower="1.6"
area="9.61E-6" taskName="Bit Manipulation"
type="2" procID="0"id="2"
/>
. . .

</ips>
</repository>

(b) Example of an IP repository

Fig. 1. XML codes

3.2 Repository representation

The IP repository is divided into two major elements: the repository and the IPs elements. The repository
is the IP repository itself. It is noteworthy to point out that the repository contains different non-general
purpose embedded processors and each processor implements up to 46 different types of operations. Not all
46 different types of operations are available in all processors. Each type of operation available to be run in
each processor is represented by an IP element. Each IP is identified by its unique identifier. It also includes
other attributes such as taskType, taskName, taskPower, taskTime, processorID, processorName, proces-
sorWidth, processorHeight, processorClock, processorIdle, Area, Power and cost. The common element in
TG and IP repository representations is the type attribute. Therefore, this element will be used to link an
IP to a node. Figure 1(b) shows a simplified XML structure representing an IP repository. The repository
contains IPs for digital signal processing, matrix operations, text processing and image manipulation.

4 The IP Assignment Problem

IP Assignment is the first step before mapping the application onto NoC [12]. The objective of IP Assign-
ment is to select, from an IP library (IP repository), a set of IPs that exploit re-usability and optimize the
implementation of a given application in terms of time, power and area requirements. During this step, no
information about physical location of IPs onto NoC is given. The optimization process must be done based
on TG and IP features only. The result of this step is a set of IPs that should maximize the NoC performance,
i.e. minimize power consumption, hardware resources as well as the total time execution of the application.
Recall that the result of this step is produced in the form of an ACG for the application’s task graph, wherein
each task has an IP associated with it. The dynamics of this assignment step is illustrated in figure 2. Note
that the number of possible assignments is defined as in equation 1:

#A = n1 × n2 × · · · × nm−1 × nm (1)

wherein m represents the number of tasks used in the application and ni the number of IPs that can be
assigned to task i.

5 Assignment with DEMO Algorithm

In this section, we introduce the concept of Differential Evolution and its use for Multi-objective Optimiza-
tion.

5.1 Differential evolution

Differential Evolution (DE), proposed by Storn and Price [13], is a simple and efficient Evolutionary Algo-
rithm (EA). It was, initially, used to solve single-objective optimization problems [19]. DE is population-
based global optimization algorithm, starting with a population of NP D-dimensional individuals. Each
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TG

Fig. 2. Dynamics of the assignment process

individual encodes a candidate solution, i.e Xi,G = {X1
i,G, ..., X

D
i,G}, i = 1, ..., NP , where G denotes

the generation to which the population belongs [20]. The initial population is generated randomly from the
entire search space. The main steps of the DE algorithm are as follows:

Mutation operation : The mutation operator allows altering or disrupting the population with the mutant
vector Vi,G for each individual Xi,G in the population at the generation G. The mutation operator can be
generated using a specific strategy. The most frequently used strategies are defined by equations 2 .. 6:

”DE/rand/1” : Vi,G = Xr1,G + F.(Xr2,G −Xr3,G) (2)

”DE/best/1” : Vi,G = Xbest,G + F.(Xr1,G −Xr2,G) (3)

”DE/best/2” : Vi,G = Xbest,G + F.(Xr1,G −Xr2,G) + F.(Xr3,G −Xr4,G) (4)

”DE/rand/2” : Vi,G = Xr1,G + F.(Xr2,G −Xr3,G) + F.(Xr4,G −Xr5,G) (5)

”DE/current− to− best/2” :Vi,G = Xi,G + F.(Xbest,G −Xr1,G) + F.(Xr2,G −Xr3,G) (6)

where Vi,G is the mutant vector to be produced. r1, r2, r3, r4, r5 are integer constants generated randomly
in the range of [1, NP ], which are different from the index i. Xbest,G is the best individual at generation G.
F : scaling factor which is a real constant usually chosen in the range of [0, 1]. It controls the amplification
of the difference variation.

Crossover operation : The crossover operation improves the diversity of the population and is applied after
mutation phase. The crossover uses the mutation of the mutant vector Vi,G to exchange its components with
the target vector Xi,G in order to form the trial vector Ui,G. The crossover operation is defined by equation
7:

U j
i,G =

{
V j
i,G if(randj [0, 1] ≤ CR)or(j = jrand)

Xj
i,G otherwise

(7)

where j = 1, 2, ..., D. randj is the jth evaluation of a uniform random number generator within [0, 1]
[17]. The crossover rate CR is a user-specified constant within the range [0, 1]. jrand is a randomly chosen
integer within the range [1, D] [15].

Selection operation : In order to keep the population size constant over subsequent generations, a selection
phase is performed. The trial vector is evaluated according to the objective function and compared with its
corresponding target vector in the current generation. If the trial vector is better than target one, the trial
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vector will replace the target one otherwise the target vector will remain in the population. The selection
operation is represented by equation 8:

Xi,G+1 =

{
Ui,G iff(Ui,G) ≤ f(Xi,G)
Xi,G otherwise (8)

The three steps mutation, crossover and selection are repeated for each generation until a termination crite-
rion.

5.2 Differential evolution for Multiobjective Optimization

In single-objective optimization, the decision in selection operation is straightforward, where the candidate
just replaces the parent when the candidate is better than the parent. However, in multi-objective problems,
we could use Pareto concept to deal with multiple objectives in order to select the best solution in the
selection mechanism.

The DE algorithm was extended to solve multi-objective optimization problems due to its great robust-
ness and fast convergence [20]. Among the multi-objective optimization algorithms based on DE, we find
Differential Evolution for Multi-objective Optimization (DEMO) proposed by Robic and Filipic [19]. This
algorithm uses the following selection strategy. If the newly generated trial vector dominates the parent vec-
tor, then the trial vector replaces the parent one. If the parent dominates the trial, the trial vector is discarded.
Otherwise, when the trial and the parent vectors are not related to each other, the trial vector is added to the
current population for later sorting. Algorithm1 shows the main algorithm of DEMO.

Algorithm 1 The main steps of modified DEMO
Initialize the individuals of the population
Initialize best solutions in archive of leaders
iteration := 0
while iteration < max iteration do

for each individuals do
Generate a mutated vector using a mutation operation
Generate a trial vector using crossover operation
Evaluate the trial vector
If the trial vector dominate the individual , the trial vector replace the individual
If the individual dominates the trial vector , the trial vectors is discarded
Otherwise , the trial vector is added in the population.

end for
Update the leaders archive
iteration := iteration + 1

end while
Return result from the archive of leaders

6 Objective functions

Different objectives may be considered in the IP assignment problem. The objectives can be concurrent or
collaborative [4]. Concurrent objectives should not be grouped, and considered separately during optimiza-
tion process. Thus, the process can be treated as a multi-objective optimization.

The best solution for multi-objective optimization is the solution with the adequate trade-off between all
concurrent objectives. In this paper, we adopt a multi-objective optimization minimizing three objectives:
area, power consumption and execution time. These objectives must be computed. Thus, we need to provide
an executable definition for each of them.

Regarding the computation of the area required by a given assignment solution, it is necessary to know
the area of each of the selected processor or processing element (pe). As a processor can execute more than
one task, we must visit each task of the TG and associate it with the selected processor.

The area is computed summing up all the processor’s area. However, when the same processor is asso-
ciated to several tasks of the TG, the area of that processor is added only once. Equation 9 defines how to
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compute the required area to use for a given assignment A:

Area(A) =
∑

pe∈Proc(ACGA)

areape, (9)

wherein Proc() yields the set of processors used in ACG for the evaluated assignment A and areape is the
area for processor pe in ACG [11].

Moreover, the computation of the power consumption is obtained simply adding up all the TG task’s
static powers, as defined in equation 10:

Power(A) =
∑

t∈ACGA;pe∈Proc(ACGA)

powerpei , (10)

wherein poweri is the required power consumption to execute task i on a specified processor pe [4].
Furthermore, regarding the execution time imposed for a given application, it is necessary to visit all

the tasks of its TG and schedule them into the own cycle. Thus, a scheduling algorithm ought to be applied,
for which we opted for List Scheduling (LS).

The LS algorithm [21] chooses, sequentially, in each iteration the ”best” task from all appropriate tasks
to place into the next step. The tasks are sorted according to some ”priority function”. When the number of
tasks exceeds the number of resources, the remaining tasks are delayed. Equation 11 defines the computation
of the execution time:

Time(A) =
∑

s∈Steps(TG)

max
pe∈s;t∈s

(timepet ), (11)

wherein timepet returns the time needed to execute task t by processor pe.

7 Results

The E3S benchmarks suite was used to evaluate the proposed algorithm. The suite contains the charac-
teristics of 17 embedded processors. Each processor is characterized by area, execution time and power
consumption of 46 different tasks. The suite contains also some applications that are usually executed by
embedded systems, such as telecommunication, auto-industry, and network. The applications are given by
their task graph.

To apply the DEMO algorithm, parameters F and CR have to be chosen, for which a thorough sensitiv-
ity analysis is carried out. For mutation constant F and for CR, the sensitivity was evaluated for different
values, such as 0.1 , 0.2 , 0.3 , 0.4 , 0.5 , 0.6 , 0.7 ,0.8 and 0.9. During this analysis, the following parameters
provide good results during the simulation: the initial population was set to 100; CR = 0.1; and F = 0.5.
The maximum number of iterations carried out was set to 200.

Among the common applications executed in a embedded environment, as provided by E3S, we con-
sidered the applications tested in [4]. In order to find the best performing strategy for the DEMO algorithm,
different strategies of DEMO were evaluated. The computations of different DEMO variants could be rec-
ognized by using different equations for mutation operator, viz., equations 2...6.

The DEMO algorithm variants were applied to the above-described test problems. All the algorithms
were run for the benchmark applications. The charts of figure 3 allow a visual comparison of the power
consumption for the assignments yield by the compared strategies, regarding best and average results. Also,
the charts of figure 4 allow for a better visual comparison of the results regarding the time characteristic,
considering the best and average quality assignments. Finally, the charts of figure 5 facilitate the compar-
ison of the required hardware area that would be required by the assignments obtained by the compared
strategies.

In order to compare the DEMO algorithms strategies, different performance measures were used to
evaluate the efficiency of each strategy. We must at least try to determine three aspects[22] : (1) if the set
of approximations of non-dominated solutions covers the entire extension of the true Pareto Front; (2) if it
is close to the true Pareto Front; and (3) whether the solutions in the approximation set are well distributed
and spaced from each other. There are two types of indicators: unary, to measure the three above-mentioned
aspects, or binary, that can be used for a direct comparison of the performances of two Pareto fronts. Since,
in our work, we do not have the true Pareto front, only the binary indicators were used. Among the binary
indicators, we chose Convergence-Based Indicators.
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Fig. 3. Comparison of the minimum obtained assignments regarding power requirement
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Contribution indicator [23] is one of the indicators used for convergence. The contribution of an approx-
imation PO1, relatively to another approximation PO2, is the ratio of nondominated solutions produced by
PO1 in PO∗, which is the set of Pareto solutions of PO1∪PO2. PO is the set of solutions in PO1∩PO2.
W1 (resp.W2) is the set of solutions in PO1 (resp. PO2) that dominate some solutions of PO2 (resp. PO1).
Let L1 (resp. L2) be the set of solutions in PO1 (resp. PO2) that are dominated by some solutions of PO2

(resp. PO1).N1 (resp.N2) is the noncomparable solution of PO1 (resp. PO2):Ni = POi/(PO∪Wi∪Li).
The contribution is calculated by equation 12:

Cont(PO1/PO2) =

||PO||
2

+ ||W1||+ ||N1||
||PO∗|| . (12)

Note that ||PO∗|| = ||PO||+ ||W1||+ ||N1||+ ||W2||+ ||N2||. For example, Cont(A,B) = 0.7 indicates
that 70% of the solutions of the nondominated set of A ∪ B are provided by A, and then 30% provided by
B. So, this value has to be greater than 0.5 to indicate that A is better than B in terms of convergence to the
Pareto front. When Cont(A,B) = 1, all solutions of B are dominated by A.

Different DEMO algorithms are denoted as A=DEMO/rand/1/; B=DEMO/rand/2/; C=DEMO/current-
to-best/1/; D=DEMO/best/1/; E=DEMO/best/2/. In figure 6, the five DEMO variants are compared, showing
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the contribution between two strategies. The highest value indicates the best performance. It can be observed
that the A strategy performs better than the others in most of applications. In networking-tg2,the B strategy
is performes better than others. In networking-tg1, networking-tg3 and consumer-tg0, all strategies are
equals.
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In order to consolidate the proposed approach, we compared the obtained results to those reported in
[4], where the NSGA-II and MicroGA were exploited to yield assignments. It is noteworthy to emphasize
that the same objective function was used in the compared works. As shown in figure 7, it becomes clear
that our approach with DEMO algorithm provides better results than NSGA-II and MicroGA, whatever the
implemented DEMO strategy. However, considering the time objective, some benchmarks are best served
with NSGAII and MicroGA.
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Fig. 7. IP Assignment Comparison using NSGA II and MicroGA and DEMO

8 Conclusions

The IP assignment step is an NP-hard combinatorial problem in NoC design. In this paper, we proposed a
multi-objective algorithm based on Deferential Evolution to help NoC designers to select a set of appropriate
IP blocks from the IP repository. We used the TG and ACG structure, presented in [11], and we adopted the
E3S benchmark as the IPs benchmark. We used the same objectives used in [4] and compared five DEMO
strategies. The efficiency was compared with convergence metric [23] and we found that DEMO with A
strategy performed best among all other strategies and also with relation to the results presented in [4]. For
future work, we intend to extend the measures to calculate the divergence metric and also to use the same
algorithm to tackle the mapping step.
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Abstract: This work is devoted to a modified fixed point method applied to the bio-chemical
transport equation. To have a good accuracy for the solution we treat, we apply an implicit scheme
to this equation and use a modified fixed point technique to linearize the problem of transport
equation with a generalized nonlinear reaction and diffusion equation. Next, we apply this methods
in particular to the the dynamical system of a bio-chemical process.
Eventually, we accelerate these algorithms by the optimized domain decomposition methods.
Several test-cases of analytical problems illustrate this approach and show the efficiency of the
proposed new method.

Key words: Bio-chemical transport, Modified fixed point method, optimal control.

1 Introduction

Our general equation of bio-chemical transport equation, could be written as:





∂u
∂t +−div (D(u)∇u) +∇vu+ F (u) = f(x, y) on Ω

u = h on ∂Ω
u = ho on t = 0

(1)

Where u = (ui) the concentration (dispersal) of reactant, F is the reaction model and D is the
diffusion flux. The lists of bio-chemical model is too wide to cite in this paper, but our boundary
equation (1), generalizes a lot of bi-chemicals models (with second order derivative). As concerned
biochemical models, we cite the Fisher equation (for tumors model [5, 15]), Murray Model [6],
Keller and Segel( for Chemotaxis process [7]) and FitzHugh-Nagumo (for the simulation of electric
propagation in nerves [8]),...
The use of Hopf biffurcation or continuation methods are insufficient for modeling in general these
type biochemical dynamic and solving these models cost heavy time. Then, the use of accurate
numerical methods is necessary to solve the dynamics. Notice, the use of the Newton type methods
is ineffective for solving nonlinear equation of dynamics because the dimension of variables in these
equations is large (more than 3 variables). Also, the use of explicit scheme to solve these equations is
not accurate, stable and efficient in general . So In order to make ours bio-chemicals simulations fast,
stable and efficient, we apply in this paper, the modified fixed point (we propose in [1, 2,4]) to solve
problem (1) type. Modifying the treated equations someway to make the global energy of the system
contracting at each step of time, we guarantee that our method converge quickly to the stationary
solution and the time step size is realistic compared to an explicit method (because of the CFL
condition impose a very small time step size for explicit scheme). Also, modifying the equations of
dynamics give stable solutions: The use of finite element or finite volume discretization is sensitive
to the anisotropic and convective equations: modifying equations by q relaxation procedure solves
this issue and we show the weak formulation of problem (1), has one and unique solution.
In the first part of this paper, we will present the modified fixed point method applied to our
equation (1). In the second part we apply this method to the particular case of a dynamical
reaction equation without a diffusion or convection term. We are interested in this section, because
the equations type we treat, model a lot of bio-chemical process (the Michaleis-Menton for Enzyme
kinetics [9, 16], Hill Kinetics [10], Goldbeter-Koshland for switch phenomena [11], Tyson Model
for cell cycles [12], Burgos Fang Model [13] ...). The equations we treat in this paper in general are
unstable and hard to solve by classical methods, so we apply the modified fixed point to make the
solutions robust and stables.
Finally, we give some numerical results and implementation that prove the efficiency of the method.
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2 Nonlinear reaction diffusion equation

By a full implicit scheme, equation (1) becomes

{
cu− div D(u)∇u+ vu = f(x, y) on Ω

u = h on ∂Ω
(2)

The fixed point method is constructed successively as:

{
cun+1 − div D(un)∇un+1 +∇vun+1 + F (un+1) = f(x, y) on Ω

un+1 = o on ∂Ω
(3)

Where u0 is an initial function value.
Let

V = {u ∈ H(Ω)/ D(u) ∈ L1(Ω) and ‖u‖H < M}
H is the specific Sobolev space adopted for problem (1) (we take H(Ω) = H1

0 (Ω) for a dirichlet
condition on the boundary and H(Ω) = H1(Ω) for a Neuman condition) and ‖u‖H is the norm on
the Sobolev space H (‖u‖H = ‖∇u‖ in the case of dirichlet condition and ‖u‖H = ‖u‖+ ‖∇u‖ in
the case of neumann condition). M is a positive constant that we choose to make the solution of
the variational formula of equation (2) to be bounded (for physical reason). The energy of equation
(2) is:

E(u) =

∫

Ω

cu u+

∫

Ω

u∇vu+
1

2

∫

Ω

D(u)∇u∇u−
∫

Ω

fu

Equation (2) is equivalent to the global minimization of the Energy E on the space H with
some constraints. We can prove that E is a K contraction on V for a small number M (see [1,2] for
prove and explanation in the case of nonlinear diffusion). This method is local and could diverge
for an initial sequence departure is u0 = h0. the same thing could be said if we apply a Newton
type method. As a solution to this problem we make some modifications to the equation to have
successive sequences that are not distant from the initial value u0 = h0. As in [2] where, we
proposed a modified fixed point to a just a semi linear equation, and in [1] where, we applied a
modified fixed point to a nonlinear equation, we generalize this method to our equation by mean
of solving the following iterative equations:

{
cun+1 − div((D(un) + r(un)),∇un)∇un+1) + (un+1) = f(x, y)− div(r(un),∇un)∇un) +K(un) on Ω

un+1 = o on ∂Ω
(4)

the function r and K are selected such a way that the valuational energy of this equation is a K
contraction where, K is very small for reasonable choice of bound M (Generally M Must be less
than ‖u0‖H). This small K make the convergence of the method fast and reduce the number of
successive iterations in time compared to Newton or Fixed method ones. Also, the convergence to
the solution is stable because the energy is a contraction (there is one and only one solution for
the problem and the error is controlled).

3 Dynamical reaction model

In this section, we treat a particular case of equation (1): We eliminate the convective and diffusive
term and take into account a non linear reaction: Without the transport term in equation, we
obtain a dynamical equation:

dy

dt
= F (y), y(0) = u0 (5)

F is non linear function that could have many roots, which make the equation unstable and accurate
using classical model from initial value u0.
An implicit scheme of this equation could be writing as:

yn+1 = F (yn+1) +Kyn y0 = u0 (6)
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We do the same job of section 2 and apply a modified fixed point method to the problem(instead
of a continuation method that make a lot of time to process):

yn+1 = F (yn) + cnyn+1 + (K − cn)yn (7)

cn is choose such a way that the energy of y, should be a contraction.
We can take for example::

cn = ∇F (yn) +
1

2
yn.HessF (yn)

Hess is the matrix hessian for the function F.

4 Numerical simulation

We treat first the simulation of equation (1) where Ω is a squared domain, we take different values
for the diffusion D and the convection v, the functions f, h and h0 are given by taking an exact
solution uexact to the problem (1) on the square Ω. We implemented the modified fixed point
method to several academic solution uexact. We take in this paper in the case of function of two
variable:

uexact(x, y, t) = ((2x− y)e−t(x
2+y2+ + xsin(πy), (2x+ y)e−t(x

2+y2) + ycos(πx) + 1)

The next figures show the error between the approximate solution by a finite element method
and the analytical solution of equations (4): uexact(., t) in the given step t for different value D, F,
v=(a,b), ∆t, the step t and the mesh h of the finite element.

Fig. 1. case1. Fig. 2. case2.

Fig. 3. case3 Fig. 4. case4

figures 1,2,3,4 showing the spatial error at a given time t in ms between the approximate solution
by the fixed point method and the given exact solution of the problem (1) in terms of the given

iterations
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case1: ∆t=0.1, t=0.1,D=I,a=b=0 h=0,025.F (u, v) = (u ∗ v − v, u)t.
case2: ∆t=0.1, t=0.5, D=0,1I,a=-2,b=1 and h=0,001.F (u) = a/(b+ ‖u‖)(1, 1)t

case3: ∆t=0.1,t=10,D = [1, 1− e−(x+y);−1, 2],a=-1,b=0 and h=0,001.F (u) = (u, u3 − vu)t,
case4: ∆t=0.5,t=1, D=0.5I, a=2, b=-1,5 and h=0,001.F (u) = ( u

1+u2 ,
v

1+u2 )t.
h is the mesh grid and I is the matrix identity.

These figures shows that the modified fixed point method converge quickly to the solution and
give a good accuracy. To reduce time computation due to the implicit scheme, we have combined
this method an optimized wave domain decomposition method to accelerate the algorithm.
For the dynamical system (Equation (6))we give the simulation of a reaction with four reactant
the bio-chemical equation (Equation 5).

X1 + E ⇀↽ X2 +
1

2
X3 ⇀↽ X4 + F

We take for F a polynomial function as for the Michaleis-Menton model for enzymes ([16]). We
take for the initial value [X1] = 1 and [Xi] = 0 for i=2,3,4. the next figure show the result of
concentration species by solving the equation using the proposed modified fixed method in section
3. these results are close to a simulation with a benchmark of biochemical simulation (PyMol).

Fig. 5.

5 Conclusion

We have applied a modified fixed point method to resolve the general nonlinear transport equation,
then we applied the method to a dynamical system. We assume that we can prove by theory the
fast convergence of the method applied to this equation.
Several test-cases show the efficiency of the modified Fixed point method.
As a perspective of this article about modified fixed point method we can treat:

– Applying the method to the Groundwater equations
– Applying the Fick and Darcy equations
– Comparing results with realistic experiments.
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ABSTRACT
Maritime terminals need more efficiency in their handling operations due to the phenomenal 
evolution of world container traffic, and to the increase of the container ship capacity. In this 
work, we propose a new integrated modeling considering the optimization of maritime container 
terminals using straddle carriers. The problem is considered at import. We study a combination 
between two known problems, the first is the storage location assignment problem, and the 
second is the straddle carrier scheduling problem. This approach, which combines between two 
chronologically successive problems, leads to the use of multi‐objective optimization. In fact,
we study the multi‐objective integrated problem of location assignment and Straddle carrier
Scheduling (IPLASS) in maritime container terminal at import. We prove that the problem is NP‐
Complete. The objective is to minimize the operating cost which we evaluate according to eight 
components: the date of last task called makespan, the total vehicle operating time, the total 
storage bay occupation time, the number of vehicles used, the number of storage bays used, the 
number of storage locations used, and two different costs of storage location assignment. The 
location assignment costs are evaluated in order to facilitate the containers transfer for deliveries. 
We assume that the operating cost is a function of these components and that the influence 
of each component is variable and dependent on different parameters. These parameters are 
essentially: the number of quays in the terminal, the straddle carrier traffic layout, the number of 
container ships to serve in the terminal, the influence of concurrent operations in the terminal, the 
storage space configuration, the number of free storage bays, the number of free straddle carriers, 
the number of free quay cranes, the mobility of quay cranes, etc. To solve IPLASS efficiently, 
we propose an adapted multi‐objective Tabu Search algorithm. Lower‐bound evaluations are
introduced to perform approximation of Pareto Front. To explore efficiently the non‐convex Pareto
Front Region, we evaluate also a maximized distance adapted to the set of objectives. Indicators 
of efficiency are developed to propose distinguished solutions to operator. 2D‐projections of
approximated Pareto Frontier are given to more understand the efficiency of proposed solutions.

1. Introduction

The world container port traffic grew from 300 million 
TEUs (Twenty Equivalent Units) in 2003 to more than 
651 million TEUs in 2013 and the world container fleet
capacity grew from 1.7 million TEUs in 1990 to 16 mil-
lion TEUs in 2008 (Figure 1).

If we compare the number of orders for container 
ships to the number of container ship deliveries in 2007 
(see Table 1), we can conclude that the world container 
traffic requires more and more ships in particular ships 
with a capacity of more than 10000 TEUs. Notice that in 
2007, 134 of these container ships were recorded in order 
books and only 7 were delivered. In the same year, the
orders of container ships that can carry more than 7500 
TEUs represented 34% of the container ships ordered.

At import, maritime container terminal (MCT)
guarantees especially three tasks: discharging contain-
ers fromships, stacking containers in storage space and
finally delivering containers to shippers and consignees. 
At export, MCT guarantees the same tasks but in the
opposite order. These three tasks are composed by other 
tasks which represent important optimization problems: 
berth allocation, yard planning, stowage planning,
quay crane (QC) scheduling, vehicle scheduling and
routing (straddle carriers, Automated Guided Vehicle,
Automated Lifting Vehicle etc.), yard crane scheduling,
logistics planning of operations. Logistic planning pro-
vides an efficient coordination between the different
equipment and decisions at MCT.

Many kinds of handling systems are used at mari-
time terminals. In this paper, we study the case of CHS

451 sciencesconf.org:meta2018:213714



248   H. DKHIL ET AL.

using straddle carriers to transfer containers between 
the quay and the storage space. Different blocks com-
pose the storage space where every block is a set of stor-
age bays and each bay is composed by different storage 
locations (Figure 2). The maximal capacity of storage 
locations is generally equal to three or four containers 
vertically stored. Using straddle carriers in MCT, there 
is no yard crane (YC), the vehicles (straddle carriers) 
directly access to the storage bays.

In this paper, we study an integrated problem which 
combines between the allocation and scheduling of the 
equipment and the location assignment in MCT using 
straddle carriers at import. These two problems are 

generally treated separately. This combination improves 
the productivity of the handling system due to a better 
theoretical optimality, and it promotes the use of mul-
ti-objective optimization (MOO).

The only study of the integrated problem of storage 
space allocation and vehicle scheduling, in the general 
context of container terminals, was the study by Bish, 
Leong, Li, Ng, and Simchi-Levi (2001) which treats the 
problem for automated container terminals (terminals 
with handling system using Automated Guided Vehicles 
denoted by AGV). Throughout this research, the vehi-
cle schedule and location assignment are optimized in 
order to minimize one objective function which is the 
handling time. However, the waiting times in bay entry 
(AGVwaits for stacking crane in bay entry), which is a 
crucial constraint of the real problem, is not considered. 
In other studies, the optimization of the storage location 
assignment in container terminal considers total vehicle 
routing distance. But, vehicle scheduling, waiting time in 
bay entries, as well as the interaction between the differ-
ent equipment and other parameters, are not considered.

In our study, we consider the multi‐objective aspect 
of the problem with eight realistic objectives to be min-
imized. It is a new and efficient approach considering 
the state of art. We treat with the following objectives: 
the makespan (date of last task or operating time), the 
number of straddle carriers used, the sum of straddle 
carrier operating times, the sum of storage bay occupa-
tion times, the number of storage bays used, the number 
of storage locations used and two location costs.

We propose a new and efficient MOO approach 
applied to the Integrated Problem of Location 
Assignment and Straddle Carrier Scheduling (IPLASS) 
in MCT at import. First, we present the problem, then 
we introduce its mathematical modeling and finally we 
discuss a new multi‐objective Tabu Search algorithm 
(MOTSA) adapted to solve efficiently combinatorial 
multi‐objective optimization problems (MOOP) gener-
ally and IPLASS particularly. Note that we demonstrate 
the NP‐Completeness of IPLASS in annex 1 of the online 
supplementary material.

Figure 1. World container port traffic between 2003 and 2013. 
M TEUs 1 million twenty foots equivalent units.
Data source: www.worldbank.com.

Table 1. container ships commands and deliveries in 2007.

Data source: french center of maritime studies—ministry of development 
and transport.

Ship capacity (TEUs)

Commands  
Number of ships/

total  capacity (TEUs)

Deliveries  
Number of ships/

total capacity (TEUs)
<10000 134/1659092 7/96124
7500/10000 78/673778 34/300516
6000/7500 39/257014 27/181630
5250/6000 9/49950 5/29112
4000/5250 130/576015 65/305169
3000/3999 31/108374 25/88670
2000/3000 63/160465 43/113481
1000/2000 126/177116 115/161241
<1000 62/51359 13/11732
all ship 606/3637957 400/1362881

Figure 2. storage block and storage bays. source: http://pubs.sciepub.com/ijefm/2/1/5/.
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2. Literature review

In this part, we present different reviews of literature
treating optimization problems at MCT managed by 
straddle carriers, and MOO in general context.

2.1. Mono-objective optimization of MCT 
handling system

In this section, we describe the most important stud-
ies treating optimization of handling system of straddle 
carriers in MCT.

Kim (1997) evaluated the number of re-handles in 
container yards. The author discussed a set of equations 
to estimate this number. Kim and Kim (1999a) devel-
oped a beam search algorithm for the straddle carrier 
routing problem at export. The approach comprises the 
container location problem and the carrier routing prob-
lem. The authors treated only one objective, minimizing 
the total travel distance of straddle carriers in the yard. 
In the same year, Kim and Kim (1999b) developed a seg-
regating space allocation modeling for import container 
inventories in port container terminals. The objective is 
to minimize the expected total number of re-handles. 
The authors discussed different procedures to solve the 
problem. Kim, Park, and Ryu (2000) discussed driving 
decision rules to solve the storage space allocation prob-
lem. They considered the goal of minimizing the num-
ber of relocation movements expected for the loading 
operation. The authors developed a dynamic program-
ming model. To solve the real-time problem, they used 
a decision tree taking into account the optimal solu-
tionsof the dynamic programming model. Meersman 
and Wagelmans (2001) discussed the integrated problem 
of QC–AGV–ASC (Quay Crane–Automated Guided 
Vehicle–Automated Stacking Crane) planning. He also 
proposed new modeling and developed branch and 
bound algorithm and beam search approach to solve 
the problem. In Nishimura, Imai, and Papadimitriou 
(2005), discussed the problem of yard trailer routing at a 
maritime container terminal. They developed a dynamic 
routing approach to solve the problem. Chen, Bostel, 
Dejax, Cai, and Xi (2007) presented a Tabu Search 
algorithm to solve the integrated problem of contain-
er-handling systems in a maritime terminal. The authors 
presented and discussed the problem as a hybrid flow-
shop scheduling problem. The proposed approach min-
imizes only one objective which is the total distance of
rooting task. All these studies have not considered the
multi-objective aspect of optimization at MCT.

2.2. Continuous multi-objective optimization

As the name suggests, MOO considers different goals 
in only one global problem. In industry and logistics,
the first resolutions of MOOP have transformed these
problems to single-objective optimization Problems in

order to solve them. However, there are many differences 
between these two cases. In fact, decision-making for
MOOP needs a new generation of multi-objective algo-
rithms (MOA). After resolution of MOOP, the result is
generally a set of solutions and the operators have to
choose one of them. To select one efficient solution, dif-
ferent methods are proposed. We describe these meth-
ods as multi-objective election methods.

The most used MOA in the literature are meta-heu-
ristic algorithms. Genetic Algorithm (GA), Evolution
Strategies, Simulated Annealing (SA) and Tabu Search
(TS) are particularly used.

The most used meta-heuristic for MOOP is GA. Deb, 
Pratap, Agarwal, and Meyarivan (2002) developed mul-
ti-objective GA named NSGA-II.

NSGA-II is a non-dominated sorting genetic mul-
ti-objective evolutionary algorithm. Authors compared 
NSGA-II to different effective variants of GA. NSGA-II 
performed the other algorithms for nine test problems, 
it highlights three famous difficulties concerning mul-
ti-objective evolutionary approach: the O(MN3) compu-
tational complexity (where M is the number of objectives 
and N is the population size), the non-elitism and the 
determination of sharing parameters. Actually, the algo-
rithm is a O(MN2) computational complexity. For each 
generation, the best N solutions from parent and off-
spring populations are selected giving the approach an 
elitist factor. NSGA-II is a generic algorithm and can be 
implemented for different continuous or binary prob-
lems. Jaeggi, Parks, Kipouros, and Clarkson (2006) devel-
oped MOTSA for continuous optimization problems. 
Inspired by path relinking strategies in discrete optimi-
zation, the authors proposed an efficient resolution. The 
objective was to keep the overall MOTSA computational 
cost at a minimum threshold. Hansen (1997) developed 
MOTSA using parallel searches. Each Tabu Search algo-
rithm uses variable objective weights and considers a 
total variable objective equal to a linear weighted sum 
of the multiple objectives. Each search (thread in prac-
tice) performs these weights during the run time with 
dynamic updates. This strategy is effective if the region of 
Pareto Front is convex. Otherwise, some Pareto optimal 
solutions cannot be found by a weighted sum method. 
Dawson, Jaeggy, Parks, Molina-Cristobal, and Clarkson 
(2007) developed parallel MOTSA for continuous opti-
mization problems. They compare MOTSA and NSGA-II 
(developed by Deb et al. (2002)) to test parallel MOTSA 
efficiency. Considering the authors experiments, parallel 
MOTSA performs NSGA-II on five test functions out of 
nine. Jaegyy et al. (2004) adapted MOTSA for real-world 
optimization problems regarding its handling constraint.

2.3. Multi-objective combinatorial optimization

Concerning multi-objective combinatorial problems,
exact methods have very limited performance. Multi-
objective simulated algorithm (MOSA) is used in
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linear function of the considered objectives, some effi-
cient solutions will never be proposed, even if we use a 
large number of linear objective functions.

MOOP are not sufficiently studied in the general 
context of MCT and the particular context of container 
terminal managed by straddle carriers, especially if 
we consider the number of studied objectives and the 
approaches of resolution. In our study, we introduce a 
multi-objective modeling and resolution approach with 
eight objectives. To solve the problem, we developed a 
new MOTSA that we will describe later.

3. Traffic layout

In maritime container terminal, at import, when the ship 
is at the quay, operators have to take next main decisions: 
For each container in the ship, operators have to allocate 
a QC to unload it from the ship, a storage location to store 
it and a straddle carrier to transfer it from the unload-
ing position under QC to the assigned storage location. 
In this work, we consider the QC scheduling initially 
known. When straddle carrier accesses a storage bay to 
finish transferring container to its exact location in that 
bay, the bay is blocked for some period (superior to the 
time that straddle carrier need for loading operation at 
storage location) and no other straddle carrier can access 
it until the end of that period. When the straddle carrier 
arrives at the entry of storage bay, if the storage bay is 
blocked, the vehicle has to respect a waiting time until 
the end of blocking. Taking into account that blocking 
constraint, it is important to minimize waiting time at 
bay entry. The optimization of straddle carriers’ routing 
time and waiting time at bay entry concerns generally 
the problem of straddle carriers’ scheduling. However, 
the problem of location assignment is directly related to 
the straddle carrier scheduling problem because when 
storage locations are assigned to containers, the possible 
routing paths are limited and depends on the chosen 
locations. In this work, on the one hand, we integrate the 
straddle carriers scheduling problem and the location 
assignment problem which insures higher theoretical 
optimality, and on the other hand, we study the inte-
grated problem as a multi-objective problem, and we 
evaluate eight realistic objectives to optimize operating 
times, storage space organization and the number of 
required straddle carriers. Optimizing operating times 
concerns the minimization of all vehicle handling 
times, the minimization of global operating time called 
makespan and evaluated as the date of last handling task. 
Optimization of storage space organization concerns the 
minimization of the number of required storage bays, 
the number of assigned storage location, the distance 
between locations assigned to containers of same client 
and the number of unproductive moves to be caused by 
location assignments during future handling operations.

literature to solve different problems. The method is par-
ticularly used to solve assignment problems (Tuyttens, 
Teghem, Fortemps, & Van Nieuwenhuyze, 2000), 
production scheduling problems (Loukil, Teghem, 
& Tuyttens, 2005) and packing problems (Ulungu, 
Teghem, & Fortemps, 1999). Gandibleux and Feville 
(2000) developed MOTSA for combinatorial problems, 
and they use dynamic weights updated at every itera-
tion of the neighborhoods’ exploration. The algorithm 
updates each weight proportionally to the deviation of 
associated objective. After every update, the current list 
of weight is considered as a tabu. Hansen (2000) devel-
oped MOTSA using distance between selected solutions 
to evaluate the update of every weight at each iteration 
of the algorithm.

2.4. Multi-objective optimization of MCT handling 
system

Golias, Theofanis, and Boile (2009) formulated and 
solved the discrete space and dynamic vessels arrival 
time. The novelty was to consider the multi-criteria 
aspect of the problem. Two objectives are maximized: 
the customer satisfaction and the reliability of the berth 
schedule. Authors used a multi-objective genetic algo-
rithm to solve the problem. Giallombardo, Moccia, 
Salani, and Vacca (2010) studied the integrated problem 
of berth allocation and QC scheduling. Two objectives 
are considered in which the first is to maximize the total 
value of chosen QC profiles, and the second is to mini-
mize the housekeeping costs of the transshipment flow. 
Economical analysis of the value of QC assignment pro-
files and of yard-related costs in a transshipment context 
is discussed. Bish et al. (2001) studied for the first time, 
to the most of our knowledge, the problem of location 
assignment and AGV scheduling in automated con-
tainer terminal. The authors proved the NP-Hardness 
of the integrated problem. The problem was studied as a 
mono-objective optimization problem with the objective 
of minimizing the handling time. The vehicle schedule 
and location assignment are optimized, but the waiting 
times in bay entry (AGV wait for stacking crane in bay 
entry) were not considered in this work.

The different proposed approaches analyze only 
limited parts of the MCT handling system and do not 
sufficiently cover the set of handling operations in the 
terminal. Some approaches consider a combination 
between two chronologically successive optimization 
problems in MCT, but a limited set of researches con-
siders the multi-objective aspect of these integrated 
problems. The multi-objective approaches propose at 
most three-objective optimization models. MOOP are 
generally treated as a mono-objective problem using a 
linear function of the different studied objectives. At 
maritime terminal, MOP are, at the most of the time, 
non-convex problems. Then if we solve them using a 
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•  Straddle carriers pick up containers under QCs
respecting a known global schedule. This schedule 
is based on the subschedules of containers unload-
ing from ships (QC schedule). If n is the number
of QCs used, for every n successive transfer tasks,
straddle carriers have to serve all QCs; in other
words, QCs are served successively by the fleet of
vehicles. QCs operate loading tasks in parallel and 
do not wait for vehicles arriving. Theoretically,
this scheduling constraint influences the problem
feasibility and optimality. However, numerical
results show that it does not affect the makespan
optimality.

•  Vehicles are initially located in the preloading po-
sition near QCs.

•  Every handling task begins when straddle carrier
picks up the container under QC.

•  Every handling task ends when straddle carrier
stacks the container in the associated location.

•  Taking into account the straddle carrier traffic, we
define the quay entry (Point A in Figure 3) and the 
quay exit (Point B in Figure 3) as the entry and the 
output of the part of the quay reserved for QCs
used.

•  After picking up containers under quay cranes,
the straddle carrier moves to quay output; then,
it moves to the entry of the bay where the storage
location associated with the container is. It waits
sufficiently to avoid an accident with the last vehicle 
entering the same bay, and finally it transfers the
container to its storage location in the bay. After the 
end of this handling task, the vehicle moves to the
quay entry and then it moves to the position of the 
next container picking up task under QC.

•  At any time of the process, it is easy to determine
which straddle carrier to use for the next contain-
er-handling task. In fact, we only have to choose
the first vehicle returning to the quay entry (Point
A in Figure 3).

•  Considering the storage space, the set of free stor-
age locations is initially known; however, we have
to determine the storage locations to use for stack-
ing containers. The free storage bays are naturally
determined by the free storage locations and the
storage bays used are determined by the storage
locations used for each solution to the problem.

•  With the chosen layout, each handling task is nat-
urally identified by the associated container.

For experiments, we use real databases of “Terminal
de Normandie” in the Maritime Port of Le Havre. The
terminal is presented in Figure 4.

Considering IPLASS, the layout of a container termi-
nal seriously influences the straddle carrier productivity. 
In fact, the number and the dimensions of storage bays, 
the number and the length of quays and the number of 
quay cranes affect the quality of vehicle traffic specifically 
regarding the routing time.

The traffic layout is another parameter which influ-
ences the straddle carrier operating time. This parame-
ter has a second impact which concerns the complexity 
of the problem. Regarding our approach, the following 
figure presents the terminal layout considered for our 
study, where is presented the chosen traffic layout with 
two common points for all vehicle routing paths: point 
A at quay entry and point B at quay exit. We present 
also three possible routing paths depending on assigned 
storage location. Note that at the quay, straddle carrier 
traffic has a unique direction from point A to point B. 
Vehicles are straddle carriers throughout this paper.

In this work, we present a new modeling for IPLASS. 
We consider general terminal layout, presented in Figure 
3, regarding the following properties:

•  Only one quay is considered. Then, for multiple
quays terminal, we consider the problem only for
container ships allocated to the same quay.

•  Taking into account QC scheduling, the contain-
er-unloading schedule is initially known for each
QC. In fact, we have to determine only straddle
carrier schedule and storage location assignment.
Regarding our layout choices, when storage loca-
tion assignment is determined, the straddle carrier 
assignment and schedule are naturally identified
(see the end of this part).

•  Our modeling supports multiple container-ship
unloading operations taking into account com-
patible arrival times. To support multiple-ship
instances, it is crucial to know the exact date of
container ship arrivals, the set of QCs used, and
the schedule of container handling for each QC.

•  The vehicle routing in the quay has to respect a
unique direction.

Figure 3. Mct layout for iplass.
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storage); secondly, the sum of storage bay occupation 
times and thirdly the sum of straddle carrier operat-
ing times. Taking into account these resources, there 
is concurrence between the different operations in the 
terminal and especially for the multi-quay terminals and 
when operators have to serve many container ships or 
other transport vehicles at one time. This concurrence 
influences the weight of the different operating cost com-
ponents. A global approach can be a good response to 
this problem of operating cost evaluation. In fact, we can 
solve the problem for many container ships at one time 
regarding a global weighted cost.

For the number of free straddle carriers, we can 
consider that the terminal uses a sufficient number of  
vehicles to satisfy every container ship. However, the 
waiting times under QCs make the total number of 
straddle carriers used in the terminal limited by an 
upper bound which we evaluate in Section 5.1. Taking 
into account this limit, operator decision has to take into 
account the concurrence between container ships for 
QC resource.

If the terminal has a limited number of straddle carri-
ers, the concurrence between container ships for vehicles 
is significant for MOO.

The initial storage space configuration is another 
parameter, which influence the operating cost. It is also 
an important factor determining the density of feasible 
solutions in the solution space and the lower bound of 
the number of storage bay used.

The lower bound of storage bays resource is a very 
important factor influencing the makespan lower 
bounds and the resolution hardness. In fact, with a small 
number of storage bays used, the total straddle carriers 
waiting time at the bay entry increases considerably.

The number of free storage bays in the terminal at 
the container ship(s) arrival influences directly the cost 
of storage space resources and the adequate objective 
weight.

In our approach, we deal with the operating cost as a 
vector of eight objective evaluations.

4. Mathematical modeling

Throughout the following, we present mathematical 
modeling of multi-objective IPLASS in maritime termi-
nal at import. It integrates new and realistic constraints 
which reflect the real functioning of the terminal. 
Indeed, we developed constraint formulations to insure 
an efficient location for the set of containers in order to 
facilitate some tasks, like the next transportation, the 
deliveries, or the storage of next arriving containers. 
These constraints are associated with the evaluation of 
two location assignment costs.

Constraints associated with the first location assign-
ment cost are essential to facilitate the container trans-
fer to the next transporter (or the delivery) minimizing 
the total distance among containers of same customer 
and same delivery date, while those associated with the 
second one are used to minimize the number of unpro-
ductive moves to be caused by location decision.

Our objective is to solve the problem considering the 
real need of the decider, which is the minimization of 
the real global operating cost. This cost is mostly con-
sidered as a linear function of different components. In 
some situations, weighted sum methods are efficient to 
solve MOOP. Generally, if we consider linear objective 
function, we cannot propose some efficient solutions to 
the user because the Pareto Front Region is non-convex 
for combinatorial problem.

Many parameters can influence the operating cost, 
but the eight chosen objectives represent the most 
important cost components in IPLASS in a maritime 
terminal at import.

Operating cost in the general context of MCT con-
cerns essentially storage space resources, equipment 
resources and operating time resources. Consider now 
the handling system in container terminal managed 
by straddle carriers. Storage space resources are bays 
and locations. Equipment resources are the quay cranes 
and the straddles carriers. Operating time resources 
concerns firstly the makespan, which is the date of the 
last container-handling task (picking up, transfer and 

Figure 4  Mct “terminal de normandie”. source: Google Maps.
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C(i)     The set of containers having the same client or 
the same delivery date as container i.

T(x, y)    Routing time between the entry of storage bay 
x and the entry of storage bay y. This parameter 
is used to evaluate the first location assignment 
cost fi, j, x, y.

fi,j,x,y    The containers allocation cost associated with 
the decision which stacks container i in storage 
bay x and container j in storage bay y. fi,j,x,y is 
initially known data. Note that fi,j,x,y is defined 
for i ∈ C and j ∈ C(i).

fi,j,x,y    Equal to T(x, y) if (x ≠ y), and equal to SB if 
(x = y).

τi,j = 1     If dj >di, 0 else, where i and j are two containers.

� �i,p = 1   If di >dp, 0 else, where i is a container storage 
location.

4.2. Variables

V    The set V represents straddle carriers used. It is 
an order used to specify every vehicle. |V| is the 
straddle carrier fleet’s size. We consider that |V| 
can be as large as necessary. |V| is an objective to 
be minimized in the optimization problem.

V    {1, 2, …, |V|}.
B*     The set of storage bays used for stacking containers. 

We have to use exactly all these bays. B* is deter-
mined by the storage locations decision. |B*| is the 
size of B*. |B*| is an objective to be minimized in the 
optimization problem.

P*    The set of storage location used for storing container 
after decision. |P*| is the size of P*. |P*| is an objective 
to be minimized in the optimization problem.

vi      Straddle carrier assigned to container i. vi ∈V.
X ′
i,p  Binary variable, equal to 1 if and only if container i 

is stacked in storage location p.
X ′
i,p  Binary variable, equal to 1 if and only if container i 

is the first container stored in location p considering 
the current handling operation.

Vi,j   Binary variable, equal to 1 if and only if container 
j is transferred directly after the container i by the 
same straddle carrier. This variable is defined for i ≠ j.

Pi,j    Binary variable, equal to 1 if and only if container j 
is stored in the same location than container i and 
directly after i (in others terms, container j is stored 
directly on container i). Pi,j is defined for i ≠ j.

P′i,j   Binary variable, equal to 1 if and only if container j is 
stored in the same location than container i, directly 
or indirectly after i (container j is stored on container 
i, but other containers can be stored between i and 
j). P

′

i,j is defined for i ≠ j.
Bi,j   Binary variable, equal to 1 if containers i and j are 

stacked in the same bay and container j is stacked 
directly after i regarding the stacking order in the 
bay. Bi,j is defined only for i ≠ j.

4.1. Data

QC   The set of quay cranes used.
QC(i)    The quay crane associated with container i. For 

each container i, QC(i) is initially known.
C     The set of tasks (or containers). We can iden-

tify each task by its container by considering 
the known total order of container picking up 
process.

B     The set of free storage bays available for stacking 
containers.

B(p)    The bay of storage location p.
BE(p)    Bay entry of storage location p.
P     The set of storage locations. Every location has 

an initial capacity.
w(p)       The initial storage capacity of location p. It is the 

number of free levels of p. The storage capac-
ity at every location depends on the initial 
configuration of the storage space. Consider a 
terminal with a storage space of k levels, if the 
storage location p contains n containers then, 
for the next handling operation at container 
ship arrival or departure, the capacity of p is 
equal to k – n.

SQC     Picking up time under QC. It is the time that 
the straddle carrier needs to pick up a container 
under the associated QC. SQC is considered 
static.

Sv     Container storage time. When a straddle car-
rier arrives at the storage location, Sv is the 
static time which the straddle carrier needs to 
stack the container in the associated storage 
location.

SB        Maximal security waiting time in bay entry. 
SB is static security parameters. Every straddle 
carrier has to wait for at most SB seconds in the 
bay entry. The condition (SB > Sv) is crucial to 
eliminate accidents between vehicles entering 
the same storage bay with an arrival time dif-
ference less than Sv.

succQC(i)  The direct successor of container i considering 
picking up task under QC.

Tp,QC(i)   Straddle carrier routing time from storage loca-
tion p to QC associated with container i.

TQC(i),BE(p)  Straddle carrier routing time from QC asso-
ciated with container i to bay entry of storage 
location p.

Tp       Transfer time between the entry of the bay, 
where is the storage location p, and the exact 
position of p.

di      Delivery date of container i to its next trans-
porter (or customer).

dp        Delivery date of the last container stored in 
location p, regarding the initial storage space 
configuration.

G     A sufficiently big number.
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Vehicle scheduling constraints

Transfer scheduling constraints in bays

 

Transfer time constraints

(3)∀(i, p) ∈ C × P :X
�

i,p ≤ Xi,p

(4)
∀i ∈ C:

∑
j∈C
j≠i

Vij ≤ 1

(5)
∀i ∈ C:

∑
j∈C
j≠i

Vj,i ≤ 1

(6)
|C| −∑

i∈C

∑
j∈C
j≠i

Vi,j ≥ 1

(7)
∀i ∈ C:

∑
j∈C
j≠i

Bi,j ≤ 1

(8)
∀i ∈ C:

∑
j∈C
j≠i

Bj,i ≤ 1

(9)∀(p, i) ∈ P × C: Ip ≥ Xi,p

(10)∀b ∈ B: Ib ≤ ∑
p∈b

IP

(11)∀p ∈ P: IB(p) ≥ Ip

(12)
|C| − ∑

(i,j)∈C2

i≠j
Bi,j =

∑
b∈B

Ib

(13)

∀b ∈ B,∀(i, j) ∈ C2, j ≠ i:Bi,j + Bj,i ≤
∑

p∈b Xi,p +
∑

f∈b Xj,f

2

(14)∀i ∈ C, j = succQC(i) : t1(j) ≥ t1(i) + SQC

(15)
∀(i, p) ∈ C × P:

t2(i) ≥ t1(i) + SQC + TQC(i),BE(p) + G(Xi,p − 1)

(16)
∀(i, j) ∈ C2, i ≠ j: t2(j) ≥ t2(i) + SB + G(Bi,j − 1)

(17)
∀(i, e) ∈ C × P : t3(i) ≥ t2(i) + Te + Sv + G(Xi,e − 1)

(18)

∀(i, j) ∈ C2, j ≠ i,

∀p ∈ P : t1(j) ≥ t3(i) + Tp,QC(j) + G(Vi,j + Xi,p − 2)

t1(i)   Start time of task i. The date when the associated
straddle carrier picks up container i under QC.

t2(i)   The date when straddle carrier assigned to container 
i accesses the storage bay of chosen location.

t3(i)   Completion time of task i. The date when associ-
ated straddle carrier stores container i in its storage 
location.

tv       Termination time of vehicle v (straddle carrier v) 
considering all containers associated with v.

tb        Termination time of container storage in bay b. We 
consider all containers assigned to storage bay b.

CMax  The makespan, which is the date of the last handling 
task.

Ip       I f the storage location p is used, Ip is equal to 1, 
otherwise Ip is nil.

Ib      If the storage bay b is used, Ib is equal to 1, otherwise 
Ib is nil.

F7
i,j   A function which evaluates partially the first location 

assignment cost; equal to zero if containers i and j 
have neither the same client nor the same delivery 
date, else equal to the routing time between loca-
tions assigned to i and j.

Zi,j     Equal to 1 if the location decision assigned to con-
tainers i and j will cause an unproductive move, 0 
else. These variables are used to evaluate the num-
ber of unproductive moves to be caused by location 
assignment decision, taking into account all con-
tainers except those to be stored in first free levels
of each location.

Z′i,p   Equal to 1 if i is the first container stored in location 
p and causes an unproductive move regarding the 
initial storage space configuration. These variables 
are used to evaluate the number of unproductive 
moves to be caused by location assignment decision, 
regarding only containers to be stored in the first
free levels of each location.

4.3. Modeling

The 8 costs of our model are to be minimized under the 
constraints presented next. All the evaluations of these
costs are explained in Section 4.4.

Location constraints

Minimize

⎛
⎜⎜⎜⎝
CMax , �C� −

�
i∈C

�
j∈C
j≠i

Vi,j,
�
b∈B

Ib,
�
p∈P

Ip,
�
v∈V

tv ,
�
b∈B

tb,

∑
i∈C

∑
j∈C
j≠i

Fi,j∕�C(i)�

�C� ,
�
j∈C

�
j∈C
j≠i

Zi,j+
�
i∈C

�
p∈P

Z
�

i,p

⎞⎟⎟⎟⎟⎠

(1)∀i ∈ C:
∑
p∈P

Xi,p = 1

(2)
∀p ∈ P:

∑
i∈C

Xi,p ≤ w(p)
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[X]: Integer part of real X.

4.4. Objectives

Regarding the case of container terminal managed by
straddle carriers, a trial objective is to minimize the
makespan which is the date of the last task. But in a real 
situation, the decision has to take into account another
criteria such as the sum of vehicle operating time, the
number of straddle carriers used, the number of storage 
bays used etc. To solve IPLASS in maritime terminal at
import, we have two possible approaches. The first is to
consider a scalar cost function, which we evaluate tak-
ing into account the handling time, the equipment used 
and the final storage space configuration, and then we
proceed for a mono‐objective optimization. The second 
approach is to solve the problem optimizing a vector
objective function, taking into consideration all evalu-
ated objectives, and in this case, we consider the strict
multi‐ objective aspect of IPLASS.

We discuss in the following the different objectives
to be optimized for IPLASS.

4.5. The number of vehicles to be used—IVI

When we optimize IPLASS, we consider that the ter-
minal has a large resource of straddle carriers, and it
can use, for each handling operation at container ship
arrival, a sufficiently large number of vehicles to insure
makespan high quality or optimality. The only one upper 
bound which concerns the number of straddle carri-
ers used is the natural parameter of QC productivity
(Section 5.1).

We denote the number of straddle carriers to be used 
by IW and we evaluate it as below:

•  �V � = �C� −∑
i∈C

∑
j∈C
j≠i Vi,j

Demonstration 
∑

i∈C
∑

j∈C
j≠i

Vi,j is equal to the number 
of containers having direct predecessor (or successor)
for a routing task with the same storage straddle car-
rier. Then �C� −∑

i∈C
∑

j∈C
j≠i Vi,j is equal to the number

of containers (or tasks) not having a direct predecessor
(or successor). A task with no direct predecessor (or
succes‐ sor) is a first task (or a last task) for some straddle 
carriers; then, the number of those tasks is equal to the
number of vehicles.

(34)

∀(i, j) ∈ C2, i ≠ j:

P
�

ij = Pij +
∑
k∈C
k≠i
k≠j

⌊Pi,k + Pk,j

2

⌋
+
∑
f∈C
f≠i

∑
h∈f
h≠f
f≠j

[Pi,f + Pf ,h + Ph,j

3

]
Constraints about vehicle attributions and termina-
tion time

Constraint about storage bay termination time

Constraint about location costs

(19)∀i ∈ C: CMax ≥ t3(i)

(20)
∀i ∈ C : 1 ≤ vi ≤ |C| −∑

i∈C

∑
j∈C
j≠i

Vi,j

(21)∀(i, j) ∈ C2, j ≠ i: vi − vj ≤ G(1 − Vi,j)

(22)∀(i, j) ∈ C2, j ≠ i: |vi − vj| ≥ 1 − Vi,j

(23)∀(v, i) ∈ V × C : tv ≥ t3(i) − G|v − vi|

(24)∀b ∈ B : tb ≥ t3(i) − G

(
1 −

∑
p∈b

Xi,p

)

(25)

∀i ∈ C, j ∈ C(i),∀(b
1
, b

2
) ∈ B2

:

F7

ij ≥ fi,j,b
1
,b

2

− G

(
2 −

∑
p∈b

1

Xi,p −
∑
l∈b

2

Xj,l

)

(26)
∀(i, j) ∈ C2, i ≠ j, p ∈ P:

Pi,j + Pj,i ≤ (Xi,p + Xj,p)∕2

(27)
∀i ∈ C:

∑
j∈C
j≠i

Pi,j ≤ 1

(28)
∀i ∈ C:

∑
j∈C
j≠i

Pj,i ≤ 1

(29)
|C| −∑

i∈C

∑
j∈C
j≠i

Pi,j =
∑
p∈P

Ip

(30)∀(i, j) ∈ C2, i ≠ j : t3(j) > t3(i) + G(Pij − 1)

(31)∀(i, j) ∈ C2, i ≠ j: Zi,j ≥ 1 + G(�i,j + P
�

i,j − 2)

(32)∀(i, p) ∈ C × P : X
�

i,p ≥ 1 + G

⎛⎜⎜⎜⎝
Xi,p − 1 −

�
j∈C
j≠i

Pj,i

⎞⎟⎟⎟⎠

(33)∀(i, p) ∈ C × P : Z
�

i,p ≥ 1 + G(�
�

i,p + X
�

i,p − 2)
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4.8. The number of storage locations to be used—
|P*|

When different handling operations can use the same
storage bays, maybe they cannot use the same storage
locations in each common bay. The use of a common
storage location by different handling operations during 
a common operating time depends on communication
quality and storage strategy. However, the minimization 
of the number of locations used is an efficient parameter 
to qualify the operator’s decision. We denote this quan-
tity by |P*| and we evaluate it as below:

•  �P∗� = ∑
p∈P

Ip

The number of storage locations used has to respect
the next equation.

•  �C� − ∑
i∈C

∑
j∈C
j≠i

Pi,j = �P∗�

Demonstration The same demonstration as in
Section 4.4.1.

4.9. The total straddle carrier routing time—TSRT

When we minimize the makespan, the operating time is 
globally optimized. However, if we consider the operat-
ing time of every straddle carrier, we have to add another 
objective which is the sum of the vehicles’ operating
time. This objective is evaluated as below:

•  TSRT =
∑
v∈V

tv

4.10. The total bay occupation time—TBOT

When a storage bay is used for a handling operation,
the decider has to consider its occupation time. After
this time, the storage bay can be easily used for another
handling operation. Then, we consider the objective of
minimizing the sum of occupation time of storage bays
during the current operation. This objective is evaluated 
as below:

•  TBOT =
∑
b∈B

tb

4.11. The first location assignment cost—LAC1

Consider the known data C(i) which is the set of con-
tainers having the same delivery date or the same cli-
ent as container i. We evaluate F7(i) as an average cost
regarding every container j in C(i), fi,j,x,y and |C(i)| the
size of C(i).

•  ∀i ∈ C: F7(i) =
∑
j∈C
j≠i

F7
i,j

�C(i)� .

If makespan optimality has highest priority, the opti-
mal straddle carrier fleet size is the smallest number 
which satisfies the next condition:

•  For an optimal solution of the problem, when QC
finishes unloading a container from a ship, at least 
one vehicle is ready to pick it up under the QC.

Determining this optimal straddle carrier fleet size is 
studied by Vis IFA (2000).

4.6. Straddle carriers’ makespan—CMax

The straddle carriers’ makespan is the date of completion 
of the last vehicles task. We denote this objective by CMax.

It is a crucial parameter to qualify solutions. The 
straddle carrier makespan is the global makespan of 
the handling system. The last straddle carrier’s’ task is 
operated when the last container is stored in the storage 
space.

4.7. The number of storage bays to be used—|B*|

The number of storage bays to be used is an important 
parameter to qualify the operator decision in MCT using 
straddle carriers. In fact, at multi‐ship arrival, the work 
in the terminal is organized in different handling oper-
ations and the goal of everyone is to transfer containers 
from a specific part of the quay to the storage space. 
Considering our modeling, every handling operation 
concerns one or many container ships but a unique part 
of the quay. Such an operation is specified by the set 
of containers to store, the associated part of the quay 
and its entry and exit points (Point A and Point B in  
Figure 3—Section 3).

A concurrence between the handling operations 
concerns especially the storage locations’ assignment. 
When the operator assigns a set of storage locations to 
containers, a set of storage bays is used. Handling oper-
ations cannot use storage bays at the same time without 
communication. If the frequency of storage bay occupa-
tion by straddle carriers is high, the operator cannot use 
the same storage bays for different handling operations 
at the same time. Then, it is important to minimize the
number of storage bays used for every handling opera-
tion. We evaluate this number as below:

•  �B∗� = ∑
b∈B

Ib

The number of storage bays used must respect next
equation.

•  �B∗� = �C� − ∑
i∈C

∑
j∈C
j≠i

Bi,j.

Demonstration The same demonstration as in
Section 4.4.1.
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4. 14. NP‐completeness of IPLASS

In annex 1 of the online supplementary material, we 
prove the NP‐Completeness of IPLASS. Considering the 
case of multiple straddle carriers, the demonstration is 
established using a polynomial time reduction of IPLASS 
to the Parallel Machines scheduling Problem (PMP). We 
prove also that the problem is NP‐Complete even if we 
use only one straddle carrier. For that second demonstra-
tion, we use a polynomial time reduction of IPLASS to 
the Traveling Salesman Problem (TSP). More details are 
given in annex 1 of the online supplementary material.

5. Evaluation of solution quality

Here, in this section, we determine the bounds of our 
objectives in order to use the obtained lower bounds 
to evaluate the gaps of the explored solutions. This gap 
evaluation is introduced to perform the approximation 
of PF and to qualify the selected solutions.

5.1. Evaluation of |V| upper bound and |V| lower 
bound

VI is the straddle carrier fleet size. We define the routing 
cycle as the vehicle routing path including routes from 
point A to QC, from QC to storage location and from 
storage location to point A.

The maximal number of vehicles used depends on 
two factors. The first factor is the maximal productiv-
ity of loading tasks under QCs which depends on their 
speed and their number. The second is the maximal 
operating cycle, which is the sum of the pick‐up time 
under QC, the maximal routing cycle, and the maxi-
mal waiting time in the bay entry. We denote by TMax 
the maximal operating cycle and by SMax the maximal 
waiting time in bay entry. SMax depends on the number 
of QCs and on SB, where SB is the maximal waiting time 
between each straddle carrier and its direct predecessor 
vehicle operating in the same bay. When a straddle car-
rier v arrives at the bay entry, the bay can be blocked by 
one or more vehicles which preceded v in that bay. When 
v enters the storage bay, the bay is blocked for SB fixed 
security time. We suppose now that SQC, the pick‐up 
time under QCs, is bigger than SB. We denote by S(v1, v2) 
the waiting time in bay entry between a vehicle v1 and its 
direct predecessor v2. We denote by tB(v1) and tB(v2) the 
respective arrival times of v1 and v2 in bay entry.

•  S(v1, v2) = max (0, SB − (tB(v1) − tB(v2))

Then, there is no waiting time in bay entry between 
vehicles coming from the same QC. In fact, if v1 and v2 
are served by the same QC, tB(v1) − tB(v2) > SQC > SB then 
S(v1, v2) = 0. The result is that the waiting time in bay 
entry exists only between vehicles coming from different 
QCs with equivalent routing starting times from QCs. 

Taking into account F7(i) for every container i and the 
number of containers |C|, we evaluate the first location 
assignment cost as below:

•  LAC1 =
∑

i∈C F7(i)
�C� .

For a real instance of the problem, average evalua-
tion of location cost gives a better idea about the qual-
ity of the global location decision. The optimization of 
the first location assignment cost is essential to pro-
mote the facilitation of container transfer to the next  
transporter.

4.12. The second location assignment cost—LAC2

The second location assignment cost is equal to the num-
ber of unproductive moves caused by location decision. 
These unproductive moves will disadvantage the facility 
of container deliveries. Unproductive moves are caused 
when a container with some delivery date is stored on 
other containers with earlier delivery dates; the num-
ber of unproductive moves caused by that decision is 
equal to the number of these containers. This objective 
is denoted by LAC2 or UM (Unproductive Moves) and 
evaluated as below:

4.13. Constraints

Constraints (1), (2) and (3) organize the location deci-
sion. For each container, exactly one storage location is 
associated. The number of containers which are stored 
in a given storage location p is less than or equal to the 
capacity of p denoted by w(p). With constraints (4), 
(5) and (6), the conditions of vehicle scheduling are 
respected. Each container routing task has at most one 
successor and one predecessor. The number of vehicles 
to be used is bigger than or equal to 1. The scheduling 
conditions in storage bays are ensured by the constraints 
(7) to (13). In each bay, every container storage task has at 
least one successor and one predecessor. Constraints (9) 
ensure the link between location constraints and storage 
bay ones; it evaluates the number of used locations and 
then the number of used storage bays. For this evalua-
tion, we add the constraints (10) and (11). Constraints 
(14) to (19) are injected to bound the different transfer 
time t1, t2 and t3. Particularly, constraints (19) are added 
to bound the makespan which is the date of termination 
of the last handling task. The constraints from (20) to 
(23) allow the vehicle allocations and evaluate the ter-
mination time of every vehicle. The termination of the 
storage bay operations is bounded in constraints (24). 
The constraints from (25) to (34) are used to evaluate 
the location costs F7

ij, Zij and Z
′

ip. For more details about 
the constraints’ significance, refer to the in annex 2 of 
the online supplementary material.

∙ LAC
2
=
∑

i∈C

∑
j∈C
j≠i

Zi,j +
∑

i∈C

∑
p∈P

Z
�

i,p.
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•  There is no possibility of short cut paths between 
the quay entry (point A) or the quay exit (point B) 
and the storage bay. All storage bays have the same 
length. In other terms, all straddle carrier routing 
paths are equal.

With these conditions, the inequality becomes 
an equality and we obtain a strict evaluation of 
|V(Sopt)|‐Optimality.

•  |V (Sopt)| = TMin

SQC
× |QC|

5.2. Evaluation of C
Max

 lower bound

In this part, we denote by Makespan (S) the value of CMax 
taking into account solution S. It is the date of the last 
task for the decision S. Consider V* the minimal set of 
vehicles sufficient to insure makespan optimality

In our modeling, for each vehicle, the routing path 
includes the routing path from the QC unloading the 
container to the storage location, and the routing path 
from the storage location to the QC associated with the 
next container to transfer. In this part, we consider that 
routing path include the routing path from point A (quay 
entry) to the storage location and the routing path from 
the storage location to point A. This consideration does 
not affect the nature of the problem and its optimal-
ity. Consider p0 the storage location with the shortest 
routing cycle. We denote by T0 the routing time of the 
shortest routing cycle added to loading time at QC and 
unloading and stacking time at storage location. We 
denote by N0 the maximal number of containers which 
the largest fleet of straddle carriers can transfer in the 
routing time TMin. In mathematical terms, we have:

•  TMin = Min {TA,p + Tp,A;p ∈ P} + SQC + SB

•  N0 = |QC| T0

SQC

With |QC| the cardinal of QCs set, A the point at quay 
entry and TA,p The routing time between A and storage 
location p and Tp,A the routing time between p and A.

•  We consider the storage location p associ-
ated with the minimal total routing path 
Min {TA,k + Tk,A;k ∈ P}.

•  We consider w(v, i) the vehicle waiting time in bay 
entry. It is exactly the waiting time for vehicle v 
when it transfer container i.

•  V* is the minimal set of vehicles which insure 
maximal productivity for the speed of containers 
picking up under QCs. V* is evaluated considering 
that waiting times in bay entry are nil. Then we can 
conclude that |V*| = N0.

•  Makespan (S) ≥ |C|
|V ∗| × TMin

Makespan (S) = Max{
∑

i∈C(v),j=succv(i)
(TQC(i),p(i) + Tp(i),QC(j)

+SQC + SV + w(v, i));v ∈ V ∗}

Consider tQC(v1) and tQC(v2) the routing starting times 
from QCs.

•  S(v1, v2) = max (0, SB − (tQC(v1) − tQC(v2))

Consider now a vehicle v and all straddle carriers which 
proceeded v in the same storage bay. If a vehicle v1 com-
ing from QC1 affects the total waiting time of v in bay 
entry, no other vehicle coming from QC1 can affect it 
because of pick‐ up delay under QC1 which results from 
the last equation. Then, at most |QC| − 1 predecessor 
can affect the total waiting time of v in bay entry. We 
denote it by S(v), and we denote by {vi; i < |QC|} the set 
of straddle carriers which preceded v in the same storage 
bay and come from different QCs.

•  S(v) =
∑

1≤i<�QC� S(v, vi)
•  S(v) ≤ (|QC| − 1) × SB

We conclude that maximal waiting in bay entry SMax is 
equal to (|QC| − 1) × SB.

•  TMax = SQC +Max {TA,p + Tp,A;p ∈ P} + SMax

Finally, we have an evaluation of the vehicle fleet size 
upper bound.

•  |V | ≤ TMax

SQC
× |QC|

We note that with sufficiently large stacking capacity 
under QCs, the QCs’ productivity is maximal. In other 
terms, this condition insures the fact that when the QC 
unloads container from ship, it does not wait for the 
straddle carriers to unload containers from the stacking 
space under it.

Suppose now the following two conditions:

•  The stacking space under QCs is sufficiently large 
and QCs productivity is maximal.

•  The CMax Optimality is an absolute priority.

Considering these two conditions, we can evaluate a 
lower bound for the number of straddle carriers used 
regarding solutions with optimal makespan. Consider 
Sopt a solution having an optimal makespan, the minimal 
number of vehicles used for Sopt depends on three fac-
tors: the QCs handling speed which depends on SQC, the 
number of QCs and the minimal operating cycle TMin.  
We evaluate TMin as:

•  T
Min

= Min {TA,p + Tp,A;p ∈ P} + S
QC

Moreover, we have next the inequality:

•  |V (Sopt)| ≥ TMin

SQC
× |QC|

Consider now the last two conditions added to the next 
proprieties.

•  We suppose the existence of CMax‐Optimal solution 
Sopt with nil waiting times in bay entries.
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In mathematical terms, we have next evaluation of 
|B*| Lower Bound:

•  

5.4. Evaluation of |P*| lower bound

The lower bound, regarding the number of used stor-
age locations, is equal to the cardinal of the smallest set 
of locations having a total storage capacity equal to the 
number of containers to be stored. Mathematically, we 
have next valuation of |P*| Lower Bound.

5.5. Evaluation of TSRT lower bound

Consider P∗
Min the set of storage locations used. We sup-

pose that P∗
Min contains the |C| storage locations which 

corresponds to the |C| shortest routing paths. For each 
solution S, we have the following inequality.

•  
∑
v∈V

tv ≥ ∑
p∈P∗

Min

(TA,p + Tp,A + SQC + Sv)

Suppose that every routing path have the same length 
T; then, we obtain the next result.

•  
∑
v∈V

tv ≥ �C� × (T + SQC + Sv)

5.6. Evaluation of TBOT lower bound

Let Tb denote the routing time between the entry of the 
bay b and the quay entry (Point A). Consider the stor-
age bay b in B*, we know that tb ≥ (|C(b)| − 1) × SB + Tb 
(Section); then, we can conclude next inequality.

•  
∑
b∈B∗

tb ≥ (�C� − �B�∗) × SB +
∑

b∈B∗
Min

Tb

Suppose that all routing paths have the same length 
which corresponds to the operating time T. We obtain 
the next result.

•  
∑
b∈B∗

tb ≥ (�C� − �B∗�) × SB + �B∗� × T

5.7. Evaluation of lower bound for the first 
location assignment cost

The minimal distance between two different storage 
locations is a lower bound of the first location assign-
ment cost.

5.8. Evaluation of lower bound of the second 
location assignment cost

Regarding realistic initial storage space configuration, 
the lower bound of the second location assignment cost 
is equal to zero.

LB(�B∗�) = Min

�
�F�;F ⊆ B and

∑
b∈F

∑
p∈b

w(p) = �C�
�

LB (|P∗|) = {|H|;H ⊆ P and
∑
p∈H

w(p) = |C|}

Suppose that the stacking space under QCs has suffi-
ciently large capacity to insure QCs’ operating time opti-
mality. With Journal of the Operational Research Society 
that condition, we can evaluate the date of the last QC 
handling task with the next formulation. We denote this 
quantity by Makespan(QCopt) and we denote by C(q) the 
set of containers associated with QC q.

•  Makespan (QCopt) = Max {|C(q)| × SQC, q ∈ QC}

Regarding the same conditions, we evaluate another 
lower bound for the makespan of the global handling 
system. Suppose that all routing paths correspond to 
the same routing time T. S is a feasible solution to the 
problem.

•  Makespan (S) ≥ Makespan (QCopt) + T

In our modeling, we consider a regular QC unloading 
task with a static container unloading time less than the 
straddle carrier picking up time SQC. A total container 
picking up schedule is initially considered. For the most 
general context, we evaluate the next inequality for each 
solution S and for each QC handling situation.

•  

Consider now the set of storage bays used B*. We 
denote by b the storage bay in B* containing the largest 
set of storage locations used. We suppose the produc-
tivity of straddle carriers maximal. We denote by T the 
routing time associated with each container transfer to 
b. In these conditions, we have the following equation:

•  Makespan (S) = (|C(b)| − 1) × SB + T, where |C(b)| 
is the number of containers to store in b.

Considering decision S, B* and b are initially 
unknown. At least b contains |C|/|B*| + |C| mod |B*| 
containers. Suppose that all routing paths correspond 
to the same routing time T. Then, for each solution S, 
we have the following inequality.

•  

5.3. Evaluation of |B*| lower bound

The lower bound, taking into account the number of 
bays used, is equal to the cardinality of the smallest set 
of bays which contains a set of free locations with a total 
storage capacity equal to the number of containers to 
be stacked.

≥ Max

� ∑
i∈C(v)

(TAp(i) + Tp(i),A + S
QC

+ Sv);v ∈ V ∗
�

≥ Max

� ∑
i∈C(v)

Min

�
TA,p(i) + Tp(i),A + S

QC
+ Sv ;i ∈ C(v)

�
;v ∈ V ∗

�

≥ Max

�
�C(v)�Min{TA,p + TAJ ,p

+ S
QC

+ Sv ;p ∈ P};v ∈ V ∗
�

≥ Max

�
�C(v)�;v ∈ V ∗} ×Min{TA,p + Tp,A + S

QC
+ Sv ;p ∈ P

�

≥ �C�
�V ∗�TMin

Makespan (S) ≥ |C|
|QC| × SQC + (|C| mod |QC|) × SQC

Makespan (S) ≥ ( |C|
|B∗| − 1) × SB + |C| mod |B∗| + T
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based on two main concepts: a periodic moderation of
objective weights used to evaluate a variable objective
function, and a selection of distant solution at the begin-
ning of each period.

The initial solution is elected from a sufficiently big
set of feasible solutions. Regarding a current solution,
the best neighbor is determined using weighted sum
method. Each objective weight is a cross of two varia-
bles, the first is a cost updated at the beginning of every
cycle and the second is a sufficiently small value updated 
at the beginning of every

period. Considering that the Pareto Front Region is
non‐convex; at the beginning of each period, a distant
element is selected. At every neighborhood explora-
tion, the elected neighbor is added to a tabu list and
declared tabu during the current period. At the end of
every period, the tabu list is cleared and initialized with 
a single element which is the distant solution.

Because the problem is a mixed‐integer problem, we do 
not consider only the best neighbor when we update Pareto 
list, but also all potentially efficient solutions in every 
neighborhood to approach more efficiently the non‐con-
vex Pareto Front Region. Every potentially efficient solu-
tion in the current neighborhood is added to the Pareto list. 
After every solution injection, the Pareto list is updated and 
each dominated solution is deleted from the list.

Termination conditions are described in Section Four 
indicators of efficiency and 2D‐projection of the approx-
imated Pareto Front are evaluated in order to facilitate
the user decision.

Note that our MOTSA gives an approximation of the 
PF, and then each given solution is not necessarily Pareto 
optimal but potentially Pareto optimal. Note also that
during solution space exploration, we declare a current
solution as potentially efficient if and only if that solution 
is not dominated by another solution explored during
the previous iterations.

7.1. Solution representation

For the most general context of IPLASS, each solution 
is a four‐dimensional vector and every variable of this 
vector comprises four integers which represent a task, 
a container, a vehicle and a storage location. With our 
traffic layout particularities (at every time the vehicle to 
use for the next container transfer is the first straddle car-
rier returning to quay entry) and established container 
transfer schedule, the decisional problem concerns only 
the choice of storage places for every container. And with 
that layout, we can establish a total container order with-
out changing optimality for general real configuration of 
storage space. We conclude that we can use a data list to 
represent solutions. Consider an instance of 10 contain-
ers and 30 storage places. The solution S: ((1, 10), (2, 13), 
(3, 3), (4, 1), (5, 0), (6, 6), (7, 7), (8, 22), (9, 29, (10, 5)) 
can be presented by the list (10, 13, 3, 1, 0, 6, 7, 22, 29, 5).

6. Multi-objective optimization and Pareto
optimality

For many optimization problems, to take a decision,
we have to satisfy different criteria. These problems are 
called multi‐criteria optimization problems or multi‐
objective optimization problems (MOOP). Taking into 
account the different criteria of a MOOP, a solution x 
can be better than another solution y according to some 
criteria and worse according to others. Generally, there 
is no unique optimal solution for a MOOP, but a set of 
efficient solutions called the Pareto Front. These solu-
tions are qualified as Pareto optimal or efficient.

A MOOP can be represented in the decision space 
or the criterion space. In criterion space, MOOP can be 
mathematically represented as:

where Q represents the set of feasible points in criterion 
space (feasible region) and q is the vector of n criterions 
function called also objective function. In the case of 
IPLASS, Q is defi taking into account the evaluation of 
each objective to be optimized. In fact, we deal with a
multi‐criteria evaluation problem.

Consider now the decision space, S the set of feasible 
solutions, n the number of objectives (or criteria) to be 
optimized, fi (1 ≤ i ≤ n) a scalar function. MOO can be
represented mathematically as:

When we solve a multi‐objective problem (or a multi‐
criteria problem), we cannot consider directly the 
ordinary scalar optimality. In fact, a Pareto optimality
concept is defined.

•  ∀(x, y) ∈ S2, x ≠ y: x weakly Pareto dominates y
if and only if: ∀i ∈ {1, 2, ..., n} : fi(x) ≤ fi(y) and
∃i ∈ {1, 2, ..., n}:fi(x) < fi(y)

•  ∀(x, y) ∈ S2, x ≠ y:x strongly Pareto dominates y if 
and only if: ∀i ∈ {1, 2, ..., n} : fi(x) < fi(y)

• A solution x is called Pareto optimal or efficient, if
and only if their does not exist another solution y
which weakly Pareto dominates x.

• A solution x is weakly Pareto optimal or efficient
if and only if their does not exist another solution
y which strongly Pareto dominates x.

7. Multi-objective Tabu Search algorithm—
MOTSA

To solve IPLASS, we developed a new MOTSA. Our res-
olution is a cyclic opportunist exploration of the solution 
space considering a specific neighborhood. We defined 
the neighborhood taking into account the different goals 
to be optimized. The exploration of solution space is
composed of different cycles, and every cycle is com-
posed of different periods. The exploration strategy is

min q q ∈ Q

min (f1(x), f2(x), … , fn(x)) x ∈ S
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In Figure 6, we present two possible neighbors of a
giving solution S.

7.5. Neighborhood considering straddle carriers 
used

Taking into account solution S using n vehicles, two
neighbors are possible: one with n + 1 (if n is smaller
than maximal number of straddle carriers used) vehicles 
and another with n − 1 vehicles (if n is larger than 1).

7.6. Initial solution election

The initial solution is elected considering a set of n solu-
tions. The size of this set depends on instance size and
especially on the number of containers to store.

7.7. Cycles and periods

The exploration of solution space is composed of dif-
ferent cycles where every cycle is composed of different
periods. Each period is composed of a set of neighbor-
hood explorations.

7.8. Objective weights and distant solutions

The developed MOTSA is based on a cyclic opportunist 
exploration. The updated objective weights determine
the inlluence of every objective at every exploration step. 
For every objective k, the weight Wk is evaluated as fol-
lows: Wk = αk × Ck

7.2. Neighborhood construction

The neighborhood is composed of three different sub‐
neighborhoods: neighborhood considering storage 
location aspect, neighborhood considering storage bay 
aspect and neighborhood considering the number of 
straddle carriers.

7.3. Neighborhood considering storage location 
aspect

For every solution, the global neighborhood contains 
|C|*(|P| − 1) elements. Taking into account the real 
dimensions of instances, it is not effective to select all the 
solutions during the exploration of each neighborhood. 
Only a sufficient random part of the neighborhood is 
considered. Consider a solution S = (P1,P2,… ,P|C|), 
where Pi is an element of P for each integer i between 
1 and |C|. Consider V(S) the neighborhood of S, then:

In Figure 5 we present two possible neighbors for solu-
tion S considering storage location aspect.

7.4. Neighborhood considering storage bay 
aspect

Consider now a solution S, B(S) the set of bays used
regarding solution S and B(Si) the bay of storage location 
assigned to container number i.

∀i ≤ |C| if B(Ni) ∊ B(S) then Ni = Si else Ni ≠ Si

∀i ≤ |C| if B(Si) ∊ B(N) then Ni = Si else Ni ≠ Si

∀N ∈ V (S), N = (N
1
,… ,N|C|): ∃!i ≤ |C|, Ni ≠ Pi

N ∈ V
+

⇔

B(S) ⊂ B(N)
|B(N)| = |B(S)| + 1

N ∈ V
−

⇔

B(N) ⊂ B(S)
|B(N)| = |B(S)| − 1

Figure 5. neighborhood considering storage location aspect.

Figure 6. neighborhood considering storage bay aspect.
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After the evaluation of the average gaps of Pareto list 
PL, we store them in a list LG in ascending order and we 
define the first priority of objective k as follows:

For the second factor influencing the update of objective 
cost ck, we consider all precedent values of ck for each 
objective k. We evaluate the average cost of objective k 
(denoted by k) as follows:

U The set of precedent cycles.
cuk The cost of objective k during the cycle u.

After the evaluation of the average cost of every objec-
tive k (ACk) during the precedent cycles, we store them 
in a list LU in descending order and we define the second 
priority of objective k (priority2k) as follows:

The new cost of each objective k is evaluated as follows:

7.10. α‐Weights update

At the beginning of each cycle, the cost of every objec-
tive is updated; then, these costs are fixed and no other 
update is possible until the end of the cycle. However, 
during the cycle, weighted sum method is applied to 
more diversify the exploration of Pareto Front.

During each cycle, at the beginning of every period, 
the α-weights are updated. Update process is based on 
two considerations; the α‐weights history during current 
cycle and the deviation of the objectives from their lower 
bound during previous periods in current cycle.

For each objective, the new updated α‐weight is a per-
turbation of its last α‐weight. Perturbation can be positive 
or negative with a probability which depends on the aver-
age gap (g̃ap) and the average α‐weight (�̄�) of the objec-
tive. Average gap is evaluated as in Section 7.6 Average 
α‐weight is evaluated for each objective k as follows:

c           current cycle
p           Current period in cycle c
predcp    The set of periods, preceding period p during 

cycle c
|predcp| The size of predcp
�̃�c,p

k
        The average weight of objective k considering 

predcp
�c,m

k
 The α‐weight of objective k during period m of cycle c

priority1k = index of g̃apk in LG

c̃k =
∑

u∈U cuk
�U �

priority2k = index of ACk in L
U

ck = 102×priority
1
k+priority

2
k

�̃�c,p

k
=

∑
m∈predcp

𝛼c,m

k

�predcp�

αk  The α‐weight of objective k. The α‐weights are 
updated at every new period. To update α‐weights, 
we use weighted sum method explained in Section 
7.7.

Ck  The cost of objective k during the current cycle. Ck has 
to be sufficiently large compared to the α‐weights. We 
use objective cost Ck in order to perform the classic 
weighted sum method. In fact, we regulate the explo-
ration of approximated Pareto Front with strategy of 
compromise between objectives and variation of the 
influence of each objective unity (the influence oflos-
ing or earning one unity of handling times or vehicles 
used or other objective).

At the beginning of every period, we select a neigh-
bor which represents a maximal distance regarding the 
Pareto list. We can describe this neighbor as a distant 
element. We use next function for that selection.

From the neighborhood of solution S, we select the 
solution which maximizes next distance d evaluated 
as: ∀v ∈ V , d(v) =

∑
k∈IK min

��Fk(v)−Fk(w)�
hk

, w ∈ L
�

,  

where L is the Pareto list, IK is the set of objectives and hk 
is the difference between the maximal and the minimal 
values of objective k considering the current solutions 
of L.

7.9. Objective costs update

Every cycle is composed of a set of periods. At the begin-
ning of each cycle, the cost of every objective is updated. 
To update the different costs, we consider two factors; 
the first is the deviation of the objectives from their 
lower bounds taking into account the solutions in the 
current Pareto list; the second is the values of objective 
costs during the precedent cycles. We describe the cost 
of each objective k as an objective cost and we denote 
it by ck.

For the first factor influencing the update of objective 
cost ck, we consider all the elements of Pareto list and 
we define the average gap of objective k g̃apk as follows:

where |PL| is the number of solutions in Pareto list PL 
and gapk(S) the gap of solution S regarding the objective 
k. For k between 1 and 7, we evaluate this gap as follows:

Fk(S)  The value of objective k taking into account solu-
tion S

LBk    The lower bound of objective k

For k = 8, we evaluate the gap of eighth objective as 
follows: gap8(S) = F8(S).

g̃apk =
∑

S∈PLgapk(S)
�PL�

gapk (S) =
Fk(S) − LBk

LBk
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it are removed from the list. Taking into account the 
non‐convexity of Pareto Front Region, we apply the same 
process to the elements of partial neighborhood of S.

7.12. Finalization conditions

The developed MOTSA uses three kinds of iterations: 
cycle iterations, period iterations and exploration iter-
ations. A negative iteration is an iteration which does 
not affect the Pareto list, while positive iteration is an 
iteration which affects the Pareto list.

The end of each period is when the number of suc-
cessive negative explorations, N, is equal to its maxi-
mal tolerable value NMax, or when the total number of 
neighborhood explorations, E, is equal to its maximal 
tolerable value EMax.

The end of each cycle is when the number of succes-
sive negative periods, M, is equal to its maximal tolerable 
value MMax, or when the total number of neighborhood 
explorations, E, is equal to its maximal tolerable value. The 
end of MOTSA resolution process is when the number of 
successive negative cycles, Q, is equal to QMax or the num-
ber of total neighbor‐ hood explorations is equal to EMax.

For experiments, we change the second condition 
(E < EMax ) with a maximal run time. The user can also 
stop the process if he is satisfied by the set of solutions 
proposed by indicators of efficiency (Section 7.11).

7.13. MOTSA

7.13.1. Variables and constants

IK                   The set of objectives.
|IK|                    The cardinal of IK, it is the number of 

objectives to optimize.
Ck                      The cost of objective k during current cycle.
αk                       The α‐cost of objective k during current 

period.
E                        The total number of neighborhood 

explorations.
N                       The number of successive negative explo-

rations considering last neighborhood 
explorations.

M                       The number of successive negative periods 
regarding last periods.

Q                       The number of successive negative cycles 
taking into account last cycles.

MMax , NMax ,  Maximal tolerable values of M, N, E.
EMax , QMax     and Q.
Negative cycle, negative period, negative exploration 

 Boolean variables used to detect respec-
tively the end of MOTSA, the end of cycle 
and the end of period, considering the 
respective values of Q, M and N.

S       Current solution. At every iteration of the 
exploration process, the current solution is 
the element elected from the last explored 
neighborhood.

After the evaluation of the average weight of every 
objective k during the periods preceding period p in 
current cycle c, we store them in a list LW in descend-
ing order and we defme the third priority of objective 
k (priority3k) as follows:

At the beginning of period p, the probability of positive 
deviation of the weight associated with objective k, Prbp

k
, 

is evaluated as next:

|IK| the number of objectives to be optimized.
For the objective having favorable Average Gap (AG) 

compared to the other objectives, the probability of neg-
ative perturbation of the associated weight is greater 
especially if the Average value of the associated weight 
is significant. On the contrary, the probability of positive 
deviation is greater.

After each update, the vector of new α‐weights (α = 
(α1,…, α|IK|)) is added to the tabu list of weight used. 
When the tabu list size limit is reached, as for classical 
tabu list, the oldest vector of weight is removed.

At the end of every cycle, the tabu list of α‐weight 
vectors is initialized (all weight vectors are removed 
from the tabu list).

We present next the algorithm of the described pro-
cess of weight update.
Δ    The absolute value of the sum of negative 

perturbations. 

Q  The number of positive perturbations
p    The current period
�p

k
   The sign of the perturbation of objective k during 

period p
αp   The vector of objective weighs in period p. 

�p = (�p

1
, �p

2
,… , �p

k
,… , �p

N
)

LW The Tabu list of weight vectors
N   The number of objectives

Note that “oldestvector (LW) “ is a function giving the 
oldest element injected to the list of weights LW.

7.11. Pareto list update

After every election of a new current solution S, if S is 
not dominated by Pareto list elements, then it is added 
to the Pareto list, and Pareto solutions dominated by 

priority3k = index of �̃�c,p

k
in LW

Prb
p

k
=

2 × priority1k + priority3k
3 × |IK|
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S.h  Indicator of exploration efficiency consid-
ering solution S and current Pareto list. h 
is equal to the number of solutions delated 
from the Pareto list when the solution S is
injected into it. S.h is also denoted by h(S).
Note that S.h is used as an indicator of effi-
ciency during the algorithm execution, and 
after the end of solution space exploration, 
other indicators of efficiency are used to
select specific solutions.

hp    A limit value to identify promising solu-
tions. This value is used to establish the
aspiration strategy.

V(S)      Partial neighborhood of S. The optimal size 
of V(S) depends on the instance size. To
determine that size, we executed several
simulation tests.

Vh(S)     A partial neighborhood of S with a size
depending on h(S) . If H(S) ≥ Hp, then 
|Vh(S)| = 2 |V(S)| else Vh(S) = V(S).

elite neighbor (S)       Function generally returning an 
elected neighbor which is the best 
neighbor regarding the current 
solution S and the current objective 
coefficient regulation. The elected 
element is the neighbor which min-
imizes the weighted sum function as 
follows:

Minimize
∑
k∈IK

Ck�kFk(v), v ∈ Vh(S)

If that element is non‐tabu it is returned as a result, 
else if it satisfies the aspiration condition (h(N) ≥ hp) it is 
returned with a probability of 0.5. If the function does not 
return the best neighbor, it returns the second best neigh-
bor or the third with the same conditions.

L   Pareto list which contains the current 
set of solutions approximating the 
Pareto Frontier. MOTSA updates 
this list at every neighborhood 
exploration (positive exploration).

T  The tabu list.

7.13.2. Algorithm
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on the smaller significant variation of objective k. For 
experiments, the value of δk depends on the objective. 
For the first, fifth and sixth objectives (objective evalu-
ating operating times): δ1 = δ5 = δ6 = 6 s. For the second, 
the third, the fourth, the seventh and the eighth objec-
tives (objective minimizing the number of equipment 
used and the location assignment cost): δ2 = δ3 = δ4 = 
δ8 = δ7 = 0 unity.

The second indicator of solution efficiency, denoted 
by EI2, is equal to the sum of the orders of preference of 
the solution regarding the different objectives. Consider 
solution S with the respective orders of preference I1 
until I8 taking into account the 8 objectives to be mini-
mized, the second indicator of efficiency is equal to the 
sum of these orders:

The best solution regarding the second indicator of effi-
ciency is the one which minimizes it.

The third efficiency indicator, denoted by EI3, is a 
linear function with choosing objective weights. The best 
solution for the third indicator is the one which mini-
mizes that chosen function. To choose efficient weights, 
we must consider the difference between the objectives 
in their intervals of variations. For example, we cannot 
accept a big number of unproductive moves to win only 
some seconds of operating time. In fact, the chosen 
weights must establish some equilibrium between the 
different objectives.

The fourth indicator of efficiency, denoted by EI4, is a 
function of the three first indicators. Consider a solution 
S and O1, O2 and O3 the respective orders of efficiency 
of S taking into account all solutions in approximated 
Pareto Front for the first, the second and the third indi-
cators. The value of the fourth indicator is equal to the 
sum of these orders of preference.

The best solution regarding the fourth indicator is the 
one that minimizes it.

The first and the second indicators of efficiency are the-
oretically adapted to the combinatorial aspect of the prob-
lem as a non‐convex problem with a non‐convex Pareto 
Front Region. The third indicator of efficiency is easy to be 
adapted by operators in the container terminal taking into 
account the current situation and especially the current 
priorities. The fourth indicator of efficiency is able to give 
a solution taking into account the combinatorial aspect of 
the problem and the preferences of the operator.

To elect a solution from the Pareto list, we used 2D‐ 
projections of the multi‐objective space and we select 
one of the solutions proposed by the different indicators 
of efficiency.

EI2 =
∑
1≤k≤8

Ik(S).

EI4 (S) = O1 +O2 +O3.

Lines (1), (2) and (3)       Initializations of Q, E, cur-
rent solution S, Pareto list L, 
objective costs and α-weights.

Lines (4), (7) and (10)      Respectively the fization con-
ditions of MOTSA, cycles and 
periods.

Line (5), (8) and (11)       Respectively the initializations 
at the beginning of each cycle, 
period and neighborhood 
exploration.

Line (6)                              Objective cost update and α‐weight 
initialization at the beginning of 
every cycle except the first cycle.

Line (9)                               α‐Weight update and selection 
of distant element at the begin-
ning of each period except the 
first period (Sections 7.5 and 
7.7).

Line (13), (14)                    Update of Pareto list L if the 
condition of and (15) line (12) 
is true.

Line (16)                            Update of tabu list T.
From (17) to (28)              For every neighbor v in Vh(S), if 

v is not dominated by the solu-
tions in Pareto list L, the cur-
rent exploration, period and 
cycle are declared positives, the 
indicator v.h is evaluated and L 
is updated.

Lines (25), (26) and (27)  Pareto list update after selection 
of solution non‐dominated by 
the elements of the list.

Line (28)                              Injection of selected solution in 
the Pareto list L.

Lines (29), (31) and (32)  If the current step (the cycle, 
the period or the exploration) 
is declared negatively, the asso-
ciated counter is incremented 
else it is initialized to zero.

Line (30)                             S is updated for next exploration.

7.14. Solution election

Considering the Pareto list elements, we elect a set of 
solutions using four efficiency indicators (EI). The first 
indicator of efficiency, denoted by EI1, is evaluated as 
follows:

where IS,p,k equal to 1 if Fk(S) ≤ Fk(p) − δk, equal to 0 else. 
IK is the set of objectives, PL the Pareto list and Fk(S). 
the value of objective k taking into account objective 
function F and solution S. δk is a constant depending 

EI1(S) =
∑
k∈IK

∑
p∈PL

IS,p,k
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8. Numerical experiments

In this part, objectives are denoted as in Section 4.4

8.1. Approximated Pareto Front for large instance

Table 4, in next part, shows four elected solutions given 
by MOTSA for a large instance of 1000 containers and 
a stacking space with a total storage capacity supporting 
10000 containers. More details are given in annex 3 and 
annex 4 of the online supplementary material with all 
solutions proposed to approximate Pareto Front (more 
than 5000 solutions). The next computational results 
are obtained after 3000 neighborhood explorations with 
805626 explored solutions. Lower bounds are deter-
mined to evaluate resolution quality. For this instance, 
we evaluated lower bounds presented in Table 2.

Remarks: We modified the maximal capacity of stor-
age locations (these of Terminal de Normandie in order 
to treat large instances of the problem. For solution space 
exploration, we refuse any solution with makespan gap 
upper to 0.1. That is an additional constraint consid-
ered to respect a maximal deviation of 2700 s from the 
makespan lower bound.

Note that lower bound of IW is evaluated considering 
an optimal makespan.

Table 2. lower bound evaluations.

Objective CMax |V| |B*| |P*| TSRT = 
∑

v∈V tv TBOT = 
∑

b∈B tb LAC1 LAC2

lower bound 27110 s 18 11 112 465465 s 14000 s 1s 0

Figure 7.  2D-projection of pareto front approximation. plane 
of total bay occupation time (tBot) and total straddle carriers 
routing time (tsrt).

Figure 8. 2D-projection of pareto front approximation. plane of 
location assignments costs lac1 and lac2.

Figure 9. 2D-projection of pareto front approximation. plane of 
CMax and lac1.
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Regarding others 2D-projections of the Pareto 
Front region, we select for this instance of the prob-
lem the solution proposed by the first indicator of 
efficiency. In Table 3, we present the best value which 
the gap reaches for every objective and also the worst 
values. We consider all the elements of approximated 
Pareto Front.

The objective values of solutions elected by indi-
cators of efficiency have objective values presented in 
Table 4.

We evaluate the gap of every objective value for each 
solution proposed by indicators of efficiency. The gap is 
equal to the difference between objective value and its 
lower bound divided by the lower bound.

gap8(S) = F8(S) (different evaluation because LB8 = 0).
gapk(S)   Gap of solution S considering only 

objective k
Fk(S)    Objective value of solution S taking into 

account objective k
LBk   Lower Bound of objective k.

In Table 5, represent the gap of each solution each 
solution proposed by indicators of efficiency regarding 
every objective. Taking into account the approximated 
Pareto Front, the different lower bounds are reached 
efficiently for seven objectives from eight. For the last 
objective, which is the first location assignment cost and 

gapk(S) =
Fk(S) − LBk

LBk

if k < 8

8.2. Election of potentially efficient solution

In Figures 7–10, we present 2D-projections of the Pareto 
Front. To elect solution from the set of approximated 
Pareto Front, four indicators of efficiency are presented 
in Section 7.11.

2D-projections of more than 5000 solutions are pre-
sented in Figures 7–10. Solutions proposed by indica-
tors of efficiency are presented in the same figures, using 
specific colors.

Figure 10 2D-projection of pareto front approximation. plane 
of CMax and |B*|.

Table 3. Best and worst objective gaps.

CMax |V| |B*| |P*| TSRT = 
∑

v∈V tv TBOT = 
∑

b∈B tb LAC1 lac2

Best gap 0 0 0 0.21 0.09 0.02 7.8 0
Worst gap 0.08 0.17 14.09 7.43 0.21 62.06 40.93 399

Table 4. objective values of elected solutions.

solution 1: solution proposed by first indicator of efficiency (ei1).
solution 2: solution proposed by second indicator of efficiency (ei2).
solution 3: solution proposed by third efficiency indicator (ei3).
solution 4: solution proposed by fourth efficiency indicator (ei4).
inD: index of the solution in pareto list which represent the approximated pareto front. all the elements of pareto list are presented in annexed part  

objectives are denoted as presented in part 4.4.

IND CMax |V| |B*| |P*| TSRT = 
∑

v∈V tv TBOT = 
∑

b∈B tb LAC1 LAC2

solution 1 4616 27930 19 11 141 526144 25762 10.88 374
solution 2 4371 29096 18 12 140 519467 30130 14.88 376
solution 3 5012 29155 18 12 143 520205 14612 15.62 382
solution 4 2651 29163 18 12 140 520523 15120 23.02 371

Table 5. objective gaps of elected solutions.

inD index of solution in pareto list given in annex 3 and annex 4 of the online supplementary material.

IND CMax |V| |B*| |P*|
∑

v∈V tv
∑

b∈B tb LAC1 LAC2

solution 1 4616 0.03 0.06 0 0.26 0.13 0.85 9.88 374
solution 2 4371 0.07 0 0.09 0.25 0.12 1.17 13.88 376
solution 3 5012 0.08 0 0.09 0.28 0.12 0.06 14.62 382
solution 4 2651 0.08 0 0.09 0.25 0.12 0.06 23.02 371
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which represents the average distance between a con-
tainer and the other containers to be delivered for the 
same client or at the same delivery date, the value of 7.8 
s of routing time between two containers of same client 
is reached. Regarding practice, these values insure high 
quality of storage space.

For 2D-projection presented in Figures 7–10, we con-
sider next representations of objective value projections: 

Note that in Figures 9 and 10, the makespan is 
represented by its deviation from the lower bound: 
CMax − LB(CMax).

9. Conclusion

In this paper, we explore an NP‐complete problem which 
has not been extensively studied: the multi‐objective 
integrated problem of location assignment and strad-
dle carrier scheduling in maritime container terminal 
at import. As we know, this work is the second study of 
this specific problem considering its integrated aspect 
and the first considering its multi‐objective aspect.

In our approach, on the one hand, the integration 
of two optimization problems is theoretical guarantee 
of higher optimality. On the other hand, our solution 
proposes an 8‐objective optimization process. It is also 
a new and efficient approach taking into account the 
real‐world significance of the optimized objectives.

We developed a multi‐objective Tabu Search algo-
rithm (MOTSA) adapted to the studied problem. In 
the last part, we presented numerical results of MOTSA 
regarding a large real instance of 1000 containers and a 
total storage space capacity of 10000 containers.

Four indicators of efficiency are evaluated for each 
solution of the approximated Pareto Front in order to 
elect a limited set of potentially Pareto optimal solutions. 
The first and second indicators of efficiency are adapted 
to the combinatorial aspect of the problem, especially 
to the non‐convexity of the Pareto Front Region. The 
third indicator is adapted to be easily used by operators 
in container terminal. The fourth indicator considers 
the two aspects.

2D‐projections of the approximated Pareto Front are 
proposed to elect one element from solutions proposed 
by indicators of efficiency.

Seeing the approximated Pareto Front, the different 
lower bounds are reached efficiently taking into account 
the gap of every objective and the realistic needs of oper-
ators in container terminal for large instance of 1000 
containers and 10000 free storage locations. The data 
instance is that of “Terminal de Normandie” in seaport 
of Le Havre.

Our Pareto Front approximation and elected solu-
tions in particular, satisfy clearly the operator’s needs at 
Maritime Terminal using straddle carriers, theoretically 
as well as practically.
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1 Introduction 
This work is about a novel hybrid algorithm that combines Particle Swarm 
Optimization (PSO) and Simulated Annealing (SA) algorithms. The basic idea behind 
using a hybrid model is improving the reliability of the obtained results from our first 
model, namely MPSO based on PSO algorithm, by adding SA algorithm which is 
quite popular for its powerful feature of effective escaping from the trap of local 
minima. Modified PSO model uses the concept of evolutionary neighborhoods 
associated to parallel computation, to overcome to the two essential disadvantages of 
PSO: high running time and premature convergence. MPSO is validated on a set of 
standard benchmark multimodal functions for which we obtained significant 
improvements, and also by improving the performance and reliability of the 
electricity pylon; the objective was to maximize resistance to load while reducing 
material usage and cost [1]. 

For this work, we provide the optimization of an electric power transmission material, 
giving specific consideration on material configuration and characteristics. The 
application problem studied is weight minimization of bars truss, by finding optimal 
cross-sectional areas of the truss members. The results obtained solving this 
optimization problem using the proposed hybrid algorithm is then compared with the 
results from ANSYS [2] first order conventional optimization technique. 
For this model, a new concept of evolutionary neighborhoods is associated to the 
parallel model in order to improve the PSO performance.  PSO is a stochastic 
metaheuristic based on population solutions. It searches for optimal solutions based 
on the concepts of cooperation and neighborhoods. Many variations and 
improvements of classical PSO version have been suggested by adapting its 
parameters, but good algorithm acceleration is required with a parallelization 
approach [3-4]. On the other hand, SA algorithm makes the search jump out of local 
optima due to its strong local-search ability.  This hybrid approach makes full use of 
the global and local search optimization capability of both PSO and SA respectively 
and overcomes the weaknesses of each algorithm separately possesses.  
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In fact, by using PSO with SA, the advantages of both PSO (that has a strong global-
search ability) and SA (that has a strong local- search ability) are combined. This is
the basic idea of the HPSOSA.  
Through application of SA to PSO, the proposed algorithm is capable of escaping 
from local optima and succeeds in converging into the global optima in the search 
space in a very good time consuming. The particularity of the approach consists to 
take advantage of the robustness of the PSO algorithm in choosing the right 
parameter setting, particularly the concept of dynamic neighborhood, in order to 
create diversity in research and in the sharing of information, the use of SA algorithm 
is important for a more optimal convergence. Besides the parallel computation that 
accelerates the calculations in order to have an optimal solution in an optimized 
computation time.  
Experimental result shows that the developed hybrid PSO and SA algorithms can 
consistently produce the better result than MPSO and other algorithms. 
Below the flowchart of the proposed  model HPSOSA Figure1. 

Figure1: Hybrid MPSO-SA flowchart 
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1 Introduction 

Graph theory is a wide field that is in constant evolution. Graphs are used to model many situations. 
Therefore, their applications are vast and also varied: in some branches of mathematics [1] (algebra, 
combinatory...), in computer science [2] (Computer networks [3], NoSQL [4], Wireless sensor networks 
[5]…), in operational research [6][7] (distribution transportation problems, scheduling problems…), 
cartography [8], chemistry [9], medicine [10]...  A Hamiltonian circuit [11] in a graph is an ordering for a set 
of vertices such as every two (cyclically) consecutive vertices are joined by an edge. The problem of finding 
the shortest Hamiltonian circuit in a graph is one of the most famous problems in graph theory. For arbitrary 
graphs, the Hamiltonian circuit problem (HCP) is well known to be NP-complete. It is based on finding the 
shortest path. The most used algorithms for finding the shortest path is undoubtedly Dijkstra [12]. 
In the literature, special attention has been given to the problem of finding the shortest Hamiltonian circuit 
using exact methods such as branch and bound [13], A* algorithm [14], and dynamic programming [15]. 
These methods are effective for small size problems. For problems with more than two criteria or larger 
sizes, there is no exact effective approach, given the simultaneous difficulties of the NP-hard complexity and 
the multi-criteria framework of the problems [16][17]. Metaheuristics are essentially represented by local 
search methods such as simulated annealing, taboo research, and evolutionary algorithms, in particular 
genetic algorithms and evolution strategy algorithms [18]. Genetic algorithms are inspired by the 
mechanisms of evolution of living things and modern genetics, and are a powerful tool for optimization. 

2 Approach description 

Many graphs definitions are announced in literature. We will go along with the definition of J. A. 
BONDY and U. S. R. MURTY mentioned in their book [19]. A graph G is a pair (X,A) consisting of a 
nonempty set X of vertices and a set A of edges, joining  the different elements of X. 
 In many cases, a normal graph cannot model some problems. Moreover, in some problems, vertices can 
exist in different categories, genres, and levels. However, simple graphs cannot guarantee this representation 
correctly, so we need a new model. Thus, we create a new graph called Superimposed graph (SG) [20]. 
A superposed graph (SG) is composed by an agglomeration of complete sub-graph connected by edges. 
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Figure 1 Superimposed graphs 

Figure 1 represents a superimposed graph G(X,A), each vertex X represents a complete graph. The edges 
Aex represent an external link connecting the complete graphs; the edges Ain and A’in represent tow internal

edges connecting two vertices belonging to the same sub-graph. Xs  represents significant vertices which 
must be visited in the tour and Xns  represents  non-Significant vertices which could be visited. 

Graphs are used to illustrate problems its purpose is to represent problems that are too numerous or 
complicated to be described adequately in a text. Moreover, graphs simplify the problem’s resolution.  
In optimization problems our main goals generally are to minimize the loss, maximize the gain and find the 
best solution. Therefore, to improve the problem’s modeling; we should work on sets of networks (sub-
graphs), avoiding consistently some vertices that make the problem more complicated or waste the time of 
execution. Normal graphs cannot provide that, all the vertices are similar with different links’ weight. 
In superimposed Graphs (SG) we don’t have just similar vertices; we have two sets of vertices. The 
significant vertices Xs, the important ones, which must be visited and the non-significant vertices Xns which 
could be visited if it upgrades the solution’s research. 
Moreover, in the SG case the edges also are divided into two sets, internal edges connecting the vertices of 
each network (Ain) and external edges (Aex) which are connected vertices from different networks (sub-
graphs). These partitions can decrease the flow’s intricacy. 
As it was mentioned previously, superimposed graphs are very important to model problems and simplify 
the way to find solutions. It minimizes the complexity and the waste of time. SG can be considered a very 
relevant addition in the graph theory.  

Finding the shortest Hamilton circuit was a major problem in the field of multimodal transportation 
systems [21].The multimodal transport is defined by the combination of two or more transportation modes to 
move passengers or goods from an origin to a predetermined destination where a change of transportation 
mode is necessary. The multimodal transportation network studies have been used in many problems such 
as; planning networks, shortest paths, urban with maritime or airline centers, environmental issues, freight 
transport, transmission line, loading-unloading terminals, schedules, etc. For solving the shortest Hamilton 
circuit problem in the intricate multimodal transportation network, several approaches have been proposed. 
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Most of the works was modeled the transportation networks with a simple graph, but in our case we used the 
superimposed graphs. 

Many real-world problems in artificial intelligence as well as in other fields of computer science and 
engineering can be efficiently modeled as constraint satisfaction problems (CSPs) [22] and solved using 
constraint programming techniques. Distributed Constraint Optimization Problems (DCOPs) [22] are 
problems where agents need to coordinate their value assignments, in a decentralized manner, to optimize 
their objective functions. Based on the formalism mentioned in the following papers [23] [24] and [25]; we 
presented the problem of finding the shortest Hamiltonian circuit in superimposed graphs with  the DCOP . 

For the resolution method we use a metaheuristics because the Hamiltonain circuit problem is NP-
complete problem. We implement a distributed genetic algorithm [26] in JAVA. And for testing this 
approach we find that the transportation system of Guangzhou city of China [27] is the most suitable for our 
case, because of the heterogeneity of the transportation modes. So we attempted the algorithm to find the 
lowest Hamiltonian circuit on the areas of Guangzhou china. In our example, the vertices presented the 
modes of transport such as metro, bus, bicycle, and cars. The links presented the cost between every tow 
vertices.The data of the transportation system which is used to the testing phase were provided by a 
Laboratory of geographical information system GIS, in the School of Public Management, Guangdong 
University of Finance and Economics, Guangzhou China [27]. The data contains bus networks, metro 
network and walking links to the Guangzhou city. We collected all the information about the transportation 
system in one matrix to create a new benchmark for the superimposed graphs in multimodal networks. 

3 Conclusion 

In this paper, we have introduced the superimposed graphs which were used to find the shortest 
Hamiltonian circuit in a multimodal transportation system. Using a genetic algorithm we find that 
superimposed graphs are more efficient than normal graphs to solve problems such as finding the shortest 
Hamiltonian circuit in the multimodal transportation system. 
On the basics of the concepts presented in this paper, a comparative work by other approaches is continuing 
and will be presented in future works. Experiments will be needed to verify the robustness of the 
superimposed graphs modelling to solve the Hamiltonian circuit problem using other metaheuristics. 
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1 Introduction
The searches on the construction and the optimization of vehicle routing go to the direction of our

industrial needs. The constructions of tours are both used for transportation of goods (direct logistics) and

for the return of failing products, packaging, products of handling or at the end of life towards the productive

system (reverse logistics). As for this work, it is particularly interested in the wooden pallet, the essential

support of handling. Wooden pallet is used by all the manufacturers with satisfaction when it handles, it

becomes then an embarrassment when it is empty. It appears that a system that, at a reasonable cost, unloads

manufacturers for the daily management of empty pallets would be greatly appreciated. The system relies on

management of park of pallets by a logistics service company dedicated to the pallet that allows its

distribution, relocation to the desired place and collection, then repackaging and reinjection into a new

supply chain. It is in this context that we are interested in the construction and the optimization of the tours

taking into account, the direct flows (deliveries) and the indirect flows (pick-ups).

The industrial sector produces a more and more plentiful quantity of worn handling palettes, for

which it becomes urgent to find clean solutions of elimination or recycling in an environmentally safe

fashion. After its production, the pallet is transported, stored, distributed, stored again and then emptied

before being re-transported and moved to a new supply chain. The palette is handled several times between

the manufacturer and the end customer. In these handlings, it is necessary to add the movements during the

various sorts, the repairs and the cleanings.

All these movements have a cost. The palette itself has a cost. Some manufacturers therefore prefer

to rent pallets rather than to deal with these various and variable expenses. Others work with "lost" pallets

for failing to manage their return. Others wish to receive reconditioning services and / or heat treatment

pallets for their own fleets.
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In recent years, the manufacturers think seriously to highlight the reverse logistics next to their

classic supply chains. We propose, in this work, a structure of a pallet fleet management system where

reverse logistics is integrated in the traditional supply chain, and it is in this context that we shall study a

vehicle routing problem that takes into account the direct flow of pallets (deliveries) and indirect flows

(pick-ups).

Part of the work is based on the establishment of a rather generic network where the pallets are

delivered from one of the depots to several customers whose requests are known. In addition, customers

express a demand for pallet collection in return. It is therefore a company manufacturing, renting/selling and

repackaging pallets.

The company has a principal office and maintenance sites. Each site (principal or maintenance)

contains a depot and a fleet of vehicles; it also contains a repackaging center with several workshops

(sorting, repair and cleaning). With the exception of other sites, the principal site has a workshop

manufacturing of new pallets and a pallet heat treatment unit.

This model corresponds to a Multi-Depot vehicle Routing Problem and with limited vehicle

capacity, in which each customer can be receiver and deliverer at the same time, we are also interested in

inventory management. It can therefore be classified in the category MDVRPSDPIR (Multi-Depots Vehicle

Routing Problem with Simultaneous Delivery and Pick-up and Inventory Restrictions).

It is a closed-loop problem in witch constructs routes simultaneously for several vehicles from

multiple depots to a set of customers, in a way that customers require simultaneous pick-up and delivery

services. Another goal of this work is to find a solution at a minimal cost, which is in terms of total travel

distance and number of vehicles, without violating the capacity constraints of the vehicles and the depots.

Therefore, we developed two hybrid Genetic Algorithm (HGAs). In HGA1, initial solutions are generated

randomly, while in HGA2, the Petal Heuristic and the Nearest Neighbor Heuristic are incorporated for

initialization procedure. The numerical experiment will be performed using problem instances generated

from 11 benchmark problems of Gillett and Johnson. Since we have not found other studies of the

MDVRPSDPIR concerned, we will compare the results obtained by these algorithms with the optimal

solution obtained by CPLEX for small instances.

482 sciencesconf.org:meta2018:214407



Pricing & Lot Sizing problem in a hybrid
manufacturing/ remanufacturing system with one-way

substitution option
ZOUADI Tarik1, YALAOUI Alice2, REGHIOUI Mohamed3 

1. Rabat Business School, International University of Rabat, Sala Al Jadida, Morocco
Tarik.zouadi@uir.ac.ma 

2. LOSI (UMR CNRS ICD 6281), University of technology of Troyes, 12 Rue Marie Curie CS 42060,
10004 Cedex, France 

yalaouia@utt.fr 

3. National School of Business and Management, BP 1255, Tangier, Morocco
m.reghioui@gmail.com

Keywords: Lot-sizing, pricing, remanufacturing, memetic algorithm. 

1  Introduction 
Nowadays, manufacturers develop and enhance the reverse channels to handle and process the 

returns or collected used products (Wu 2012) [9]. Returns recovery can take a variety of forms: 
refurbishing, remanufacturing, repair, recycling, and cannibalization (King et al. 2006 [2], Thierry et al. 
1995 [5]). The remanufacturing process consists of reconditioning and bringing returns to working 
status, which will allow their introduction on the market again [6]. Many companies consider the 
integration of remanufacturing process with their classical production activities as an opportunity to 
improve their profits, diversify their activities and confirm their sustainability [8]. However, in many 
cases, remanufactured products are downgraded in the market, therefore, remanufactured products are 
offered in many cases at an inferior price comparing to the new ones [3]. Integrating lot-sizing and 
pricing decisions allows companies to enhance their revenue and maximize their profit. González-
Ramírez et al. [1] present a multi-item lot-sizing problem with pricing. The authors present a heuristic 
approach to solve large instances in moderate computational time. Ray et al. [4] present a profit-
maximisation model for a hybrid manufacturing and remanufacturing system. The authors optimise
selling price of new products and returns under production constraints using genetic algorithm.

Figure 1: Flow scheme 
In this study, we consider a single production line where both manufacturing and 

remanufacturing operations are performed (Figure 1). The products issued by the two processes are not 
assumed to be of the same quality. We consider that costumer is able to make difference between items 
issued from manufactured and remanufactured processes. One substitution option is considered, such 
that when the demand of remanufactured products is not fulfilled, the demand could be satisfied using 
the new products. We also assume that the remanufactured products have a lower price compared the
new ones.
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2 Model formulation
The proposed model is an extension of the hybrid manufacturing/remanufacturing model of 

Zouadi et al. (2015) [7]. The study integrates the pricing and lot sizing problem with one substitution 
way. We consider that demand ܦ௧	is sensitive to price ௧ܲ and defined as a linear function of price [1], 
Where ݑ௧ is the potential demand in the period t and ܾ௧	 presents the sensitivity of demand in period t.

௧ሺܦ ௧ܲሻ=ݑ௧ െ ܾ௧ ௧ܲ 

We consider the following notations. ܿ ௧
, and ܿ ௧

 present the manufacturing and remanufacturing 
unit cost. ܭ௧

, and ܭ௧
denote the set up cost for manufacturing and remanufacturing. Finally,݄௧

, ݄௧
 and

݄௧
௨ are respectively the holding cost of new, remanufactured and returned products.

Decision variables: 

௧ܲ
 : Price of a remanufactured item to be sold in period t. 

௧ܲ
 : Price of a manufactured item to be sold in period t. 

 .௧ : Number of products remanufactured at period tݔ
௧ݔ
 : Number of products manufactured at period t. 
௧ݔ
௦ : Number of products substituted at period t. 
 . : 0–1 Indicator variable for remanufacturing set-up at period t	௧ߜ
௧ߜ
 : 0–1 Indicator variable for manufacturing set-up at period t.
 .௧  : Inventory level of returns at the end of period tܫ
௧ܫ
  : Inventory level of serviceable products at the end of period t.
௧ܫ
௨  : Inventory level of returns at the end of period t.

The mathematical formulation is as follows: 

Max  ∑ ൣሾሺ ௧ܲ
ܦ௧

ሻ  ሺ ௧ܲ
ܦ௧

ሻሿ െ ሾሺܭ௧
ߜ௧

+ܿ௧
ሺݔ௧

+ݔ௧
௦ሻ+݄௧

ܫ௧
ሻ  ሺܭ௧

ߜ௧
+ܿ௧

ݔ௧
+݄௧

ܫ௧
+݄௧

௨ܫ௧
௨ሻሿ൧T

t=1 (1)

Subject to: 

௧ܦ
( ௧ܲ

)=ݑ௧
 െ ܾ௧


௧ܲ
 ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (2)

௧ܦ
( ௧ܲ

)=ݑ௧
 െ ܾ௧


௧ܲ
 ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (3)

It-1
 -xt

s+xt
m-ܦ௧

=It
m ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (4)

It-1
r +xt

s+xt
r-ܦ௧

=It
 ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (5)

It-1
௨ -xt

r+Rt=It
௨ ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (6)

xt
r≤M×δt

r ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (7)
xt

m≤M×δt
m ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ (8)

xt
s≤M×δt

m ݐ	∀ ൌ 	1, 2, 3	 … 	ܶ (9)
δt

r, δt
m ∈ ሼ0,1ሽ ∀	ݐ ൌ 	1, 2, 3	 … 	ܶ  (10)

It
r, It

m, It
u, xt

r, xt
m, xt

s ≥0 ݐ	∀ ൌ 	1, 2, 3	 … 	ܶ (11)
I0
rൌI0

ൌI0
u	ൌ0	 ሺ12ሻ	

The objective function (1) maximizes the total profit by subtracting the total costs from the sales 
revenue. Constraints (4), (5) and (6) are the inventory flow conservation equations for new, returned and 
remanufactured products. Constraints (7), (8) and (9) ensure the cancellation of remanufactured, 
manufactured and substituted quantities for the periods without setup cost. Constraint (10) defines the 
binary value of the manufacturing, remanufacturing decisions in each period. Constraint (13) ensures 
the positivity of the inventory, manufacturing, remanufacturing and substitution quantities decisions. 
Constraint (14) ensures that the initial stocks are equal to zero.

3 Memetic based algorithm
Memetic algorithms are a population-based Meta heuristics. The algorithm procedure begins by 

generating randomly an initial offsprings population. Based on the generated population, a selection 
process chooses two parents to form via the crossover operator the next generation offsprings. A small 
mutation is set at each iteration to ensure the diversification aspect of the algorithm. In the memetic 
algorithm, a local search procedure is added to enhance the solution quality and to locate efficiently the 
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local optimum. This procedure is run until a stopping criterion. The memetic algorithm processes are
adapted to our case as following:

 Solution representation: We choose a binary two-dimension vector to present the 
solution. For each period; we have two binary decisions indicating the manufacturing and, 
remanufacturing occurrence in each period. 

 Offsprings selection: Based on the initial population generated randomly, we combine two 
selected parents to form two children (offspring), while keeping the good features of
parents. 

 Mutation: at each iteration a mutation is set by inverting randomly one of the binary
variables 

 Local search: a path relinking procedure is used to enhance solutions quality 
 Aspiration criterion: The maximum number of iterations and execution time are the

stopping criterion used in this implementation. 
The binary decisions of the generated offspring’s are integrated in the mathematical model as 

decision variables, which is then solved by CPLEX to define the optimal pricing and manufacturing and
remanufacturing strategy. 

4 Numerical experiments & conclusion
The proposed model was tested on CPLEX Software optimizer; the obtained results were 

compared with those obtained memetic-based algorithm. The quality of the solutions depends mainly 
on the size of the instance, which explains the idea of using memetic algorithm to solve the problem. 
For all the instances, the proposed approaches are compared with the optimal value returned by CPLEX, 
but when CPLEX cannot prove optimality, we compare with the lower bound. The preliminary obtained 
results have proven the performance and the relevance of the proposed approaches. Further researches 
can be considered by integrating availability and purchasing price of returns, and different quality level 
for remanufactured products.
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Abstract The Simulated Annealing (SA) is a stochastic local search algorithm. Its efficiency 

involves the adaptation of the neighbourhood structure. In this paper, we integrate Hidden 

Markov Model (HMM) in SA to dynamically adapt the neighbourhood structure of the 

simulated annealing at each iteration, based on the history of the search. An experiments was 

performed on many benchmark functions and compared with others SA variants. 

Keywords: Simulated Annealing, Hidden Markov Model, Heuristic. 

1 Introduction 

Since the publication of the first article related to the SA algorithm [1], researchers have tried to increase the 

rate of convergence and to reduce the execution time of simulated annealing.  Researchers focused since, the 

first version of the simulated annealing algorithm described by [1], on two strategies in order to improve the 

performance of SA. The first strategy was the implementation of parallel simulated annealing [2, 3, 4]. The 

second one was about the optimization of cooling schedule and the adaptation of parameters.  

In general, the SA can be seen as an iterative improvement process composed from three functions: generation, 

acceptance and cooling.. Many researchers done an extensive studies on the update and accept function also 

the algorithm’s parameters and only limited attention has been paid to the generate function. The generate 

function governs the convergence of SA. When the SA is applied to continuous optimization problems, the 

appropriate adjustment of the neighborhood range according to the landscape of the given problem is very 

important. Because It significantly effects the accuracy of the solutions. In general, The SA tends to get stuck 

into local minima when the neighborhood range is too small. 

In the special case of the fast-simulated annealing (FSA) [5], the state variation ∆𝑥 is generated by a Cauchy 

distribution whose probability distribution is given as: 

𝑝(∆𝑥; 𝑇𝑛) =
1

𝜋

𝑇𝑛
(∆𝑥)2 + 𝑇𝑛

2 (1) 

The Cauchy distribution allows the SA to escape from local minima easier than the normal distribution

because of its flatter tails [6]. 

The new neighborhood solution is generated using the formula: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜇 × 𝑇𝑛 × tan(𝑢) (2)

𝑢 is a random vector generated from the uniform distribution 𝑈(−𝜋 2⁄ , 𝜋 2⁄ ) , 𝜇 is the scale constant for 

tuning the probabilistic acceptance criteria also called the learning rate and 𝑇𝑛 is the temperature at stage n.

The temperature schedule is conducted by the following equation: 

 486
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𝑇𝑛 =
𝑇0

1 + 𝑛
(3) 

Where 𝑇0 the initial temperature.

This paper explores the Hidden Markov Model for a dynamic tuning of FSA during the run. The main idea is 

to adapt the convergence speed through the dynamic adjustment of 𝜇 parameter. The rest of the paper is 

organized as follows. Section 2 is devoted to literature review, section 3 describes our proposed method for 

FSA parameter tuning through Hidden Markov Model. Section 4 describes a performance analysis on several 

benchmark functions, finally section 5 presents some conclusions. 

2 Literature review 

The fast simulated annealing is the most used in the literature, but the major drawback of this cooling policy 

is that it does not take into account the state of the system during the search. Thus, it is difficult to adaptively 

modify the intensity of the search based on the difficulty of the problem. According to Battiti and al. [7], a 

better performance can be achieved by a self-analysis during the search. 

Researchers integrate a learning technique into the neighborhood function. An adaptive approach to adjust the 

neighborhood range of SA for continuous optimization problems was proposed by Corana [8]. But It has been 

proved by Miki et al. 2002 [9] that this method is not better than the SA with the good neighborhood range. 

Miki et al, 2002 [9] tried to enhance the performance of SA by appropriately adjusting the neighborhood range 

according to the landscape of the given problem using the opposition based learning. In fact, the opposition 

based learning increases only the diversity of the candidate’s solution by selection not only the random guess 

but also its opposite. Furthermore, Miki et al, 2006 [10] also proposed a SA based on an adaptive search vector. 

This method guides the search direction according to the landscape of the problem. This adaptive search vector 

is based on the Powell’s [11] method which is a direct search algorithm. It was reported by [12] that Powell’s 

method may fails to converge when problem dimension is greater than 30. In addition, the experiments 

performed by Miki et al, 2006 [10] does not exceeding ten dimension. A simulated annealing algorithm with 

a dynamic neighborhood size adjusted according to the temperature parameter was proposed by Yao, 2007 

[5]. The efficiency of this method is depending on a good adjustment of the temperature parameter. Thus a

tuning for each problem will still necessary. 

Machine learning methods proved their efficiency to predict with high accuracy. Those methods have been 

applied to adapt metaheuristic, which can be done by an off-line or online approaches. The offline one implies 

a configuration of features before executing the algorithm while the online adjusts the algorithm features 

during the run-time. In this paper, we apply the Hidden Markov Model to predict the best cooling law 

parameter.  The Hidden Markov Model (HMM) [13] is a probabilistic model. It has been applied in many 

fields where information is not immediately observable but depend on other observable data.  HHMs are the 

most successful approach in speech recognition, they have been successfully applied to the whole spectrum 

of recognition tasks. HMMs success is due to ability to deal with the variability by means of stochastic 

modeling. In addition, the HMM was successfully used to enhance the behavior of metaheuristics by 

estimating their best configuration [14, 15, 16, 17].  

The main idea behind our approach is to control the behavior simulated annealing at each temperature stage 

by predicting the optimal geometric cooling law parameter according to the history of the run.  

3 Proposed approach 

An hybridization with the HMM was adopted to enhance the performance of FSA. During the run, the hidden 

Markov model performs classification based on observable sequence generated from a set of rules. This 

sequence allows the model to guess the hidden state which can be an exploration, exploitation, or Re-annealing

to escape from a local minimum (Figure. 1). 
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Fig. 1. Markov chain for simulated annealing algorithm 

The Hidden Markov Model can be defined as 5-tuple (𝑆, 𝑂, 𝐴, 𝐵, 𝜋0) where:

 S= {𝑆1, 𝑆2,𝑆3} is the set of hidden states, which is  respectively: low learning rate (𝜇 = 0.2), medium

(𝜇 = 0.5),learning rate and high learning rate(𝜇 = 0.8).
 𝑂 = (𝑂1, 𝑂2, … , 𝑂5) is the set of the observation per state.

 A = (𝑎𝑖𝑗)is the transition probability matrix, where 𝑎𝑖𝑗 is the probability that the state at time 𝑡 + 1

is 𝑆𝑗 , is given when the state at time 𝑡 is 𝑆𝑖
 𝜋0 = (𝜋1

0, 𝜋2
0, 𝜋3

0) is the initial probability, where 𝜋𝑖
0 is the probability of being in the state 𝑆𝑖.

 𝐵 = (𝑏𝑖𝑡) are the observation probabilities,  where 𝑏𝑖𝑡 is the probability of observing 𝑂𝑡 in state 𝑆𝑖.
This observations matrix 𝐵 of hidden Markov model is estimated at early stage by Maximum

Likelihood Estimation (MLE).

To estimate the observable matrix of HMM model, we generate a sequence of state containing the cooling 

schedule having the minimum variance in the cost 𝑉(𝑇) at equilibrium [14] for each stage of temperature 

(Algorithm 1). This measure of variance in cost is defined as: 𝑉(𝑇, 𝑓) = 〈𝑉2(T)〉 − 〈𝑉(𝑇)〉2  , where 𝑓 is the

cost function of the stationary distribution and 〈𝑓(𝑇)〉 is the expected cost in equilibrium for N last best cost 

value defined as : 

〈𝑓(𝑇)〉 = ∑ 𝑓(𝑥)
exp(−

𝑓(𝑥)
𝑇

)

∑ exp(−
𝑓(𝑥)
𝑇

)𝑥𝐹−𝑁≤𝑥≤𝑥𝐹𝑥𝐹−𝑁≤𝑥≤𝑥𝐹

(4) 

 The next step consists of generating the observations by the following algorithm: 

Algorithm 1: Generate_Observation 

Input:  𝑇, 𝑆1, 𝑆2, 𝑆3, {𝑓(𝑥), 𝑥𝐹−𝑁 ≤ 𝑥 ≤ 𝑥𝐹}

Output: O Current Observation 

For i=1 to 3 do 𝑉𝑖 = 𝑉(𝑆𝑖(𝑇), 𝑓) End

temp← 𝑉1
For i=1 to 2 do 

If temp ≤ 𝑉𝑖+1 then O=i

else temp← 𝑉𝑖+1 and 𝑂 ←i+1
End 

Return O 

The main purpose of our model is to estimate states S that best explains the observation sequence O. 

Given the observation sequence  𝑂 =𝑂1𝑂2…𝑂T and a model𝜆 = (𝐴, 𝐵, 𝜋). Firstly, we estimate the 

transition and emission probabilities from the first sequence of observation using a supervised training. In

which we count frequencies of transmissions and emission of the model:  

𝑆3 : ∶High learning rate𝑆2:Medium learning rate𝑆1:Low learning rate

𝑂1 𝑂5 𝑂1 𝑂5 𝑂1 𝑂5
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Algorithm 2: MLE 
Input: 𝑂 = (𝑂1𝑂2…𝑂T)

Output: A=(𝑎𝑖𝑗),B =(𝑏𝑖𝑡)

For i = 1 to T-1 do 𝑎𝑂𝑖𝑂𝑖+1
= 𝑎𝑂𝑖𝑂𝑖+1

+ 1    End 

For i = 1 to T  do  𝑏𝑂𝑖𝑂𝑖
= 𝑏𝑂𝑖𝑂𝑖

+ 1 End  

For i = 1 to 3  do   𝐴𝑖 = ∑ 𝑎𝑖𝑗
3
𝑗=1 and  𝐵𝑖 = ∑ 𝑏𝑖𝑗

𝑇
𝑗=1     End 

For𝑖 = 1to3do    

    For j=1to 3   do 𝑎𝑖𝑗=  𝑎𝑖𝑗/𝐴𝑖 End 

For t=1 to𝑇do 𝑏𝑖𝑡 =  𝑏𝑖𝑡/𝐵𝑖  End
 End 

Return𝐴 

3.1 Viterbi algorithm 

Then we use the Viterbi to select the corresponding state sequence 𝑄 =𝑞1𝑞2…𝑞𝑇 that best explains the

observations, secondly, the Baum Welch adjust the model parameters 𝜆 = (𝐴, 𝐵, 𝜋) to maximize 𝑃(𝑂|𝜆),i.e., 

the probability of the observation sequence given the model. The Baum–Welch algorithm is used to adjust the 

parameters of the HMM. This training step is based on Forward-Backward algorithm. 

Algorithm 3: Viterbi 

Input: S= (𝑠1, 𝑠2, 𝑠3) 𝑂 = (𝑂1𝑂2…𝑂𝑇), A = (𝑎𝑖𝑗)  , B = (𝑏𝑖𝑡) ,  𝜋
0 = (𝜋1

0, 𝜋2
0, 𝜋3

0)

Output: 𝑠∗ = (𝑠1
∗, 𝑠2

∗, 𝑠3
∗) the most probable sequence of states

For i = 1𝑡𝑜3 do 𝛿1(𝑖) = 𝑏𝑖(𝑜1)𝜋𝑖and 𝜓1(𝑖) = 0   End {Initalization}   

 For t = 2 to  T do  

    For j=1 to 3  do 

𝛿𝑡(𝑗) = 𝑚𝑎𝑥𝑖=1
3 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡)]

𝜓𝑡(𝑗) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1
3 [𝛿𝑡−1(𝑖)𝑎𝑖𝑗]

End 

 End 

𝑃𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖=1
3 [𝛿𝑇(𝑖)]

𝑠10
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1

3 [𝛿𝑇(𝑖)]
For t= 𝑇 − 1 to 1 do 𝒔𝒕

∗ = 𝜓𝑡+1(𝑠𝑡+1
∗ )   End 

Return 𝒔∗

3.2 Baum Welch algorithm 

The Baum–Welch algorithm is used to adjust the parameters of the HMM. This training step is based on

Forward-Backward algorithm. 

 Forward  algorithm

The first algorithm used by the Baum-Welch algorithm is the Forward algorithm. This algorithm returns the 

forward variable α𝑗(t) defined as the probability of the partial observation sequence until time t, with state 𝑆𝑗
at time t, 

𝛼𝑗(t)= 𝑃(𝑂1𝑂1…𝑂𝑡, 𝑞𝑡 = 𝑆𝑗|𝜆)    (5)

We define 𝑃(𝑂|𝜆) as the probability of the observation sequence given the model 𝜆. 

Algorithm 4: Forward 

Input:S=(𝑠1, 𝑠2, 𝑠3),O=(𝑂1𝑂2…𝑂T), A =(𝑎𝑖𝑗), B =(𝑏𝑖𝑡),𝜋
0 = (𝜋1

0, 𝜋2
0, 𝜋3

0) 

Output : 𝛼 = (𝛼𝑡+1(𝑗)) , 𝑃(𝑂|𝜆)         
For  𝑖 = 1𝑡𝑜3 do 𝛼𝑖(𝑖) = 𝜋𝑖𝑏𝑖1End

For 𝑡 = 1toT-1  do   

For 𝑗 = 1to3do 𝛼𝑡+1(𝑗) = (∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗
3
𝑖=1 )𝑏𝑗𝑡+1End

End 

𝑷(𝑶|𝝀) = ∑ 𝛼𝑇(𝑖)
3
𝑖=1

Return 𝛼, 𝑃(𝑂|𝜆) 
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 Backward  algorithm

The second algorithm used by Baum-Welch Backward. This algorithm calculates the backward variable 𝛽𝑖(𝑡)
defined as the probability of the partial observation sequence after time𝑡, given state 𝑆𝑖 :

𝛽𝑖(𝑡) = 𝑃(𝑂𝑡+1𝑂𝑡+2…𝑂𝑇|𝑞𝑡 = 𝑆𝑖, 𝜆)   (6)

The Baum-Welch is then used to re-estimate the parameters of the model𝝀, which maximizes the probability 

of the observation sequence. 

Algorithm 5: Backward 

Input : S=(𝑠1, 𝑠2, 𝑠3),O=(𝑂1𝑂2…𝑂𝑇),A=(𝑎𝑖𝑗), B=(𝑏𝑖𝑡),𝜋
0 = (𝜋1

0, 𝜋2
0, 𝜋3

0)

Output : 𝛽 = 𝛽𝑡(𝑖)theprobabilityofthe partial observation sequence

For𝑖 = 1to3 do 𝛽𝑇(𝑖) = 1  End
For 𝑡 = 𝑇 − 1 to1 do   

For 𝑖 = 1 to3do 𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗𝛽𝑡+1(𝑗)𝑏𝑗𝑡+1
3
𝑗=1  End 

End 

Return 𝛽 

In the following we will implement a variant simulated annealing based on hidden Markov models. The 

interest behind hybridization and simulated annealing with the HMM is improved simulated annealing 

performance. This approach will allow the SA to overlap between slow and rapid cooling, this by changing 

the cooling schedule. Thus, the simulated annealing algorithm hybridization with HMM using Baum Welch 

and Viterbi algorithms is presented as follows: 

Algorithm 3: HMM-SA algorithm 
Data: The objective function  𝑓

Initialization : O : Empty sequence of observation, 𝑇0: initial temperature, 𝑇𝑓 ∶final

temperature , starting point𝑥 ← 𝑥0,

cmp← 1, u is a Random vector from the uniform distribution 
Repeat 

Repeat 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + 𝜇 × 𝑇𝑛 × tan(𝑢) 
If 𝑓(𝑥𝑛𝑒𝑤) − 𝑓(𝑥) ≤ 0then  𝑥 ←𝑥𝑛𝑒𝑤

else

𝑃(𝑥 ← 𝑥_𝑛𝑒𝑤) = exp (−
f(𝑥𝑛𝑒𝑤)−f(𝑥)

T
)

End

Untilequmbrium is approached sufficiently closely at T𝑛
𝑂𝑛 ←Generate-Observation(𝑇𝑛,𝑓(𝑥)𝑥_𝑏𝑒𝑠𝑡𝐹−9≤𝑥≤𝑥_𝑏𝑒𝑠𝑡𝐹)

 If𝑐𝑚𝑝 ≤ 10then 

𝑂 ← [𝑂, 𝑂𝑖] 

[𝐴, 𝐵] ←MLE(𝑂) 

state←Viterbi(𝑂, 𝐴, 𝐵) 

cmp ←cmp+1 
else

𝑂 ← [𝑂𝑛−9, … , 𝑂𝑛]
[A, B] ←Baum-Welch(O,A,B) 
state←Viterbi(O,A,B);

    End 

𝜇 ← H𝑠𝑡𝑎𝑡𝑒

𝑇𝑛 ← 𝑇0 (1 + 𝑛)⁄
Until Tn+1 ≤ T𝑓 indicating that the system is frozen
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4 Experiments

Our experiments were designed to measure the effects of hybridization of HMM and SA and to show how 

our approach can improve the solution quality, we have chosen ten benchmarks selected from the literature. 

They are divided into two groups, unimodal functions with no local minimum except the global one and 

multimodal functions with many local minima.  𝑓𝑚𝑖𝑛 is the known optima.

Name Function Formula 
Global

Minimum 

Six-Hump 
Camel 

𝑓1(𝒙) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
)𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2 -1.0316 

Rastrigin 𝑓2(𝑥) =∑ [𝑥𝑖
2

𝐷

𝑖=1
− 10 cos(2𝜋𝑥𝑖) + 10] 0 

De Jong 𝑓3(𝑥) =∑ 𝑥𝑖
2

𝐷

𝑖=1
0 

Schuffer 

N°4 
𝑓4(𝑥) = 0.5 +

cos2(sin(|𝑥1
2 − 𝑥2

2|)) − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
0.292579 

Colville 
𝑓5(𝑥) = 100(𝑥1

2 − 𝑥2)
2 + (𝑥1 − 1)2+(𝑥3 − 1)2 + 90(𝑥3

2 − 𝑥4)
2

+ 10.1((𝑥2 − 1)2 + (𝑥4 − 1)2) + 19.8(𝑥2 − 1)(𝑥4
− 1) 

0 

Levy N° 13 
𝑓6(𝑥) = 𝑠𝑖𝑛2(3𝜋𝑥1) + (𝑥1 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥2)]

+ (𝑥2 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥2)] 
0 

Branin 𝑓7(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)2 + 10(1 −

1

8𝜋
) cos(𝑥1) + 10 0.397887 

Quadric 𝑓8(𝑥) =∑ (∑ 𝑥𝑖
𝐷

𝑖=1
)
2𝐷

𝑖=1

0 

Shubert 𝑓9(𝑥) = (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖
5

𝑖=1
)) (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥2 + 𝑖)

5

𝑖=1
) −186.7309 

Bukin 𝑓10(𝑥, 𝑦) = 100√|𝑦 − 0.01𝑥2| + 0.01|𝑥 + 10| 0 

Table 2. : Benchmark Functions 

4.1 Experimental setup 

The proposed hybridization of SA algorithm and HMM was coded in Scilab programming language and 

experiments were conducted on a PC with an Intel Core i7-5500U 2.40 GHz (4 CPUs) and 8 GB of RAM. For 

convenience, the SA algorithm with the vanilla version of fast simulated annealing, and the fuzzy fast 

simulated annealing [18]. 

These variants have been tested using the test functions presented above. Each function was tested over 50 

trials. We eliminated the effects of other factors which play an important role in the performance of the 

algorithm, by choosing the same starting points for all methods (in each run) and their location was chosen to 

be far from the basins of attraction of global minima. Also, we have chosen the same initial acceptance 

probability and an identical length of the inner and outer loops. 

The final temperature of the cooling process, T𝐹𝑖𝑛𝑎𝑙 have been taken close to zero. We fixed T𝐹𝑖𝑛𝑎𝑙 at 10−5.

The initial temperature T0, have been  calculated from mean energy rises ∆𝑓 during the initialization. Before

the start of the SA, the mean value of cost rises is estimated by a constant number of moves equal to 100.

Then, initial temperature T0has been calculated using the following formula  T0 =
−∆𝑓

ln𝑃0
[19], where𝑃0 is the 

initial average probability of acceptance and is taken equal to 0.95. The length 𝑁 of observed sequence was 

chosen equal to 10. 
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4.2 Numerical results 

The computational results and statistical analyses are summarized in table 2. It provides the details of the 

results for the test functions. The overall best solution of the total 50 replications is shown in bold. HMM-

FSA provide the best solution for the test functions𝑓1,. . , 𝑓10.

In general, HMM-FSA algorithm overcome others variants in most of benchmark functions.  In the most cases, 

our approach gives the best solution except for functions𝑓1, 𝑓2, 𝑓4, 𝑓5, 𝑓6, … , 𝑓10.

Functions HMM-FSA Fuzzy-FSA FSA 

1 
best -1.03E+00 1.23E-03 4.67E+01 

mean -1.03E+00 7.32E+02 1.35E+04 

2 
best 5.99E-07 2.61E-06 3.84E-01 

mean 1.27E-03 2.75E-06 5.39E+00 

3 
best 8.77E-12 1.26E-12 1.21E-04 

mean 2.48E-06 1.34E-06 4.73E-03 

4 
best 5.00E-01 5.56E-01 5.00E-01 

mean 5.00E-01 6.92E-01 5.00E-01 

5 
best 1.22E-03 6.23E+00 1.43E+02 

mean 2.43E+02 3.33E+05 3.92E+03 

6 
best 3.60E-09 1.18E-06 8.62E-06 

mean 4.32E-05 1.21E-02 4.91E-02 

7 
best 3.61E-01 8.45E-01 3.67E-01 

mean 3.61E-01 2.88E+00 3.67E-01 

8 
best 1.08E-07 1.17E-06 6.86E-05 

mean 6.92E-04 1.14E-03 5.72E-03 

9 
best -1.87E+02 1.37E-09 -1.87E+02 

mean -1.87E+02 3.72E-06 -1.87E+02 

10 
best 1.45E-02 2.03E-01 8.23E-02 

mean 3.73E-01 7.97E-01 6.48E-01 

Table 3. Results comparisons between HMM-FSA, Fuzzy-SA and FSA 

4.3 Comparison of convergence performance 

For further insights into the convergence behavior our approach, HMM-SA method was compared to the three 

SA variants. The experiments were designed to measure the effects of the hybridization of FSA and HMM 

presented in the previous section. It was noticed that the HMM-SA can converge rapidly to the global 

minimum. The time gained in early stages can be used to converge to a better solution. This behavior is 

depicted in figure 2. 
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Fig. 2  Comparison of HMM-SA and SA variants 

In the most cases, the HMM-FSA gives better results than other variants except for function 𝑓3. The fast

simulated annealing give a better solution over 50 runs for function 𝑓3. Observed from figure 2 we can find

that the cost function values of HMM-SA converges to the best solution. There are certain stages that others 

SA variant’s outperforms HMM-SA. For example, the fuzzy simulated annealing convergence’s speed is faster 

than HMM-SA for function Schuffer N°4 in the early. However, the convergence speed of HMM-SA is faster 

than others variants for functions 𝑓3, 𝑓7 and𝑓8.

4.4 Statistical analysis 

The significance of the results has been evaluated using the Friedman’s test [20, 21]. It is a non-parametric 

statistical test equivalent to the parametric ANOVA. The freedman’s test Hypotheses are for formulated as 

follows: 

𝐻0: Each ranking of the metaheuristics within each problem is equally likely, (i.e., there is no difference

between them) so that for instance, the population medians are equal: 

𝐻0 ∶  [𝜇1 =···=  𝜇𝑁 ] (7)

𝐻1: At least one of the metaheuristics has a different performance than at least one of the other metaheuristics:

𝐻1 ∶  [𝜇1,···, 𝜇𝑁 𝑛otallequal] (8)

In addition, we rank the results of the metaheuristic for each benchmark function, giving 1 to the best algorithm 

and 3 to the worst one. Let r(𝑝𝑖𝑗) be the rank of 𝑗𝑡ℎ algorithm in k algorithm on the 𝑖𝑡ℎ function of N

sciencesconf.org:meta2018:214677



benchmark functions, where k is equal to 6 and N is equal to 10 in our experiment. The average ranks of the

algorithms were then computed by eq. 7, as shown in table 4. 

𝑅𝑗 =
1

𝑁
∑r(𝑝𝑖𝑗)

𝑁

𝑖=1

𝑓𝑜𝑟𝑗 ∈ [1. .6] (9) 

The average ranks by themselves give a useful performance comparison. As depicted in table 4 the HMM-

FSA ranks the first with the rank average of 1.1 followed by the Fuzzy FSA with the rank average of 2.3, the

FSA ranks the third.  

HMM-FSA Fuzzy FSA  FSA 

𝒇𝟏 1 2 3 

𝒇𝟐 1 2 3 

𝒇𝟑 2 1 3 

𝒇𝟒 1 3 2 

𝒇𝟓 1 2 3 

𝒇𝟔 1 2 3 

𝒇𝟕 1 3 2 

𝒇𝟖 1 2 3 

𝒇𝟗 1 3 1 

𝒇𝟏𝟎 1 3 2 

Average rank (𝑅𝑗) 1.1 2.3 2.5 

Table 4: The rank for all algorithms in each benchmark function and the their average rank 

The Freidman statistic was calculated by the following formula: 

𝜒𝐹
2 =

10𝑁

𝑘(1 + 𝑘)
[∑𝑅𝑗

2

3

𝑗=1

−
𝑘(𝑘 − 1)2

4
] = 81.25 (10) 

Where the 𝜒𝐹
2 statistic was distributed according to the F-distribution with 𝑘 − 1 = 5 and (𝑘 − 1)(𝑁 − 1) =

18 degrees of freedom.  𝜒𝐹
2 = 81.25 is greater than the critical values of 𝐹(2, 18) = 3.55 [29].  Thus, we

reject the null hypothesis at the level of significance α=0.05. Then, we conclude that the performance of all 

algorithms is statistically different. We can proceed with a post hoc significant test to know if algorithm 𝑖 and 

𝑗 are different.  

5 Conclusion and future research

In this study, we proposed a dynamic simulated annealing with adaptive neighborhood using Hidden Markov 

Model. To test the performance of this approach, a number of benchmark functions have been applied. This 

approach allows to controls the neighborhood steps based on the history of the search. The HMM parameters 

are calculated and updated at each cooling step.  The Viterbi algorithm is then used to classify the observed 

sequence and select the adequate learning value. The comparisons of the proposed approach with simulated 

annealing based on fuzzy control and the vanilla version of FSA, demonstrates that the simulated annealing 

based on HMM is able to find better solutions in reasonable time. Our approach is able to manage time by 

rapidly decreasing temperature and thus anticipating exploitation state, this lead to a better convergence. 

Future research may focus on the application of our method to some real optimization problems. 
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1 Introduction

Combinations are relevant representational mechanisms allowing to tackle optimization problems
in various instances [1–12]. In this paper, we focus in combinations of n objects taken m at the
time, or well-known as m out of n, and its efficient unranking mechanism.

In particular, the unranking of m out of n consists in generating the object (x1, x2, ..., xm) given
an integer number g ∈ [0,

(
n
m

)
− 1]. Generating such combination is advantageous in the following

problem scenarios

– in combinatorial instances in which the integer g ∈ [0,
(
n
m

)
− 1] can be used as a succinct

encoding of the combination element of size m out of n,
– in scenarios in which parallelization is able to speed up the sampling and evaluation of a subset

of combination objects from the complete combinatorial space,
– in scenarios in which the evaluation of duplicated combinations is expensive and irrelevant,

and the integer number g is a surrogate to identify and relate to (x1, x2, ..., xm).
– in scenarios in which generating all combinations is computationally expensive, specially for

large
(
n
m

)
, and generating a small subset is rather preferable.

The unranking of combinations has been studied since the late seventies, in which Buckles
and Lybanon [13] proposed the first approach, and a correction was proposed thirty years later
by Crouse [14]. The first hardware realization was proposed by Butler and Sasao [15]. Basically,
a fundamental approach for unranking combinations finds the maximal element xm subject to(
xm

m

)
6 g; then, finds the maximal xm−1 subject to

(
xm−1

m−1
)
6 g −

(
xm

m

)
, and so on. However, since

computing binomial coefficients is computationally expensive, various surrogate approaches were
introduced [16–26].

Generally speaking, the efficiency of the conventional unranking algorithms depends on the
value of n, which is restrictive for very large n. In a different approach, n-independent unranking
is of special interest in the following scenarions:

– to allow further scalability for very large n and for cases in which m is much smaller than n,
– to allow adaptability when n is time-varying

Yet, n-independent unranking of combinations has received little attention in the literature.
Kokosinskiński proposed UNRANKCOMB-E as the first algorithm with O(m) time [19] and,
Shimizu et. al. proposed an algorithm with O(m3m+3) time [27]. Whereas, the UNRANKCOMB-E
algorithm requires n2 processors and O(n2) space, the algorithm proposed in Ref. [27] is restricted
to sampling through Dynamic Programming. Also, the efficient parallelization of n-independent
unranking is non-trivial due to requiring at least quadratic number of processors (which is detri-
mental for standard computing environments), and believed polynomial space requirements3.

In this paper, to fill the above gaps, we capitalize the advantages of existing parallel computing
to render n-independent unranking of combinations, and evaluate the experimental performance
of a gradient-based approach for unranking. Our basic idea is to generate combination elements
by solving minimization problems, through a parallelizable objective function.

3 personal communications with Corresponding Author of [27].

496 sciencesconf.org:meta2018:214689



Parque and Miyashita

(1,2)
(2,3)
(1,3)
(3,4)
(2,4)
(1,4)

0
1
2
3
4
5

g (x1, x2)
Unranking

Integer Set Combinations

Fig. 1. Basic Idea of Unranking Combinations of m elements taken m at the time for n = 4 and
m = 2. Left: the integer set in which g ∈ [0,

(
n
m

)
− 1]. Right: Combination tuples.

Our contributions are summarized as follows:

– We present exhaustive experiments showing the practical efficiency of an optimization-based
unranking of combinations.

– The time for unranking combinations is efficient experimentally in our computationally allow-
able limits4, showing the feasibility and efficiency to unrank combinations with n-independency.

– The time complexity shows a linear-like behaviour.

2 Proposed Approach

In this section we outline the basic idea of n-independent unranking of combinations based on
minimization of a parallelizable log-concave function.

2.1 Preliminaries

Given positive integers n and m, and [n] = {1, 2, 3, ..., n}, a combination object is defined as the
tuple (x1, x2, x3, ..., xm) in which xi ∈ [n], i ∈ [m] and n ≥ m.

For integer number g, the unranking algorithm consists in generating the combination object
uniquely associated with the number g, with respect to some ordering, as follows:

unranking : g → (x1, x2, x3, ..., xm) (1)

, where

0 ≤ g ≤
(
n

m

)
− 1

To exemplify the above definition, Fig. 1 shows the basic idea of an unranking instance for
n = 4 and m = 2.

To encode combinations, we use the revolving door order starting with (1, ...,m), and ending
with (1, ...,m−1, n) [22]; wherein combinations are recursively divided either including or avoiding
the element n, and holding the following condition:

x1 < x2 < ... < xm

The key motivation of using the revolving door order is due to the minimal change order
and the ordered cyclic sequence since the Hamiltonian path in a polytope formed with

(
n
m

)
vertices

minimizes the distance between neighbor (close) combinations [23]. Thus, the above facts make the
revolving door relevant to build sampling-based learning algorithms with canonical concepts [28].

4 the numerical limits in our standard computing environment, 1.7977× 10308
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Algorithm 1 Unranking Algorithm

1: procedure Unrank(g,m)

2: Input g . Rank Number

3: Output (x1, x2, ..., xm) . Combination Object

4: xom ← m . Initial approximate solution

5: for i← m downto 1 do

6: xi ← 1 +

⌊
Minimize |J(x, i, g)| with x > i

⌋
. Solve a minimization problem

7: g ←
(
xi
i

)
− g − 1 . Binomial Coefficient

8: end for

9: return (x1, x2, ..., xm) . Combination object

10: end procedure

2.2 Minimization Problem

The basic idea in our proposed unranking algorithm is shown by Algorithm 1, in which the element
xi is generated by minimizing the cost function |J(x, i, g)| for variable x and constraint x ≥ i. Here,
the log-concave objective function is as follows:

J(x, i, g) =

[
i∑

p=1

logb

(x− i
p

+ 1
)]
− logb(g), (2)

and

|J | ∈ x ∈ [i,+∞) (3)

where i denotes the index in the for loop of Algorithm 1 (i = m at initial iteration), g denotes
the integer number representing the combination, and the base b in logb(.) (the larger the coefficient(
n
m

)
is, larger the b to handle very large numbers accurately). For standard computing environments,

we use b = 10.

To find the minimal of |J | in x ∈ [i,+∞), we used the terms of the Taylor Series up to the first
order, as follows:

xk+1
i =

{
xki − J

J′ , if xk+1
i > i

i, otherwise
(4)

, where i ∈ [m], k denotes the iteration number, and the subscript J ′ denotes the first derivative
of the function J with respect to xki .

J ′(x, i) =
1

ln(b)

i−1∑

p=0

1

(x− p) (5)

Due to the concavity of the function J in x ∈ [i,+∞), the initial solutions xoi ∈ [i,+∞) ensure
convergence to the root of J , and are initialized as follows:
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xoi =

{
m, if i = m

xi+1, otherwise
(6)

The above is based on the revolving door ordering principle: x1 < x2 < ... < xm, and the
closeness of xi to xi+1, which ensures efficient convergence to the global optima.

As for termination criterion, we use the following criteria:

|J ′| < δ (7)

and

|xk+1 − xk|/|xk| < ε (8)

in which δ and ε are threshold tolerances to avoid division and sampling with very small
numbers. Without loss of generality within the context of standard desktop environments, we use
δ = ε = 10−8.

3 Computational Experiments

In order to evaluate the computational efficiency of the unranking algorithm, we used diverse
scenarios which reflect our foci for future potential applications, as well the applicability in standard
computing environments. We implemented Algorithm 1 in MATLAB, Intel i7 4930K @ 3.4GHz,
Windows 8.1, 64 bit, wherein the computation of the subscript J

J′ in Eq. 4 is realized through a
Graphics Processing Unit, GPU, GeForce GTX TITAN.

Thus, in line of the above, to ensure the rigourous evaluations, we measured the time involved
in the following tasks:

– Parallelization of the log-concave objective function
– Time for unranking all combinations for different values of n and m.

In the following subsections, we describe our experimental settings and our observed insights.

3.1 Parallelization of the Objective Function

In order to evaluate the gains in efficiency between CPU and GPU realizations when computing
the function J(x, i, g) and J ′(x, i), we performed the following experiments:

– Comparison of efficiency between CPU and GPU implementations of the function J(x, i, g) for
equally distributed points of i ∈ [1, 108].

– Comparison of efficiency between CPU and GPU implementations of the function J ′(x, i, g)
for equally distributed points of i ∈ [1, 108].

The above is done for x = 108, g = 3 and four discretizations of the interval [1, 108]. Note that
the efficiency frontiers when computing the functions J(x, i, g) and J ′(x, i) is dependent of i only,
in which x and g are constants.

As for the CPU implementations, both the function J(x, i, g) and J ′(x, i, g) use a conventional
serial mechanism to reduce the sums. Thus, the theoretical time is expected to be O(i) time by
using a single processor.

As for the GPU implementations, both functions J and J ′ are computed in O(log i) time by
using at most O(i/ log i) processors (to ensure work-efficiency in parallel cores according to the
Brent’s Theorem5). The parallelization of the cost function J and J ′ use a reduction algorithm of
i sums by multiple elements per thread in the CUDA-enabled GPU.

To evaluate the performance gains when using CPU and GPU realizations, Fig. 2 and Fig. 3
shown the time involved in computing J(x, i, g) and J ′(x, i, g) for the above mentioned scenarios.
By observing Fig. 2 and Fig. 3, we can confirm the following facts:

5 assuming algebraic operations with numbers in O(1)
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(a) i ∈ 1 to 103 (b) i ∈ 102 to 104

(c) i ∈ 104 to 106 (d) i ∈ 106 to 108

Fig. 2. Comparison in computational efficiency between CPU and GPU realizations when com-
puting the function J(x,i,g) for x = 108, g = 3 and 100 equally distributed points of i.

– Computing either J(x, i, g) and J ′(x, i, g) takes less than a 6 miliseconds in either CPU and
GPU for i ∈ [1, 104].

– Computing either J(x, i, g) (J ′(x, i, g) ) takes less than a 15 (6) miliseconds in either CPU and
GPU for i ∈ [104, 106].

– Computing either J(x, i, g) (J ′(x, i, g) ) takes less than a 1.5 (0.6) seconds in either CPU and
GPU for i ∈ [106, 108].

– Using the GPU to compute J(x, i, g) and J ′(x, i, g) is more advantageous for large values of i.
– The comparative advantages of using a GPU are positively increased in proportion to i incre-

ments.

The above observations show that the parallelization of the proposed log-concave objective
function brings practical benefits in scenarios involving large values of i. This fact implies the
potential benefits for scalability.

3.2 Unranking Time

In order to evaluate the efficiency of the proposed unranking algorithm, we used relevant values of
numbers n and m within computable float numbers for binomial coefficients in a standard desktop
environment, which in our case is represented as 1.7977× 10308.

Thus, to realize our aim of evaluating the proposed approach exhaustively, we generated com-
bination objects associated with numbers uniformly distributed on a fixed range. For simplicity
and without loss of generality, we used the following scenarios:
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(a) i ∈ 1 to 103 (b) i ∈ 102 to 104

(c) i ∈ 104 to 106 (d) i ∈ 106 to 108

Fig. 3. Comparison in computational efficiency between CPU and GPU realizations when com-
puting the function J ′(x, i) for x = 108, g = 3 and 100 equally distributed points of i.

– n = 10, and m up to 5, when all combinations are generated from the numbers g in the domain
[0,
(
10
m

)
] for n = 10, and m = {1, 2, 3, 4, 5}.

– n = 15, and m up to 7, when all combinations are generated from the numbers g in the domain
[0,
(
15
m

)
] for n = 15, and m = {1, 2, 3, 4, 5, 6, 7}.

– n = 20, and m up to 10, when all combinations are generated from the numbers g in the
domain [0,

(
20
m

)
] for n = 10, and m = {1, 2, 3, ..., 10}.

We believe the above experimental instances are useful to evaluate a the generation of combina-
tions within standard computing environments. Thus, the applicability to other contexts becomes
straightforward.

To portray the complexity function experimentally, Fig. 4 shows the behaviour in terms of
computing time over all unranking instances. By observing the above pictures, we can note the
following facts:

– The time to unrank any combination for n up to 20 and m up to 10 is than 80 miliseconds.
– The time to unrank combinations show the linear-like behaviour.

Our results suggest that the use of parallelism is beneficial to improve the efficiency frontiers of
our proposed unranking algorithm. We believe our results provide useful and foundational tools to
realize the intelligent sampling, evaluation and generation of combinatorial objects with running
performance being linear on m and independent of n, which is meritorious in applications when n
is large or time-varying.

501 sciencesconf.org:meta2018:214689



Fast Generation of Combinatorial Objects

(a) n = 10,m ≤ 5

(b) n = 15,m ≤ 7

(c) n = 20,m ≤ 10

Fig. 4. Computational efficiency when unranking combinations for various n and m.
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4 Concluding Remarks

In this paper, we have proposed an approach for generating combinations from given integer num-
bers by using evaluations in CPU/GPU, and optimizations over a parallelizable log-concave ob-
jective function. The basic idea of our proposed approach is to generate combinations by solving
minimization problems of a tailored cost function, which is evaluated by reductions in a CUDA-
enabled Graphics Processing Hardware.

Our exhaustive computational experiments involving the generation of combinations over a
complete and partial set show the practical efficiency of our proposed approach. In particular, our
observations show that the parallelization of the proposed log-concave objective function brings
the potential benefits for scalability, and the time to generate combinations show a linear-like
behaviour.

In future work we aim at evaluating the generalization of our proposed approach to tackle
combinatorial problems involving graphical structures in Decision Sciences, e. g. learning graph
topologies of Bayessian Networks and Genetic Programming by number-based representations. We
believe our results provide useful and foundational tools to allow representation and sampling
of solutions in non-linear combinatorial problems given integer numbers, and its application is
straightforward by nature-inspired approaches. Furthermore, our approach offers the generation of
m out of n with n-independency, which is meritorious when n is larger compared to m, or n is
time-varying.
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1 Introduction 

In an escalating need to find new markets to grow and expand, more companies are heading toward 

emerging markets. Substantial opportunities of growth are sought there as well as important challenges to 

face. Companies that benefit the most are those of consumer-packaged goods (CPG), fast-moving consumers 

goods (FMCG), pharmaceuticals and medical devices as well as consumer electronics and high-tech 

equipment. Emerging markets are characterized by young economies and growing populations that are 

driving new cultures of consumption. Trade transactions are of low value but high volumes. Modern and

traditional trade channels coexist in the same area with the dominance of the latter. 

Traditional trading consists of largely of informal channels, such as open-air markets, individual 

vendors, including street vendors, tabletop merchants etc. It also includes thousands of little structured 

outlets, family-operated known as nanostores or High Frequency Stores. These small retailers are the main 

source of CPG and FMCG for many consumers in Africa, Asia and Latin America. They offer affordability,

convenience, the right mix of items and can easily gain the trust of their customers [1]. 

On the other hand, they are not really sophisticated, and companies may experience gaps between 

supply and demand very often. Thus, they must correctly design their distribution network and well manage 

their points of sales coverage in each territory. They face challenges from network design to urban logistics 

through assortment and delivery planning. The problem of concern in this research deals with point-of-sales 

coverage design and optimization. Sales coverage models enable companies to increase revenue with 

existing customers and acquire new customers through an effective application of sales and marketing 

resources. 

2 Problem statement 

To address the challenges above, one needs to develop models and methods for business insights 

that facilitate efficient salespersons’ assignments while covering salespoints efficiently. These models 

connect with two main research fields: Territory Design field and Traveling Salesman field. The aim of a 

territory design or districting problem is partitioning a large territory into districts or areas. It can be applied 

in political districting, sales territory design, school districting, etc. Districts are usually designed by 

optimizing three main features: compactness of districts, dissimilarity of partitions between different periods 

of time and profit equity between salesmen [2]. The Traveling Salesman problem then intervenes because 

we need to optimize routs (travelling cost) travelled by salesmen alongside districting. 

Our problem can be stated as follow. Given a number of salespersons (SP), each of which has to 

visit a predefined set of salespoints (nanostores). Depending on its importance, a nanostore may be visited 

once or several times over a planning horizon (which is a week in our setting). Every day, SPs start by a 

morning meeting at a gathering point for a daily commercial brief to set everyone’s actions and to bring back 

the commercial objectives of their activity. SPs start their tours with a set of pre-assigned sale points to visit 
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according to a predefined planning. The gathering point (GP) should be appropriately located since the SPs 

must return back to it at the end of each day to debrief on their tours performances. 

A salesperson works 7 hours a day. Each stop lasts a certain amount of time, depending on the size 

of the sale point. During this time, the SP has many tasks, including general relationship management, 

merchandising, selling in new initiatives, order taking, capturing sales fundamentals and competitive 

intelligence data. Workload must be well balanced between SPs. A salesperson is accountable for his sales’ 

performance. Therefore, nanostores must be fairly assigned with respect to their profit potential. Also, sale 

points whom have been already allocated to some SPs in the past, would stay with the same SPs rather than 

to be approached by new ones. SPs ususllay keep a close relationship with the retailers. The objective behind 

solving the problem is to maximize the global profit by assigning nanostores to sales representatives. The 

targeted assignments have to minimize pre-assignments’ disturbance and the variability of profit potential 

between SPs, while respecting the workload of each one of them and the visiting frequency of each store. 

The problem depicted above can be modeled as a multi-depot multiple traveling salesman problem 

(mTSP) with a constraint of time window. Defining briefing points and optimizing tours at the same time 

need a dynamic solving approach. We assume that there’s one briefing point. Its location is known and 

remains fixed over the planning horizon. Let us denotes the distance between this gathering point (GP) and 

the nanostore (i). The TSP is usually formulated using an assignment-based double-index integer linear 

programming formulation [3]. We will be using a similar formulation to our problem. We consider a two-

echelon supply chain in which products are to be pushed from a central common warehouse to a set of 

nanostores over a time horizon H. 

We consider                          the set of salespersons. 

   is the set of nanostores to be visited during a planning horizon including m new ones that have never 

been assigned before.                      defines the considered time horizon. A salesperson is 

assigned a working territory consisting on a list of stores to be visited over the horizon H according to a pre-

established schedule.      is be the binary variable that determines if a store (i) is assigned to a salesperson 

(j) at period (t). Each store is attributed a visit frequency    depending on its profile and sales’ volume. 

Based on the experience of each salesperson regarding its previous missions, the company computes an 

index for each store to capture its previous assignments to every salesperson. The main elements of our 

model identify as follows: 

Profit potential balance constraints (1): Salespersons performance and thus reward are evaluated 

based on their profit contribution. Therefore, for them to have the same reward chance, the profit potential   

of the assigned stores has to be equivalent for each salesperson. The profit potential balance can be stated by 

inequations (1). The difference between the profit gained by a salesperson h and the average profit gained

over the horizon H by all the K sales representatives, should not exceed a variability limit VAR1. 

(1) 

The workload constraints (2) combine the travel time from the starting point to each assigned store

with the stopping time at each store    . This total combined time could not exceed the maximum workload 

associated with a salesperson j during a period t denoted by parameter      . In the literature, the tour cost 

of districts is very often approximated by the Beardwood–Halton–Hammersley theorem [4], when having a 

multiple objective problem alongside a traveling salesman problem, but it is nonlinear, so it can’t be used in

linear resolution. We assume in a first approximation that the total distance travelled by a sales 

representative can be estimated using the radial distance as the sum of distances    between the gathering 

point (GP) and each visited store (i). V is the average traveling speed of the salespersons.  

(2) 

Workload balance constraint (3): Guaranteeing equivalent chances for salespersons comes down 

as well to balance their workload. Constraint (3) minimizes the disparity between the salespersons working 

hours through a period. 
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(3) 

Visits’ number constraint (4): At every period t, each store i should be visited by only one

salesperson. It translates to the formulation in (4). 

(4) 

Visiting frequency constraint (5): For a store to attain its maximum profit, it should be visited at 

least    times, as formulated in (5). Whereas new stores may be visited lesser times because their frequency 

is only estimated, and the workload may not be sufficient to visiting all of them at once. 

(5) 

Disturbance constraint (6): We want to minimize pre-assignments’ disruption, as this latter is

directly correlated with profit generation. Disruption is undesirable to capitalize on the established 

relationships between salespersons and retailers. Let  be the disturbance index that compares assignments

of period t with period t-1.  and  for each store NSi. We can therefor express 

our constraint as in (6), where DIS is the maximum disturbance allowed. This constraint can also be 

formulated as a penalty constraint that increases every time a NS is visited by more than one SP during H. 

(6) 

As for the objective function, we tried out 3 combinations of profit balance and workload balance 

constraints that are expressed in the formulation (7), (8) and (9). (7) is with workload balance constraints (3), 

(8) with workload balance constraints (1) and (9) a combination of the two. To linearize the absolute value 

in    , we minimize    
 
    subject to          and         . The same applies for    and   . 

(7) 

(8) 

(9) 

3 Resolution 

In a first linear resolution, we used real data of an urban area territory where a mailing company 

operates. We dismissed the disturbance constraint for the tests because of non-linear complexity. For future 

modelling, and to solve the model including the disturbance constraint and the tour cost minimization, we 

will be using genetic algorithms to cope with the problem complexity. 

Tours cost minimization, workload equity, profit balance and disturbance should all be optimized to 

give a maximum profit in a reasonable time. The definition of the gathering points (GPs) is also crucial. 

Their number and their location should be optimized dynamically with the problem resolution. It can be also

evaluated at the end of each instance and relocated. 

For the genetic algorithm model, we suggest using 2-dimentional chromosome for all salesmen 

related to all depots. Rows represent salespoints and columns represent days. Each number represent a 

salesman. “0” means a salespoint will not be visited in a specific day. A salesman can be assigned to 

multiple rows each day. The constraints of cost, profit balance, and disruption can be formulated as a 

weighted sum of 3 different fitness functions. 
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Abstract Particle swarm optimization (PSO) is a population-based stochastic metaheuristic 
algorithm; it has been successful in dealing with a multitude of optimization problems. Many 

PSO variants have been created to boost its optimization capabilities, in particular, to cope with 

more complex problems. In this paper, we present a new multi-population particle swarm 

optimization with a cooperation strategy. The proposed algorithm splits the PSO population 

into four sub swarms and attributes a main role to each one. A machine learning technique is 

designed as an individual level to allow each particle to determine its suitable swarm 

membership at each iteration. In a collective level, cooperative rules are designed between 

swarms to ensure more diversity and realize the better solution. Several simulations are 

performed on a set of benchmark functions to examine the performances of this approach 

compared to a multitude of state of the art of PSO variants. Experiments reveal a good
computational efficiency of the presented method with distinguishable performances. 

Keywords: particle swarm optimization, multi-swarm, population control, hidden markov 

model. 

1 Introduction 

Nowadays, a number of cooperative approaches have been emerged to improve swarm intelligence 

optimizers. In particular, various efforts have been made to improve the collective search behavior of 

optimization algorithms mainly in swarm intelligence approaches such as particle swarm optimization [13] 
and ant colony optimization [9]. The main purpose of these essays is to incite complex global behaviors 

through local interactions by sharing information between different agents and improving learning capacity. 

Furthermore, it may help them to adapt to unexpected variations (dynamic optimization) when they are 
communicating with other agents. 

Concerning particle swarm optimization (PSO), one of its challenging issues is to formalize the design 

of such cooperative multi-swarm behavior of agents (which are named particles in the case of PSO). It main 
advantage is to enhance the diversity of the algorithm or to achieve a trade-off between exploration and 

exploitation. A commonly used cooperation form of PSO is based on the idea of considering multi-swarms 

(multi-populations), it consists in dividing the whole search space into local subspaces, each of which might 
cover one or a small number of local optima, and then separately searches within these subspaces. Another 

way to define cooperative PSO is to assign different roles to particles. Thus, different particles can play 

different roles, and each one of these particles can play different roles during the search processes. A 
challenging task within this PSO variant is how each particle has to decide which role it will assume. In this 

paper, the machine learning algorithm hidden Markov model (HMM) is applied in an individual level (each 

particle) to model how the decision making of particles to choose the adequate sub-swarm which it will belong. 
That is, HMM is used to learn and predict the most probable swarm, corresponding to each particle in order 

to control particles behavior of PSO. This process is performed through the Viterbi algorithm that gives the 

most likely path of states for each particle at each PSO iteration. Or, for each sub swarm, an associated role is 
given: exploration, exploitation, convergence and jumping out. Then, in a collective level of the swarm, a 
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cooperative design is made to guide the search and move toward different promising sub-regions. A 

Master/Slave scheme is chosen for setting cooperation rules between sub-swarms. 

The rest of the paper is organized as follows: in the next section, we outline the related works. In 

section 3, we present our approach. Section 4 presents the obtained results for the experiments. Finally, we 
conclude and present perspectives to our work. 

2 Literature review. 

In recent years, there has been increased interest in the use of learning methods inside PSO to control 
its behavior and then to improve its performance. That is, various methods have been proposed to control PSO 

behavior and to improve the particles learning ability. We can differentiate between two kinds of control 

approaches which have been used inside PSO in the literature. In the first one, the control depends on the 
iteration and then the whole swarm follow the same strategy (as it is done in our previous work [1]). In the 

second one, the control depends on the particle itself. That is, at each iteration, particles are grouped into sub-

swarms, and the particles of each swarm have a specific role in the swarm. This second case is our focus in 
this paper and then we present in the following a review of papers which interested in this issue.  

Firstly, [14]proposed four operators which play similar roles as the four of states the adaptive PSO 

defined in [29], which are exploration, exploitation, convergence and jumping-out. Their approach is based 
on the idea of assigning to each particle one among different operators based on their rewards. Moreover, [30] 

defined a cooperative approach to PSO based on dividing the population on four sub-swarms according to the 

four states. Furthermore, this type of control is related to the concept of cooperative swarms which has been 
introduced by [25]. This principle has been achieved in their paper by using multiple swarms to optimize 

different components of the solution vector cooperatively. We can see that this variant of PSO (multi-swarm 

PSO) has been presented in the literature as a specific and separate algorithm known by multi-swarm 
optimization [5]. In the proposed variant, the authors have been inspired by the quantum model of atoms to 

define the quantum swarm. Also, another grouping approach has been suggested by [19]. Another cooperative 

PSO approach can be defined by clustering approaches as proposed by [28]. Their approach consists of 
assigning particles to different promising sub-regions basing on a hierarchical clustering method.  

More generally, four main categories have been proposed to improve PSO performance, which are: 

configuration of the parameters (adaptive control), the study of neighborhood topology of particles in the 
swarm of PSO, hybridization with other optimization algorithms and integration of learning strategies 

(diversity control). Concerning the two types mentioned at the beginning of this section. The former 
correspond to the first type, while the latter is related to the second one. Furthermore, the control the PSO 

parameters has been proposed in a number of papers with the purpose of achieving a trade-off between the 

diversity and the convergence speed. It has generally been done using learning strategies such as the 
comprehensive learning [16] approach in where each particle learns from another particle which is chosen 

according to a learning probability. Concerning hybridization, it is a long-standing of PSO and example of 

improvement can be found in [23]. 

We can see from the literature that many papers have inspired from some approaches used in multi-

agent systems to defined automated cooperative approach. An example of using the multi-agent concept in 

PSO can be found in [7]. That is, incremental social learning which is often used to improve the scalability of 
systems composed of multiple learning agents has been used to improve the performance of PSO. Furthermore, 

[2] proposed a multi-agent approach which combines simulated annealing (SA) and PSO, we can remark that 

their idea is related to the generic notion of hyper-heuristics which consists of finding the most suitable 
configuration of heuristic algorithms. [8] has cited the may features obtained by using agents in configuring 

metaheuristics, which are distributed execution, remote execution, cooperation and autonomy. 

This issue (the interaction between swarm intelligence and multi-agent systems) has been given much 
attention in the last few years in particular by the popularization of the swarm robotic field. In particular, [4] 

affirmed the concept of swarm appears nowadays closely associated with intelligent systems in order to carry 

out useful tasks. The author also analyzed qualitatively the impact of automation concepts to define the 
intelligent swarms. Moreover, [6] have outlined the main characteristics of swarm robotics and analyzed the 

collective behavior of individuals in some fields. They affirmed that finite state machines are one of the most 
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used adequate approaches to model this behavior. Another commonly used approach for this purpose is 

reinforcement learning. 

In particular, the using of multi-agent concepts can be useful to self-organize particles in PSO using 

simple rules as defined by [3].Their main idea was to define six states, which are cohesion, alignment, 
separation, seeking, clearance, and avoidance. Furthermore, the finite state machine has been used for 

movement control. That is, the states have been defined by a collection of velocity components and their 

behavior specific parameters. Furthermore, the population has been divided into two swarms in order to 
introduce the divide and conquer concept using genetic operators. Another automation approach which can be 

used inside PSO is cellular automata (CA). It can be used for instance split the population of particles into 

different groups across cells of cellular automata. [24] has integrated it in the velocity update to modify the 
trajectories of particles.  

In term of multi-swarm design of PSO, [15] provided a multi-swarm and multi-best for the particle 

swarm optimization algorithm. They randomly split particles into multi populations.  This algorithm updates 
velocities and positions of particles using multi-gbest and multi-pbest rather than single gbest and pbest. [18] 

proposed a novel variant known as Center PSO, it makes use of an extra particle as a center particle that 

controls the search direction of the entire swarm.  Also, [20] built a Multi-swarm cooperative particle swarm 
optimizer based on a master-slave model; the slave swarms perform as a single PSO while the master swarm 

iterates depending on its knowledge as well the knowledge of the slave swarms.  

At the light of the literature in term of enhancing PSO performances and building a more efficient 
variant of this algorithm, this paper addresses a new variant of PSO based on cooperative multi-swarm design 

with a coefficient adaptation.  

3 Cooperative multi-swarm conception of PSO 

In this section, the standard PSO algorithm is defined with its parameters. Then, the way how sub-
swarms are identified is given depending on the individual particle state given by HMM. Each sub-swarm will 

its own configuration of the parameters of its particles. Cooperation rules will be defined to ensure the 

information exchange between subs warms during the search process.  

3.1 The standard PSO 

The standard PSO is a population based metaheuristic algorithm introduced firstly by [13]. Its 

mechanism starts with a population of random solutions and during a search process, particles are looking for 
optima by moving in the search space. In PSO, particles are potential solutions in a D-dimension search space, 

having a velocity that is adjusted dynamically depending on both individual and social experience. Therefore 

the velocity and the position of every single particle is updated based on to Eqs. (1) and (2) 

𝑣𝑖(𝑡 + 1)  =  𝑤 𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝐵𝑒𝑠𝑡 − 𝑥𝑖(𝑡))   +  𝑐2𝑟2(𝑔𝐵𝑒𝑠𝑡 −  𝑥𝑖(𝑡)) (1) 

𝑥𝑖(𝑡 + 1)  =   𝑥𝑖(𝑡)  + 𝑣𝑖(𝑡 + 1) (2) 

Where 𝑟1 and 𝑟2 are two are two vectors of D dimention provided by distribution function of 
independent uniform random numbers defined between 0 and 1. pBest is the best position of the particle and 

gBest is the global best of the entire swarm. In our case of multi swarms, a multi gBest positions are defined. 

𝑤 is the inertia weight, and 𝑐1 and 𝑐2 are the acceleration coefficients. Equation (1) is involved to compute the 
particle new velocity, when Equation (2) is used to update the position of the particle using its previous

position and its new velocity.    

More detail of these parameters can be seen for example in [21]. 

In our approach, we interest especially on dividing the population into multi-population or also called 

multi-swarm. Each swarm will has its own characteristics and search behavior. The next paragraph will gives 
how sub swarms are constituted and how each sub swarm will be customized to a specific role in the search 

space.   
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3.2 Sub-swarms constitution 

In this approach swarm is divided to a sub-swarms in the objective to achieve a good trade-off between 

the population diversity and the convergence speed, and specially a good management of the exploration and 

exploitation of the search process during execution in order to attain the best possible solution in the minimum 
number of iterations. Inspired from the definition of [29] of the evolutionary states for PSO, each sub swarm 

will groups particles of a specific four evolutionary state that are: Exploration, exploitation, convergence and 

jumping-out. 

Then, each particle is viewed as a Markov chain having a state {si}i∈[1,4] . During iterations, a particle

can has a specific state i that design its membership to a specific swarm i. Also, a particle can change the state 

from iteration to another and change consequently its corresponding sub swarm. So, a movement between sub 

swarms is indicated by the rows in the figure 1. 

Figure 1  Sub-swarms and possible particle movements 

To model the associated swarm of particle, an associated markov chain with state {si}i∈[1,4] is defined to

each particle. However, particle state cannot be perceived directly but only by observing some key parameters 

across iteration. Hence, a hidden markov chain is defined for each particle as a by a triple = (Π, A, B), all 

processes are defined on a probability space (Ω, 𝐹, 𝑃) :  

 Π = (πi) The vector of the initial probability distribution over states;

 A=(aij) The state transition matrix, P(𝑞𝑡 = 𝑖|𝑞𝑡−1 = 𝑗), 𝑖, 𝑗 ∈ [1, 𝑁]

 𝐵 = (𝑏𝑗𝑘) The emission matrix also called the confusion matrix,

𝑃(𝑜𝑡 = 𝑘|𝑞𝑡 = 𝑗), 𝑗 ∈ [0, 𝑁], 𝑘 ∈ [0, 𝑀].

The set of N states {qt}t∈N takes values from the set S = {si}i∈[1,4] what references respectively:

exploration, exploitation, convergence, and jumping out.  The change of state is reflected by the PSO sequence 

(q1 = s2)⇒(q2 = s1)⇒(q3 = s2)⇒…, as deduced by [29], corresponding to the Markov Chain.

Furthermore, we define corresponding initial transition probabilities, P(qt = i|qt−1 = j), i, j ∈ [1,4]. 
This probability controls all behavior of transition between states of APSO resolution. We take for all possible 

i and j transitions a transition probability of 0.5. 

The initial state probability corresponds to deterministic start in exploration state: 

Π = (πi) = [1 0 0 0]  (3) 

The observed parameter of this hidden chain is the evolutionary factor f (defined in [29]) of the APSO. 
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Observations will be belonging f to subintervals of [0,1] ([0,0.2], [0.2,0.3], [0.3,0.4], [0.4,0.6], 
[0.6,0.7], [0.7,0.8], [0.8,1]). We divide [0,1] to seven subintervals, so the set observation 𝑌 = {yi}i∈[1,..,7]  will

be number of the subinterval witch belong f. Let 𝑠𝑢𝑏: [0,1] →  {1,2, . . ,7} the function that returns the 

corresponding interval of f, it corresponds also to the observation.  

𝑠𝑢𝑏(𝑓) = 𝛿[0,0.2[(𝑓) + 2𝛿[0.2,0.3[(𝑓)+3𝛿[0.3,0.4[(𝑓) + 4𝛿[0.4,0.6[(𝑓) + 5𝛿[0.6,0.7[(𝑓) + 6𝛿[0.7,0.8[(𝑓)

+ 7𝛿[0.8,1](𝑓)  (7) 

(𝑤𝑖𝑡ℎ    𝛿[a,b](𝑥) = {
1, 𝑥 ∈ [a, b]

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑎, 𝑏 ∈ ℕ , x ∈ ℝ) 

Emission probabilities are deduced from defuzzification process (Figure 1) of [29]  as follow, the same 

as in [1].  :  

𝑃 = [

0 0 0 0.5 0.25 0.25 0
0 0.25 0.25 0.5 0 0 0

2/3 1/3 0 0 0 0 0
0 0 0 0 0 1/3 2/3

] 

After initializing HMM parameter, Baum-welch algorithm (algorithm 3) is used at each iteration to 

estimate and update HMM emission and transition matrix; this allows HMM to be more adaptive and accurate 
in the classification step.  

Then, the Viterbi Algorithm is used with the estimated parameters to find the most probable sequence 

associated with hidden states given a sequence of observed states. The algorithm will find the max Q (state 

sequence Q =  q1q2 … . qT) for a given observation sequence (O =  o1o2 … . oT) by means of induction (t the
iteration number).  It is about to find the highest probability paths for states [22]. Viterbi algorithm determine 

then how each particle move between sub swarms. 

Indeed, HMM has the ability to learn states of our automata from hidden observation based on the 

maximum likelihood estimation[10], this learning feature of HMM is used to control the particles cross 

PSO iterations. 

3.3 Sub-swarms parameters adaptation 

Moreover, according to each sub swarm associated to each state, PSO parameters are adjusted, 

especially acceleration parameters 𝑐1, 𝑐2 and inertia weight 𝑤 with elastic learning in convergence sub-swarm
[29]. It is done based on APSO parameters update in [29] and [1], see algorithm 1 : 

Algorithm 1: Adaptive acceleration update in APSO [29] 
Data: Position and accelerations factors 

Initialization: positions and accelerations factors c1  and c2 ; 

if sub-swarm = exploration then  Increasing c1  and Decreasing c2 ; 

else if sub-swarm = exploitation then 

Increasing c1  and Slightly Decreasing c2 

else if sub-swarm = jumping out then 

Increasing Slightly c1  and Increasing c2 

end 
else if sub-swarm = convergence then 

Decreasing c1  and Increasing c2 

end 

Return c1  and c2 

Result: Updated acceleration factors 

For all sub swarms, the inertia weight is set as follow: 

ω(l) =  
1

1 + 1.5e− 2.6l
∈  [0.4, 0.9] ∀ l ∈  [0, 1] 
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A real-time state estimation procedure is performed to identify each particle adequate swarm: 

exploration, exploitation, convergence, and jumping out. It qualifies an automatic control of the sub-swarms. 

3.3 multi-swarms cooperation: 

To make use of the multi-swarm design given in the previous paragraphs, it’s mandatory to set a 
cooperation model to make use of the search capabilities given by each sub-swarm. A master/slave cooperation 

model is chosen in this approach like in [<niu2007mcpso>], where the slave swarms perform as a single PSO 

while the master swarm iterates depending on its knowledge as well the knowledge of the slave swarms. In 
our case, the master swarm is the swarm associated to the convergence state. Then, the slave swarms will be 

those associated to exploration, exploitation and jumping-out states.  

Each slave swarm with some n particles adapts itself according to its own evolutionary attached state 
separately. So, a slave swarm can be viewed as an independent swarm not connected to the other slaves. For 

the master swarm, the particles improve themselves not simply depending on the social knowledge of the 

master swarm but as well as that of the slave swarms. This notion is made by additional integrating a new 
dimension on the velocity of the particles in its velocity update. The equations for the velocity update of the 

master swarm will be: 

𝑣𝑖
𝐶(𝑡 + 1) =  𝑤 𝑣𝑖

𝐶(𝑡) + 𝑐1𝑟1 (𝑝𝐵𝑒𝑠𝑡 − 𝑥𝑖
𝐶(𝑡)) + 𝑐2𝑟2 (𝑔𝐵𝑒𝑠𝑡𝐶 −  𝑥𝑖

𝐶(𝑡)) + 𝑐3𝑟3(𝑔𝐵𝑒𝑠𝑡 𝑠 −  𝑥𝑖
𝐶(𝑡)) (4)

Where C represents the convergence sub-swarm, 𝑐3is called migration coefficient, 𝑟3 uniform random

sequence in the range [0, 1], 𝑔𝐵𝑒𝑠𝑡𝐶 is the is the global best of the convergence swarm and 𝑔𝐵𝑒𝑠𝑡 𝑠 is the is the 
global best of the other slave sub swarms, in particular exploration, exploitation and jumping-out. 

Figure 2  Sub-swarms and the master/slave interactions 

The figure 2 represents a communication scheme between sub-swarms. Then, the global algorithm of 

this approach is described in algorithm 2. 
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Algorithm 2: MultiS-PSO   

Data: The objective function (f) 

Initialization: positions, velocities of particles, accelerations factors of all four swarms; Set t value to 0; 

while (number of iterations t ≤ tmax  not met) do 

for i = 1 to the number of particles do 

Decoding specific particle state (viterbi ) ;  

Associate particle i to its decoded sub-swarm; 

Update w according to Equation (5) ; 

Update c1  and c2  values according to the corresponding state (algorithm 1) ; 

if convergence swarm  

 Update velocities according to Equation (4) 

else  Update velocities according to Equation (2) 

end 

Update positions according to Equation (1) 

compute f(xi ) ; 

For each sub-swarm i: 

if ( f (xi ) ≤ fbest  ) then 

fbest → f (xi ) ; 

pbest → x ; 

end 

if ( f ( pbest ) ≤ fGbest   ) then 

fGbest  −→ fbest  ; 

gbest  −→ Xbest  ; 

end 

if sub-swarm = convergence then 

Elistic learning    [29];

End 

end 

end  

t → t + 1 ;  

end 

Return pbest   and fbest  ; 

Result: The solution based on the best particle in the population and corresponding fitness Value 

4 Experimentations 

In this section, we conduct an experimental analysis fo the proposed conception method of cooperative 

multi-swarm PSO called MultiS-PSO. Simulations are done on various benchmark functions: unimodal and 
multi-modal. Then, results are compared with other state of the art of PSO related variants.  

4.1 Parameters setting 

Ten benchmark functions constitute fitness function used for experimentation which are split to modal 

and multimodal as shown in Table 1. Cross executions. For every function, the best and the average value are 

put to use in comparison. 

515 sciencesconf.org:meta2018:215345



Benchmark functions Name Type 

𝐟 𝟏 =  ∑[(𝟏𝟎𝟔)
𝒊−𝟏

𝑫−𝟏⁄  𝒙𝒊
𝟐]

𝐃

𝐢=𝟏

 
Elliptic Unimodal 

𝐟𝟐 =  ∑(| 𝐱𝐢 +  𝟎. 𝟓|)𝟐

𝐃

𝐢=𝟏

Step Unimodal 

𝐟𝟑 =  ∑ 𝐱𝐢
𝟐

𝐃

𝐢=𝟏

 
Sphere Unimodal 

𝐟𝟒 =  𝟏𝟎𝟔  𝐱𝟏
𝟐  + ∑  𝐱𝐢

𝟐 

𝐃

𝐢=𝟐

Tablet Unimodal 

𝐟𝟓 =  ∑(∑ 𝐱 𝐢

𝐃

𝐢=𝟏

  )𝟐

𝐃

𝐢=𝟏

 
Quadric Unimodal 

𝐟𝟔 =  ∑[ 𝐱𝐢
𝟐  −  𝟏𝟎 𝐜𝐨𝐬 (𝟐 𝛑 𝐱𝐢) +  𝟏𝟎]

𝐃

𝐢=𝟏

Rastrigrin Multimodal 

𝐟𝟕 =  −𝟐𝟎 𝐞𝐱𝐩(−𝟎. 𝟐 √
𝟏

𝐃 
𝐱𝐢

𝟐) 
Ackley Multimodal 

𝐟𝟖 =  
𝟏

𝟒𝟎𝟎𝟎
∑ 𝐱𝐢

𝟐   − 𝚷 𝐜𝐨𝐬(𝐱 𝐢 / √𝐢) +  𝟏

𝐃

𝐢=𝟏

 
Griewang Multimodal 

𝐟𝟗 =  ∑ 𝐱𝐢  𝐬𝐢𝐧(√𝐱𝐢)

𝐃

𝐢=𝟏

 
Schwefel Multimodal 

𝐟𝟏𝟎 =  − 
𝟏 +  𝐜𝐨𝐬(𝟏𝟐 √𝐱𝟏

𝟐 +  𝐱𝟐
𝟐)

𝟏/𝟐 (𝐱𝟏
𝟐  +  𝐱𝟐

𝟐) +  𝟐
Drop wave Multimodal 

Table 1 Description of Benchmark functions 

Various versions of the PSO algorithm from the literature are selected in the experimentation level for 

comparison (see table 2).  Then, simulations and validations of the proposed on benchmark functions. 

Parameters are the same 𝑐1 = 𝑐2 = 2, 𝜔 = 0.9 for all PSO variants and 𝑐3 = 0.8.

The Swarm size is 30 with dimension of 30. Each run contains 1000 generation of optimization 

process. 

Algorithm Name Reference 

YSPSO PSO with compressibility factor [17] 

SELPSO Natural selection based PSO [11] 

SecVibratPSO Order oscillating PSO [12] 

SecPSO Swarm-core  evolutionary  PSO [26] 

SAPSO Self-adaptive PSO  [11] 

RandWPSO Random inertia weight PSO [27] 

LinWPSO Linear decreasing weights PSO  [27] 

CLSPSO Cooperative line search PSO  [26] 

AsyLnCPSO Asynchrous PSO  [11] 

SimuAPSO PSO  with  Simulated  Annealing  [26] 

Table 2  Compared variants of PSO 

4.2 Performance evaluation 

Firstly, we dress obtained results of all executions to compare the solution accuracy of our 

MultiS-PSO. The best and the average values resulted from experimentations are given in table 3: 
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Functions APSO PSO 
SimuA-

PSO 

Sec-

PSO 

RandW

PSO 
YSPSO SelPSO 

SecVibr

atPSO 
SAPSO 

LinWPS

O 

AsyLnC

PSO 

MultiS-

PSO 

𝑓1
Best 49 13566 115719 4689 9843 1420 16382 275 5095 7067 3765 6.03 

Mean 150 24618 288102 10930 33384 2726 27998 32132 14850 20280 11045 38 

𝑓2
Best 0 5.1e-09 5.8e-06 1.9e-31 2.1e-12 0 8.6e-10 7.3e-10 0 0 0 0 

Mean 0 6.5e-05 0.04 9.8e-12 3.6e-05 0 1.8e-05 0.03 0 0 3.1e-30 0 

𝑓3
Best 0.01 26.55 93.19 20.58 37.7 6.77 36.01 0.8 18.20 17.66 22.89 0.0041 

Mean 0.05 50.15 188.56 38.79 64.09 13.77 63.59 71.05 31.96 40.53 34.58  0.0068 

𝑓4
Best 0.02 94.97 251.36 71.4 110.48 23.72 30.47 17.42 37.21 51.24 21.73  0.0078 

Mean 0.05 135.82 396.21 110.48 246.78 42.31 77.51 199.04 84.79 95.74 44.32 0.0133 

𝑓5

Best 16435 629e+5 587e+6 421e+5 102e+6 127e+4 839e+5 107e+6 459e+5 165e+5 131e+5 2697 

Mean 67851 196e+6 210e+7 978e+5 434e+6 843e+4 210e+6 562e+6 166e+6 155e+6 384e+5 6684 

𝑓6

Best 8.24 266.20 358.22 208.54 293.88 142.44 285.16 221.93 165.66 170.64 193.83 6.89 

Mean 16.14 307.24 462.02 262.89 322.35 175.84 315.60 344.76 273.31 261.77 291.54 14.70 

𝑓7

Best 0.03 4.79 6.9436 4.8963 5.403 3.1785 5.665 1.2753 3.8279 4.7261 5.8372 0.001 

Mean 0.31 5.61 8.6336 5.2716 6.5613 4.2219 6.1951 4.4528 5.2531 5.6829 6.8189  0.016 

𝑓8

Best 7.50e-5 0.17 0.52 0.15 0.25 0.05 0.27 0.05 0.13 0.14 0.08 1.5e-4 

Mean 0.01 0.39 0.87 0.25 0.45 0.12 0.41 0.42 0.25 0.31 0.23 2.1e-4 

𝑓9

Best -118.35 -3e+287 -7.2+47 -4+158 - -3+34 -1e+308 - -1+231 -1e+220 -3e+47 -118.35 

Mean -118.34 -3e+286 -1e+47 -9e+157 - -3e+33 - - -1e+230 -1e+219 -3e+46 -118.34 

𝑓10

Best -1 -1 -0.92 -1 -0.94 -1 -0.99 -0.93 -1 -1 -1 -1 

Mean -1 -0.95 -0.74 -0.96 -0.93 -0.98 -0.95 -0.82 -0.97 -0.96 -0.98 -1 

Table 3  Results comparisons with other variants of PSO 

Our proposed method provides the much better results than all state of the art PSO variants used for 

comparison. MultiS-PSO has enhanced a significant better performances in term of solution accuracy for both 
unimodal and multimodal functions.  

In term of convergence speed, comparisons are illustrated in figure 3.

. 

Figure 3  Comparison on convergence speed 
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Figure 3  Comparison on convergence speed (Continued) 

As shown in figure 3, the black line that gives the executions of MultiS-PSO results is under all other 

lines. Subsequently, MultiS-PSO provides a quicker convergence when compared to all diverse used PSO 
variants from literature. 

Given the exposed effective results of our approach, we can most certainly recognize that the multi-

swarm cooperation based on hidden markov model  supplies noticeably more significant performances for the 
PSO algorithm regarding the solution accuracy and the convergence speed. 
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5 Conclusion 

As a conclusion, we have displayed a new approach named MultiS-PSO that uses a multi swarm 

design based on a hidden markov model with a master/slave cooperation rule. Each one of PSO particles uses 
its historical information and its current swarm to choose the next swarm which it will belong. Our multi 

swarm approach is powered by an attached hidden Markov chain to each element of the swarm that provides 

swarm control of particle during the search process. According to each swarm, acceleration coefficients are 
updated. Then, the cooperation between swarms boost more the search.  Experimental results have established 

very competitive performances in comparison to several chosen PSO variants. We can deduce from obtained 

results that associating a multi swarm based machine learning with a cooperation strategy enhances
significantly PSO performances. 
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Abstract. Low costs, high reactivity and high quality products are necessary criteria for
industries to achieve competitiveness in nowadays market. In this paper, three approaches
are proposed and compared for the process plan generation problem in a reconfigurable man-
ufacturing environment: an iterative multi-objective integer linear program (I-MOILP) and
adapted versions of the well-known evolutionary algorithms, respectively, archived multi-
objective simulated annealing (AMOSA) and the non-dominated sorting genetic algorithm
(NSGA-II). Moreover, in addition to the minimization of the classical total production cost
and the total completion time, the minimization of the maximum machines exploitation time
is considered as a novel optimization criterion, in order to have high quality products. To
illustrate the applicability of the three approaches, an example is presented and the obtained
numerical results are analysed.

Keywords: reconfigurable manufacturing system, multi-objective optimization, multi-objective
integer linear programming, AMOSA, NSGA-II.

1 Introduction

With burgeoning global markets and the demanding nature of the customer, it is very important
for companies/organizations to respond quickly and cost e↵ectively to be present and to take the
lead among the competitors. Today, customer satisfaction is a challenge for most manufacturing
companies. Mass customization, a product deployment concept that combines low price with exten-
sive variation and adaptation has emerged due to its potential impact upon the customer regarding
the perceived value of the product.

With the continuous demand for products incorporating new and complex functionalities there
has been a lot of pressure on the manufacturing companies. This requires a changeable structure
of the organization to cater to a wide product variety and can be attained through adoption of
the concept of Reconfigurable Manufacturing System (RMS), which comprises of reconfigurable
machines, controllers and the software support systems.

RMS was proposed during the mid-nineties by Koren. Due to its six key characteristics: mod-
ularity, integrability, customization, convertability, scalability, and diagnosability [1], it is thought
to be one of the most suitable paradigms to answer these challenges. However, planning, managing
and optimizing, in this context, are an exponentially more complex tasks.

In this paper, three approaches are proposed and compared for the process plan generation
problem in a reconfigurable manufacturing environment: an iterative multi-objective integer linear
program (I-MOILP) and adapted versions of the well-known evolutionary algorithms, respectively,
archived multi-objective simulated annealing (AMOSA) and the non-dominated sorting genetic
algorithm (NSGA-II). Moreover, in addition to the minimization of the classical total production
cost and the total completion time, the minimization of the maximum machines exploitation time
is considered as a novel optimization criterion, in order to have high quality products.
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The rest of the paper is organized as follows: Section 2 briefly summarizes the related works
to RMS. Section 3 presents the problem under consideration and its mathematical formulation.
Section 4 describes more in details the proposed three approaches. Section 5 analyses the obtained
numerical results. Section 6 concludes the paper with some future research directions.

2 Literature review

The literature related to RMS problems is very rich and covers many areas, such as: design, layout
optimization, reconfigurable control, process planning and production scheduling [2]. However, in
this section, we will summarize the most related research works to process plan generation in RMS.

Azab et ElMaraghy [3] considered reconfigurable process plans, where an existing process plan
is reconfigured when a new feature is added to an existing part, in order to avoid the generation
of a wholly new process plan. Reconfiguration of process plan consists to include minor modifica-
tions to meet the requirements of the new part. Furthermore, Shabaka et ElMaraghy [4] developed
a new genetic algorithm based model to perform process plan in RMS environment. The model
simultaneously considers all process plan parameters such as machine assignment and machine
configurations.

Bensmaine et al. [5] addressed the problem of process plan generation in RMS from a multi-
objective perspective using an adapted version of AMOSA. They elaborated an experimental com-
parison based on the obtained pareto fronts. In the same direction, Musharavati et al. [6] used an
enhanced simulated-annealing-based approach. The enhancement of the proposed approach was
conducted by combining variants of the simulated-annealing technique with other algorithm con-
cepts such as knowledge-exploitation and parallelism. While, Chaube et al. [7] presented an adapted
version of the NSGA-II. Two objective are considered, respectively, the total completion time and
manufacturing cost.

More recently, Haddou Benderbal et al. [8] adapted AMOSA to solve the integrated design
and process plan generation problem for RMS. In addition to the classical optimization criteria,
respectively, cost and time, the authors added modularity as a criterion. Xia et al. [9] extended
the concept of reconfigurable process planning to a concept of reconfigurable machining process
planning which targets the process plan generation for a part family.

3 Problem description and mathematical formulation

3.1 Problem description

The manufacturing of a product is the processing of a set of operations linked with each other by a
precedence graph (e.g. Fig. 1). The problem of generating a process plan is to define a sequencing
of these operations for a given RMS’s design (i.e. a set of machines, configurations and tools).

Fig. 1. An example of a precedence graph
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A machine in a RMS is represented by a set of available configurations and a set of compatible
tools. A configuration in this case o↵ers di↵erent tool advance directions (TADs) (i.e. x±, y± and
z±). An operation is represented by the TADs that it requires to be processed. Thus, a set of
triplets Ki that are able to perform the operation i is defined. A triplet k in this case is defined
by the indices of its machine indexMk, configuration indexCk and tool indexT k.

Table 1 shows an example of the required TADS and tools for the operations of an instance
of the problem. The TADS, configurations and tools that each machine o↵ers are also presented.
Table 2 illustrates an example of a generated process plan.

In this case, three optimization criteria are considered: (i) The total production cost, (ii) The
total completion time, (iii) The exploitation time per machine

Table 1. An illustrative example of TADS and Tools

OPs
Ms | Cs

x+ y+ z+ x� y� z� Tools

OP1 x x 4
OP2 x x x 3
OP3 x 4
OP4 x x 4
OP5 x x x 2
OP6 x x 4
OP7 x 2
OP8 x 2

M1
C1 x x

3,4
C2 x x x

M2
C1 x x x

2,3,4
C2 x x

M3
C1 x x

3,4
C2 x x x

M4

C1 x

2,3
C2 x x x
C3 x x
C4 x x x x

M5
C1 x x x

2,3,4
C2 x x x x

Table 2. An illustrative example of a process plan

Operation OP1 OP7 OP3 OP8 OP2 OP4 OP5 OP6
Machine M3 M4 M5 M5 M5 M1 M2 M4
Config C1 C4 C2 C2 C2 C1 C1 C2
Tool T4 T2 T4 T2 T3 T4 T2 T4

3.2 Mathematical Formulation

Throughout the next section, the following notations are used:

Parameters :
O : Set of operations
n : Number of operations
i, i0 : Index of operation
Pi : Set of predecessors operations
k, k0 : Index of triplet
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j, j0 : Index of position in the sequence
M : Set of machines
m, m0 : Index of machine
Ki : Set of available triplets for operation i
Km : Set of available triplets with machine m
K : Set of triplets, where: K = Ki [Km

h, h0 : Index of configuration
tl, tl0 : Index of tool

Production costs :
CCMm,m0 : Cost of changing machine per time unit
CCCh,h0 : Cost of changing configuration per time unit
CCTtl,tl0 : Cost of changing tool per time unit
CPi,k : Cost of processing per time unit

Time :
TCMm,m0 : Time of changing machine
TCCh,h0 : Time of changing configuration
TCTtl,tl0 : Time of changing tool
TPi,k : Time of processing

To formulate our problem, these decisions variables are needed:

xk
i,j = 1 if the ith operation is processed at the jth position using the kth triplet, 0

otherwise.

ym
j,k = 1 if the mth machine is using the kth triplet at the jth position, 0 otherwise.

cmj,m,m0 = 1 if between position j� 1 and j, there has been a change between machines
m and m0, 0 otherwise.

ccm
j,k,k0 = 1 if between position j � 1 and j, there has been a change between triplet k

and k0 of machine m, 0 otherwise.

fe 2 N represents the maximal exploitation time of the machines.

f c and f t are, respectively, the total production cost and the completion time, where:

f c =
nP

j=1

P
i2O

P
k2Ki

xk
i,j ⇥ CPi,k ⇥ TPi,k +

nP
j=1

P
m2M

P
m02M

cmj,m,m0 ⇥ CCMm,m0 ⇥

TCMm,m0 +
nP

j=1

P
m2M

P
k2Km

P
k02Km0

ccm
j,k,k0⇥(TCTindexT k,indexT k0 ⇥CCTindexT k,indexT k0 +

TCCindexCk,indexCk0 ⇥ CCCindexT k,indexT k0 )

f t =
nP

j=1

P
i2O

P
k2Ki

xk
i,j ⇥ TPi,k +

nP
j=1

P
m2M

P
m02M

cmj,m,m0 ⇥ TCMm,m0 +

nP
j=1

P
m2M

P
k2Km

P
k02Km0

ccm
j,k,k0 ⇥ (TCCindexCk,indexCk0 + TCTindexT k,indexT k0 )

Our problem can be formulated as a Multi-Objective Integer Linear Program (MOILP).

Constraint (1) states that one operation is processed at each position of the process plan.
Constraint (2) states that each operation is processed once. Constraint (3) states that an operation
is processed if and only if all its predecessors operations are already processed. Constraint (4)
states that each machine is using one configuration and one tool at once. Constraint (5) states
which configuration and tool are used at position j for machine m. Constraints (6) and (7) state,
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respectively, if there’s a change of machine and a change of configuration and/or tool between
positions j � 1 and j. Constraint (8) states that there’s only one change of configuration between
positions j � 1 and j. Finally, constraint (9) states the maximal exploitation time.

MOILP

min f c

min f t

min fe

s.t.

P
i2O

P
k2Ki

xk
i,j = 1 8j = 1...n (1)

nP
j=1

P
k2Ki

xk
i,j = 1 8i 2 O (2)

P
k2Ki

xk
i,j ⇥ |Pi|  P

i02Pi

j�1P
j0=1

P
k02Ki0

xk0
i0,j0 8i 2 O, 8j = 1...n (3)

P
k2Km

ym
j,t = 1 8j = 1...n, 8m 2M (4)

ym
j,k � xk

i,j 8j = 1...n, 8m 2M, 8k 2 Km (5)

P
i2O

xk
i,j + xk0

i,j�1  ctj,indexMk,indexMk0 + 1 8j = 2...n, 8k, k0 2 K (6)

ym
j,k + ym

j�1,k0  ccm
j,k,k0 + 1 8j = 2...n, 8m 2M, 8k, k0 2 Km (7)

P
k,k02Km

ccm
j,k,k0 = 1 8j = 1...n, 8m 2M (8)

P
k2Km

P
i,j2O

xi,j,k ⇥ TPi,k  fe 8m 2M (9)

4 Proposed Approaches

In this section, we will describe in details the three developed approaches.

4.1 Iterative Multi-Objective Integer Linear Program (I-MOILP)

I-MOILP is a cutting-plane based approach that enumerates the whole optimal pareto front. The
idea behind is to solve at each iteration iter a smaller integer linear program (ILP) by adding cuts
(i.e. constraints) to eliminate the e�cient solution generated by the ILP at iter � 1 as well as all
the solutions dominated by it from the search space.

A description of our approach is proposed in Algo. 1, where Mk is an upper-bound of the kth

objective, ziter
k a boolean variable used to select the objective to optimize at iteration iter and

da the minimum dispersion amount between two solutions for an objective. It is important to
note that our Iterative-MOILP can be used to tackle other multi-objective optimization problems.
However, the problem must be modelled as an integer linear program.

Although the enumeration of the whole optimal pareto front by I-MOILP for large-sized in-
stances can be a very time consuming task, it still has undeniable advantages:
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Algorithm 1: Iterative-MOILP

1: input data
2: iter = 0
3: set an empty archive
4: aggregate the objectives of MOILP
5: solve MOILP
6: add solution to the archive
7: while MOILP is still feasible do
8: iter + +
9: expr = 0

10: create variables ziter
k

11: for k = 1...nbObjectives do
12: expr = expr + ziter

k

13: add constraint: fk  (f iter�1
k � da)ziter

k + Mk(1� ziter
k )

14: end for
15: add constraint: expr � 1
16: solve MOILP
17: add solution to the archive
18: end while
19: return archive

(i) It can provide the exact number of solutions asked by the decision maker (DM)
(ii) It can control the dispersion of the provided solutions by manipulating the dispersion amount

da
(iii) It provides the most appealing solutions to the DM from the beginning when the weights of

the objectives are properly defined

4.2 Adapted Archived Multi-Objective Simulated-Annealing (AMOSA)

AMOSA is a simulated annealing based multi-objective optimization algorithm that provides a set
of solutions non-dominated with each other for a considered problem. Starting with a randomized
or a given initial solution, a local search is performed to generate a new one. An elaborate proce-
dure is used to determine the acceptance of the new solution in the archive.

A brief description of our approach is proposed in Algo. 2. [10] proposes a more detailed descrip-
tion as well as a complexity study and a comparison with the well-known evolutionary algorithms
NSGA-II and PAES for well-known problems in the literature.

Algorithm 2: Adapted AMOSA

1: input data
2: initialize Tmax, Tmin, iter,↵, temp = Tmax, perturbationRatio archive
3: current=random(archive)
4: while temp > Tmin do
5: for i = 0 : iter do
6: new=perturb(current)
7: depending on the dominance status of new with current and the solutions in the archive: new

replace current and is added to the archive
8: delete dominated process plans from the archive
9: end for

10: temp = ↵⇥ temp
11: end while
12: return archive
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4.3 Adapted Non Dominated Sorting Genetic Algorithm II (NSGA-II)

The Non Dominated Sorting Genetic Algorithm (NSGA-II) is a population-based evolutionary
algorithm proposed by [11]. Starting with a randomized initial population called the parent pop-
ulation of a given size, for each iteration of NSGA-II, a new population called child population
is generated by applying genetic operators (i.e. mutation, crossovers...) with specified probabili-
ties. The parent population of iteration iter + 1 is the result of an elitist procedure applied to
parentPopulationiter [ childPopulationiter. This elitist procedure is ensured by a fast non domi-
nated sorting algorithm, as well as a crowding distance sorting.

A description of our approach is proposed in Algo. 3. Moreover, more detailed descriptions of
the fast non dominated sorting and the crowding distance sorting algorithms are presented in [11].

Algorithm 3: Adapted NSGA-II

1: input data
2: initialize populationSize, iteration, pmutation, mutationRatio, pcrossover

3: randomize parentPopulation
4: for iter = 1 : iteration do
5: generate childPopulation from parentPopulation
6: population = parentPopulation [ childPopulation
7: F = fastNonDominatedSorting(population)
8: for l = 1 : size(F ) do
9: if size(newPopulation)+size(Fl) < populationSize then

10: newPopulation+ = Fl

11: else
12: crowdingDistanceSorting(Fl)
13: for k = 1 : size(Fl) do
14: if size(newPopulation) < populationSize then
15: newPopulation+ = F k

l

16: else
17: break;
18: end if
19: end for
20: end if
21: end for
22: parentPopulation = newPopulation
23: end for
24: return parentPopulation

5 Experimental results and analyses

Due to the lack of benchmarks in the literature related to process plan generation in a reconfigurable
manufacturing environment, our experiments results are performed with randomly generated in-
stances. An instance is identified by the number of operations and the number of machines and
denoted by nbOperations nbMachines.

In order to study the influence of the probabilities of genetic operators on the convergence of
adapted NSGA-II, we tested various versions. A version in our case is represented by the proba-
bility of its mutation operator (e.g. NSGA-90 is an adapted version of NSGA-II where 90 % of the
child population is generated using mutation operations while the rest is the result of crossover op-
erations). For visualization purposes, we limited our results to 5 versions of the adapted NSGA-II,
which are presented in the comparisons.

In this case, we can distinguish two experimental schemes:
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5.1 Experimental scheme 1

Adapted AMOSA and adapted NSGA-100, NSGA-75, NSGA-50, NSGA-25 and NSGA-0 are exe-
cuted 10 times and the average percentage of the number of solutions in the optimal pareto front
is compared in regards to the obtained pareto front from the use of I-MOILP. Table 3 presents
the obtained results for instances of the problem under consideration. The computational time
regarding 10 5 for the I-MOILP is of 438 seconds.

Table 3. Averages percentages of the number of solutions in the optimal pareto fronts: I-MOILP vs
adapted AMOSA and NSGA-II

Instance I-MOILP AMOSA NSGA-100 NSGA-75 NSGA-50 NSGA-25 NSGA-0

3 3 100 % 100 % 100 % 100 % 100 % 100 % 100 %
4 3 100 % 100 % 100 % 100 % 100 % 100 % 100 %
5 3 100 % 100 % 100 % 100 % 100 % 100 % 100 %
6 4 100 % 54.8 % 100 % 100 % 100 % 100 % 52.8 %
7 5 100 % 35 % 100 % 100 % 100 % 100 % 25 %
8 5 100 % 55 % 100 % 100 % 100 % 98 % 61.2 %
9 5 100 % 100 % 100 % 100 % 100 % 100 % 90 %
10 5 100 % 0 % 95 % 85 % 92.5 % 70 % 2.5 %

As we can see from Table 3, adapted NSGA-II outperforms adapted AMOSA. We observe that
the pareto fronts obtained by using the adapted NSGA-II are, in most cases, optimal. Moreover, we
realise that for these small instances, when the crossover operator is used exclusively, the quality
of the pareto fronts deteriorates.

5.2 Experimental scheme 2

For medium and large-sized instances, the enumeration of the whole optimal pareto fronts by I-
MOILP can be very time consuming or even impossible. In this case, comparisons between the
generated pareto fronts of, respectively, adapted AMOSA and adapted NSGA-100, NSGA-75,
NSGA-50, NSGA-25 and NSGA-0 are presented in Figures 2, 3 and 4.

Fig. 2. Pareto fronts of instance 20 10: AMOSA vs NSGA-II
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Fig. 3. Pareto fronts of instance 50 20: AMOSA vs NSGA-II

Fig. 4. Pareto fronts of instance 100 20: AMOSA vs NSGA-II

529 sciencesconf.org:meta2018:217103



Confirmed by our experiments, we can observe that the adapted NSGA-II still performs better
than the adapted AMOSA for larger instances. Moreover, we can see that the larger the instance
is, the more e�cient the crossover operator gets, and vice-versa. Finally, we can claim that the
ine�ciency of the mutation operator for large-sized instances is the result of the large number of
neighbours of a given solution.

6 Conclusions

In this paper, we presented and compared an exact and two multi-objective evolutionary-based
approaches for the process plan generation problem in RMS. Three criteria were considered, re-
spectively, the total production cost, the completion time and the maximum exploitation time
for machines. We presented a rich panel of experimental results and analyses to demonstrate the
quality of the developed three approaches.

For future works, we expect to use other criteria such as greenhouse gas (GHG) emission for
sustainability purposes. Moreover, we consider extending the problem to two variants such as,
the multi-unit process plan generation problem and the integrated process plan generation and
scheduling problem (IPPS) in reconfigurable environment.
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1 Introduction

The dynamic pricing, in the case of a manufacturing system allows companies to better manage
their stocks, their production and permits to increase their profits. In a low inventory situation,
the manager can choose to increase the product’s price to reduce the demand and prevent costly
out-of-stock penalties. In the same way, the manager can reduce the price to raise the demand and
use more efficiently its production resources in a high production capacity situation.

From a historical point of view, before the early 80s, the dynamic pricing had mostly been
studied by economists. A few papers from the lot-sizing community dealing with the coordinated
pricing and production problem ([1]) was published. In 1978, the Airline Deregulation Act has been
voted in the USA. This law opened the airline industry market to new companies and allowed them
to set their own prices. This led the market to be hyper competitive, and the companies had to
change their revenue and seat management. That is the beginning of the ”yield management”, that
helped companies to make profit but also to survive ([2]).

Following the success of the yield managment, there have been a revival of interest towards
dynamic pricing by the research community in the mid 90s, but it was mostly focused on systems
with only inventory decisions. For the production side, Haugen et al. [4] studied a lot-sizing problem
combined with pricing aspects. However, the authors considered only the case of linear demand
function. Ahmadi and Shavandi [5] addressed dynamic pricing in a production system with a single
product, demanded by several customer classes. They found the structure of the optimal policy for
two pricing conditions. Some other papers such as Adida and Perakis [6] used also game theory
approach to model the competition between companies.

The main issue of these papers and more generally of most of the literature publication is the
lack of real world application studies. In fact, thanks to the development of the internet, the change
of price for the e-retailers is less expensive than the change of price in ”brick and mortar” store.
However, it’s still difficult to do extensive tests to modelize the impact of price on customers. Fisher
et al. [7] illustrate the difficulty of ”demand learning” in an inventory problem by conducting a
field experiment with a chinese retailer.

The objective of our research is to propose a general model, which can be adapted to different
real case applications by changing the input data. A new heuristic method to solve the problem
of coordinating production operations and pricing strategies is proposed. This method is tested
based on some instances from the literature. The obtained results are promising.

2 Optimization approach

2.1 Initial model

The model considered in this work is based on a problem addressed by Bajwa et al. [9]. Their
mathematical formulation is a modification of a classical lot-sizing formulation with setup costs.
The problem represents a firm that can produce and stock different products. These products
prices and demands are independants. There is no competitors in the market, and the firm wants
to maximize its profit. At each period, the firm has to decide how much to produce, how much to
stock, how much to sell and at which price.

The following assumptions are considered: the set of products is fixed, the time horizon is
discretized into periods. The demand of a customer for a product is formalized by a function which
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depends on the product’s price, seasonality and maximum capacity parameters. In our case, two
well-known demand functions, linear and isoelastic, are considered.

The authors used an adaptation of the Outer Approximation Algorithm (OA) to solve their
model. OA is an exact algorithm based on a decomposition into a primal model and a master
model. It was initially introduced by Duran et al. [8] to solve a nonlinear problem. The model
proposed by Bajwa et al. [9] is well adapted to the Outer-approximation methology because the
binary variables of the model don’t affect the feasibility of the solution. Therefore, there is no
need to check the feasibility of the solutions during the process. This method is able to solve small
instances, but as most of the exact algorithms, it becames less efficient with the increasing of the
instances’ size.

2.2 Heuristic implemented

Since the addressed problem is known to be NP-hard, a heuristic method is proposed to solve large
instances in reasonable computational time. The decision of implementing a heuristic method to
solve the problem has been made because of the increasing of computation time as the instances
grow in size. The purpose of the heuristic is to get one or several near-optimal solutions. This
method replaces the resolution of the master problem. It gives a setup configuration to the primal
problem, but it doesn’t provide an upper bound to the objective function. Then the primal problem
is solved optimally by the efficient algorithm proposed by Bajwa et al. [9].

The heuristic method is based on two constructive heuristics and different local search moves.
For the first heuristic, the products are initially sorted following a given decision rule. Then, the
setup values of one product are set before the decision of the next one. Finally, the obtained solution
is evaluated. The second heuristic operates differently. At each period, the algorithm decides which
products to produce, and for how many periods. In order to determine the best choice, the algorithm
evaluates its partial solution value. For the evaluation, the remaining non decided periods are filled
with setups and the resolution of the primal model provides the value. Thanks to this partial
evalution, the algorithm is able to choose locally the best solution. To select which product setup
should be assigned, the two heuristics consider that a production can begin only when the stock
level is equal to zero at the end of the previous period (Wagner-Whitin heuristic).

The local search moves are applied to the best solution obtained by the constructive heuristics
to improve it. These moves aim to decrease the number of setup, exchange the setup for two
products and swap the setup of a product. They are implemented with a ”first improvement”
policy.

2.3 Numerical experiments

In this section, some promising preliminary results obtained are presented. The instances proposed
by Bajwa et al. [9] are used as benchmark to test the heuristic. The obtained results are reported
in table 1 for linear demand function and table 2 for isoelactic demand function. The column H1
represents the best result for the first heuristic among the different sorting rules. The column H2
represents the result for the second heuristic. The RL columns provide the results of the local search
used after the constructive heuristic. Only the gap between the solution given by the method based
on Outer approximation for the linear function and on Lingo solver for the isoelastic function, and
the solution given by the heuristic method is presented.

Table 1. Linear demand, decreasing seasonality over time

Production capacity Exact method H1 H1+RL H2 H2+RL

30 235.7 7.7% 0.0% 0.0% 0.0%
40 258.5 7.7% 0.6% 0.0% 0.0%
50 264.5 2.5% 0.0% 0.8% 0.0%
60 267.8 2.6% 1.4% 4.5% 4.5%
70 268.3 0.8% 0.5% 1.6% 1.5%

For the linear function, by taking the best of H1+RL algorithm and H2+RL algorithm, the
average gap obtained over all the scenari is 0.51% and the worst gap reachs 2.5%.
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Table 2. Iso-elastic demand, increasing seasonality over time

Production capacity Exact method H1 H1+RL H2 H2+RL

50 218.5 2.5% 1.1% 0.9% 0.1%
60 224.1 4.4% 0.9% 3.3% 0.0%
70 227.0 0.9% 0.0% 4.6% 3.2%
80 228.3 1.1% 0.2% 0.2% 0.2%
90 230.9 1.9% 1.0% 1.1% 1.1%
100 231.8 0.9% -0.4% 1.5% 1.5%
110 233.5 -0.1% -0.1% 2.2% 1.5%

For the isoelastic function, by taking the best of H1+RL algorithm and H2+RL algorithm, the
average gap obtained over all the scenari is 0.25% and the worst gap reachs 1% . The negative
gaps in table 2 are due to the 0.5% optimality parameter used by the solver.

There is no clear dominant heuristic between the presented ones, it may depend on the structure
of the problem, or it may depend on the initial data. Since their computation time stay low, it
could be worthy to combine them to get the best solutions.

3 Perspectives and future research

A new efficient method aiming to solve coordinate production, inventory and pricing decisions is
presented.

A direct extension of this work may be to work on the characterization based on the data of
the initial sorting rules used in the first heuristic. The second heuristic has common features with
the ”fix-and-relax” heuristic, it may be useful to implement it to compare the results.

Finally, the model allowed us to use two different demand functions, it may be challenging to
implement a third one, such as the logit function [10], used to modelize market with competition.
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1 Introduction

The segmentation of different organs and tissues in ultrasound images is one of the most challen-
ging tasks in medical image processing [3]. The acquisition of these images is non-invasive, cheap,
and does not require ionizing radiations compared to other medical imaging techniques. However,
the ultrasound image segmentation is strongly influenced by the quality of data. There are cha-
racteristic artefacts which make the segmentation task complicated [2,3] such as shadows, speckle,
attenuations, border attenuations, and it is sometimes difficult to obtain the desired results.

As described in [1], texture analysis is very efficient for ultrasound classification and segmen-
tation. Texture is characterized by the spatial distribution of gray levels in a neighborhood. The
segmentation of textured image consists in partitioning an image into homogeneous regions with
respect to texture properties. The success of the segmentation depends mainly on the texture
features selected to characterize the pixels of the image. Four principal texture feature families
are identified [2] : statistical methods, geometric methods, model-based methods and frequency-
based methods. Among the statistical features, Haralick coefficients of the co-occurrence matrix
[4] which are commonly used in 2D texture analysis of medical images [2] and can be adaptable
to 3D texture analysis. These features calculable both locally at the pixel level and over an entire
region. However, they do not generally have the same discriminating power from one type of image
to another. In this context, selecting the best Haralick coefficients (the weight of each Haralick
coefficient) makes it possible to develop an efficient image segmentation model.

In this work, we use the multigene genetic programming (MGGP) for predicting the right
texture features for the ultrasound image segmentation. Multigene Genetic programming (MGGP)
technique [5] is a robust variant of genetic programming (GP), which effectively combines the
model structure selection ability of standard GP with the parameter estimation power of classical
regression by using a new characteristic called multi-gene.

By learning from data, the MGGP technique can find the best combination of the predictor
Haralick features which are computed by the weighted output of each genes in the multigene
program plus a bias term.

For the development of learning data, we adopt the same process presented in [3], which consists
in extracting one single slice from the complete 3D utrasound image and using it as a learning
image. Then an expert segmentation C∗ is performed on this learning image, composed of two
ideal regions Cin and Cout. Cin will contain pixels from the object to be segmented while Cout

will be composed of pixels belonging to a narrow band surrounding Cin, this segmentation type is
illustrated in Figure 1.

Once the two regions (Cin and Cout) are determined, the 14 Haralick features (Table 1) are
computed for each of their pixels. The Haralick features are determined using a neighborhood
window (11x11) of pixels around every pixel of regions Cin and Cout.

The local Haralick texture features of pixels of this segmentation (Cin and Cout ) are used
to create the samples of a learning dataset, the pixels belonging to Cin have a label y=-1 and
those belonging to Cout have a label y=+1. According to the expert segmentation (Figure 1), the
learning dataset contains 5197 samples (pixels) with 1140 belong to Cin and 4057 belong to Cout.

To develop the proposed MGGP-based model for predicting the right texture features, we use
GPTIPS2 [5] which is an open-source software platform for symbolic data mining in MATLAB.
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Figure 1. Example of expert segmentation

MGGP requires to define certain parameters, which are : iteration number, maximum number of
genes allowed in an individual (Gmax), maximum tree depth (Dmax), crossover and mutation event
probabilities and selection method, The functions used here are ”+” and ”-” for linear combination,
and terminals are 14 Haralick texture features (see Table1).

The models are formed by randomly combining the elements from the functional set (+, -
) and the terminal set (the 14 Haralick features). The optimal model is selected considering its
simplicity as well as its performance on the learning data. In this context, two criteria are optimized
simultaneously the complexity and the goodness-of-fit, by searching the so-called Pareto front
(non-dominated solutions) set. The complexity of the model is defined as the sum of nodes of all
sub-trees within a tree. Minimize this complexity is used to assess its simplicity of the model. The
goodness-of-fit is determined by minimizing (1-R2) :

R2 =

∑n
i=1(Ŷi − Ȳ )z∑n
i=1(Yi − Ȳ )z

(1)

Where : ŷi and yi are the measured and calculated output values for the ith output, ȳ respec-
tively. is the average of the measured values for the output and n is the number of samples.

After 100 iterations on learning dataset with these parameters settings (Gmax=14, Dmax=3,
tournament selection size= 20, Mutation probability=0.1, Crossover probability= 0.8 and Pareto
tournament=0.3 ) which were determined experimentally observing convergence of the objectives
functions over the generations, the following prediction model was selected :

0.237 x2 - 0.1185 x1 - 0.02162 x4 + 4.396 x5 - 0.09686 x6 - 0.1937 x9 + 1.786 x12 + 0.8928 x13
- 0.8928 x14 - 1.04

This predicting model is composed of 10 the best combination of the 10 weighted Haralick
features plus a bias term. The Table1 shows the Haralick feature corresponding to each parameter
xi. According to this predictive model, we notice that, the feature 5 (x5 : Inverse Difference
Moment) is the most important because it has the largest weight in the model.

Table 1. Haralick texture features

x1 : Angular Second Moment (Energy) x6 : Sum Avergae x10 : Difference Variance
x2 : Contrast x7 : Sum Variance x11 : Difference Entropy
x3 : Correlation x8 : Sum Entropy x12 : Information Measure of Correlation I
x4 : Variance x9 : Entropy x13 : Information Measure of Correlation II
x5 : Inverse Difference Moment x14 : Maximal Correlation Coefficient

Once the weighted Haralick features are determined by MGGP, we can segment the series of
images with properties of textures similar to that of the learning image. In this case, we have used a
region-based active contour model presented in [6] whose evolution from the curve C in the image,
is based on the energy functional E of the model of Chan and Vese, but instead of relying on the
gray levels present in the image, it will use the selected weighted Haralick features for each pixel
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of the image, as it is presented in the following equation :

E(C, C̄in
j ,

¯Cout
j ) = (

∫

cin

m∑

j=1

wj |Xj(P )− ¯Cin
j |

z
dp ∗ gin(P ))+(

∫

cout

m∑

j=1

wj |Xj(P )− ¯Cout
j |

z
dp ∗ gout(P ))

(2)
Where C̄in

j and ¯Cout
j are the mean values of the jth Haralick feature for the regions Cin and Cout

respectively.Xj(P) is the value of jth Haralick feature for the pixel P. wj is the weight associated
with the jth Haralick feature. gout and gin are the membership functions of the pixel P in Cout

and Cin respectively. The following figure (Figure 2) presents the segmentation results of three
thyroid ultrasound images, belong to a complete series of thyroid ultrasound images, each one
has properties of textures similar to that of the learning image (a). These results encourage us to
continue in improving this research.

Figure 2. Thyroid ultrasound images segmentation : (a) Slices of 3D thyroid ultrasound original image,
(b) Segmentation result.
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Abstract. Permutation flow shop scheduling problem is a well-known problem 

in the literature. Even though many multi-objective permutation flowshop 

scheduling problems are presented in the literature, energy consumption 

consideration in scheduling is still very seldom in the literature. In this paper, we 

consider a bi-objective permutation flowshop scheduling problem and propose a 

bi-objective mixed integer linear programming model for the objectives of 

minimizing the total energy consumption and the makespan in order to see the 

trade-off between them. We employ the augmented-epsilon constraint method 

for generating the Pareto optimal solution sets for small sized instances. For 

larger instances, we use the augmented epsilon-constraint method with a time 

limit on CPLEX for approximating the Pareto solution sets. As a heuristic 

method, we employ a very recent variable block insertion heuristic algorithm 

from the literature. First, we show the performance of the proposed algorithm on 

small sized problems; then, it is shown that the proposed algorithm is very 

effective for solving larger instances when compared to the time-limited CPLEX. 

Keywords: Permutation flowshop scheduling, energy efficient scheduling, bi-

objective optimization, variable block insertion algorithm, heuristic optimization. 

1   Introduction 

In the permutation flowshop scheduling problem (PFSP), a set of 𝑛 jobs is to be processed 

on 𝑚 machines. Each job consists of m operations, and each operation is to be performed by one 

of the m machines. More formally, given an arbitrary solution, i.e., a permutation of jobs, 𝜎 =
{𝜎1, 𝜎2, … , 𝜎𝑛}, job 𝜎𝑖 is the job at the 𝑖𝑡ℎ position of solution 𝜎. Each job has a processing time

denoted as 𝑝𝜎𝑖,𝑘. Ready times are zero and same permutation is used on all machines. Let 𝐶(𝑖, 𝑘)

be the completion time of job 𝜎𝑖 on machine 𝑘 at position 𝑖. Completion times of jobs at each

machine are computed as follows: 

𝐶(1,1) = 𝑝𝜎1,1   (1) 

𝐶(𝑖, 1) = 𝐶(𝑖 − 1,1) + 𝑝𝜎𝑖,1  ∀𝑖 = 2,… , 𝑛      (2) 
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𝐶(1, 𝑘) = 𝐶(1, 𝑘 − 1) + 𝑝𝜎1,𝑘                                 ∀𝑘 = 2,… ,𝑚                                        (3) 

𝐶(𝑖, 𝑘) = max{𝐶(𝑖 − 1, 𝑘), 𝐶(𝑖, 𝑘 − 1)} + 𝑝𝜎𝑖,𝑘    ∀𝑖 = 2,… , 𝑛; ∀𝑘 = 2,… ,𝑚                      (4) 

The makespan, denoted as 𝐶𝑚𝑎𝑥(𝜎), is the completion time of the last job on the last machine. 

It is simply denoted as 𝐶(𝑛,𝑚). The aim is to find a permutation of jobs minimizing the 

makespan.  

In the PFSP literature, tardiness and flow time based performance measures have been 

generally discussed in order to measure production efficiency and customer satisfaction. 

However, energy efficiency in production scheduling has been considered rarely. Recently, the 

energy consumption has become a key concern for manufacturing sector because of the negative 

environmental impacts such as gas emissions (CO2) and global warming. As the manufacturing 

facilities consume high energy, they are forced to reduce their energy consumption by developing 

more energy efficient scheduling systems [1]. 

An energy efficient scheduling framework was outlined in [2]. As a pioneering study, it was 

concluded that once machines are turned off at idle times, considerable amount of energy can be 

saved [3]. Later on, this turn off strategy was employed in the single machine-scheduling problem 

that minimizes total energy consumption and total tardiness in [4]. Similarly, turn off strategy 

was employed for the flexible flowshop problem in [5]. Due to the inefficiency of turn off 

strategy, a speed scaling strategy was first developed for the energy-efficient FSP [1]. They 

considered operation speed as an independent variable that can be adjusted to improve energy 

efficiency. Later, a MIP formulation was given in [6] for the PFSP considering makespan as an 

objective and peak power consumption as a constraint. In addition, the speed scaling strategy was 

used for the PFSP that minimizes the total carbon emissions and the makespan [7]. Recently, a 

multi-objective genetic algorithm was presented in Zhang & Chiong [8] in order to minimize the 

total weighted tardiness and total energy consumption in a job shop scheduling. Variable speed 

levels were also studied for the two machines PFSP with sequence-dependent setup times and 

some lower bounds as well as a heuristic were proposed [9]. In addition, an energy efficient 

permutation flowshop scheduling using backtracking algorithm was developed in [10] whereas 

in [11], an energy efficient evolutionary algorithm was proposed for single machine scheduling 

with sequence-dependent setup times.  

In this paper, a bi-objective mixed integer linear programming model (MILP) is developed 

for the PFSP using speed-scaling strategy in order to investigate the trade of between 𝐶𝑚𝑎𝑥 and 

the total energy consumption (TEC). In addition, we propose an energy-efficient variable block 

insertion heuristic (VBIH) algorithm employing the speed scaling strategy similar to those 

proposed in [7] and [9]. In fact, we were inspired by these two notable papers. In these two works, 

they employed a matrix representation for speed scaling strategy. In other words, for each 

machine, a different speed scaling strategy is employed. However, we employ a simple job-based 

speed scaling strategy where the same speed strategy is used on all machines. 

The remainder of this paper is organized as follows. Section 2 gives the problem formulation 

for the bi-objective MILP model. Section 3 explains the bi-objective energy-efficient VBIH 

(EE_VBIH) algorithm. In Section 4 presents the computational results and the conclusion is 

given with future research directions in Section 5. 

2   Problem formulation 

In this section, we formulate the problem as a bi-objective PFSP examining a tradeoff between 

𝐶𝑚𝑎𝑥 and TEC. Notations used in the mathematical model are given in Table 1. 
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Table 1. Notations 

Sets and Indexes 

L    Set of speed levels 

𝑗  Index for machines  (1 ≤ 𝑗 ≤ 𝑀) 
𝑖 and 𝑘  Index for jobs (1 ≤ 𝑖, 𝑘 ≤ 𝑁) 

Parameters 

𝑝𝑖𝑗 Processing time of job 𝑖 on machine j 

𝑣𝑙 Speed factor of speed 𝑙 
𝜆𝑙 Processing conversion factor for speed 𝑙 
𝜑𝑗 Conversion factor for idle time on machine j 

τ𝑗 Power of machine j(kW) 

𝐷 A very large number 

Decision Variables 

𝑦𝑖𝑗𝑙 1 if job𝑖 is processed at speed 𝑙 on machine 𝑗;  0,otherwise 

𝑥𝑖𝑘 1 if job 𝑖 precedes job 𝑘; 0 otherwise (𝑖 < 𝑘) 

C𝑖𝑗 Completion time of job 𝑖 on machine 𝑗 

𝜃𝑗 Idle time on machine 𝑗 

𝐶𝑚𝑎𝑥 Maximum completion time (makespan) 

𝑇𝐸𝐶 Total energy consumption (kWh) 

The bi-objective MILP formulation is given below: 

𝑀𝑖𝑛𝐶𝑚𝑎𝑥, 𝑇𝐸𝐶  (1) 

𝐶𝑖1 ≥ ∑
𝑃𝑖1𝑦𝑖1𝑙

𝑣𝑙
𝑙∈𝐿 (1 ≤ 𝑖 ≤ 𝑁)  (2) 

𝐶𝑖𝑗 − 𝐶𝑖,𝑗−1 ≥∑
𝑃𝑖𝑗𝑦𝑖𝑗𝑙

𝑣𝑙
𝑙∈𝐿 (2 ≤ 𝑗 ≤ 𝑀; 1 ≤ 𝑖 ≤ 𝑁)   (3) 

𝐶𝑖𝑗 − 𝐶𝑘𝑗 + 𝐷𝑥𝑖,𝑘 ≥ ∑
𝑃𝑖𝑗𝑦𝑖𝑗𝑙

𝑣𝑙
𝑙∈𝐿 (1 ≤ 𝑗 ≤ 𝑀; 1 ≤ 𝑖 < 𝑘 ≤ 𝑁)      (4) 

𝐶𝑖𝑗 − 𝐶𝑘𝑗 + 𝐷𝑥𝑖𝑘 ≤ 𝐷 −∑
𝑃𝑘𝑗𝑦𝑘𝑗𝑙

𝑣𝑙
𝑙∈𝐿 (1 ≤ 𝑗 ≤ 𝑀; 1 ≤ 𝑖 < 𝑘 ≤ 𝑁)    (5) 

𝐶𝑚𝑎𝑥 ≥𝐶𝑖𝑀(1 ≤ 𝑖 ≤ 𝑁)  (6) 

∑ 𝑦𝑖𝑗𝑙𝑙∈𝐿 = 1;(1 ≤ 𝑖 ≤ 𝑁; 1 ≤ 𝑗 ≤ 𝑀)   (7) 

𝑦𝑖𝑗𝑙 =  𝑦𝑖,𝑗+1,𝑙(1 ≤ 𝑖 ≤ 𝑁; 1 ≤ 𝑗 < 𝑀; 1 ≤ 𝑙 ≤ L)  (8) 

θ𝑗 =𝐶𝑚𝑎𝑥 − ∑ ∑
𝑃𝑖𝑗𝑦𝑖𝑗𝑙

𝑣𝑙
𝑙∈𝐿

𝑁
𝑖=1 (1 ≤ 𝑗 ≤ 𝑀)  (9) 

𝑇𝐸𝐶 = ∑ ∑ ∑
𝑃𝑖𝑗τ𝑗λ𝑙

60𝑣𝑙
𝑦𝑖𝑗𝑙𝑙∈𝐿

𝑀
𝑗=1

𝑁
𝑖=1 + ∑

𝜑𝑗𝜃𝑗τ𝑗

60

𝑀
𝑗=1    (10) 

Objective function (1) minimizes Cmax and TEC. Constraint (2) ensures that the completion 

time of each job on machine 1 is greater than or equal to its processing time on machine 1. 

Constraint (3) states that a job can be started only after its preceding operation has been 

completed. Constraints (4) and (5) guarantee that job i either precedes job k or vice versa in the 

sequence, but not both. Constraint (6) computes the makespan, which is the maximum 

completion time of all jobs on the last machine. Constraint (7) and (8) ensure that exactly one 

speed level is selected for each job and the same speed level is employed on every machine. 

Constraint (9) calculates the idle time of each machine. Constraint (10) computes the total energy 

consumption as proposed by [9]. 

As mentioned above, our problem is a multi-objective problem, we present the dominance 

relation concepts [12] that will be used when solving the PFSP:  
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• Definition 1: Dominance relation. A solution 𝑥𝑖 dominates another solution 𝑥𝑗  if the two 

following conditions are satisfied (denoted as 𝑥𝑖 ≺ 𝑥𝑗): 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≤ 𝑓𝑝(𝑥𝑗) 

o ∃𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) < 𝑓𝑝(𝑥𝑗) 

   A solution 𝑥𝑖 weakly dominates another solution 𝑥𝑗  (denoted as 𝑥𝑖 ≼ 𝑥𝑗) if : 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≤ 𝑓𝑝(𝑥𝑗) 

  A solution 𝑥𝑖 is indifferent to another solution 𝑥𝑗  (denoted as 𝑥𝑖 ∽ 𝑥𝑗) if : 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≰ 𝑓𝑝(𝑥𝑗) ∧ 𝑓𝑝(𝑥𝑗) ≰ 𝑓𝑝(𝑥𝑖) 

• Definition 2: Non-dominated set: Amongst a set of solutions 𝑋, the non-dominated set of 

solutions are the elements of the set 𝑋∗ non-dominated by any element of the set 𝑋. 

• Definition 3: Pareto-optimal set: The non-dominated set of the entire feasible search 

space 𝑆is called the Pareto-optimal solutions. 

There are common solution methods for multi-objective problems such as sequential 

optimization, goal programming, weighting method and ε-constraint method. In this study, we 

prefer to use augmented ε-constraint method, as it generates only Pareto-optimal solutions [13]. 

In Pareto-optimal solutions, any objective function cannot be improved without worsening 

another objective function. In augmented ε-constraint method, one of the objective functions is 

optimized, while other objective functions are defined by constraints. Dissimilar to the standard 

ε-constraint method, slack/surplus variables are included in these objective function constraints 

by converting them to equalities. These variables are also defined as second term in the objective 

function to ensure the Pareto-optimality. 

3   Energy-efficient VBIH algorithm 

Recently, block move-based search algorithms are presented for scheduling problems in 

literature [14-19]. The VBIH algorithm in this paper simply removes a block 𝑏 of jobs from the 

current solution; then it makes a number 𝑛 − 𝑏 + 1 of block insertion moves on the partial 

solution denoted as 𝑏𝑀𝑜𝑣𝑒() procedure. Then, the best one from the 𝑏𝑀𝑜𝑣𝑒() procedure is 

retained in order to undergo a local search procedure. If the new solution obtained after the local 

search is better than the current solution, it replaces the current solution. Otherwise, a simple 

simulated annealing-type of acceptance criterion is used with a constant temperature, which is 

suggested by [20], as follows: 𝑇 =
∑ ∑ 𝑝𝑖𝑘

𝑚
𝑘=1

𝑛
𝑖=1

10𝑛𝑚
× 𝜏𝑃,  where 𝜏𝑃 is a parameter to be adjusted. 

Initially, the block size is fixed to 𝑏 = 1. As long as it improves, it retains the same block size 

(𝑖. 𝑒. , 𝑏 = 𝑏).  Otherwise, it is increased by one (𝑖. 𝑒. , 𝑏 = 𝑏 + 1). the 𝑏𝑀𝑜𝑣𝑒() procedure is 

carried out until the block size reaches at the maximum block size (i.e., 𝑏 ≤ 𝑏𝑚𝑎𝑥). The outline 

of the VBIH algorithm is given in Fig. 1.  

𝜎 = 𝑁𝐸𝐻  

𝜎𝑏𝑒𝑠𝑡 = 𝜎   

𝑤ℎ𝑖𝑙𝑒 (𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜      
    𝑏 = 1 

    𝑑𝑜{  

            𝜎1 = 𝑏𝑀𝑜𝑣𝑒(𝜎, )      
            𝜎1 = 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜎1)      

            𝑖𝑓 (𝑓(𝜎1) ≤ 𝑓(𝜎))𝑡ℎ𝑒𝑛𝑑𝑜{  

                     𝜎 = 𝜎1 

           𝑖𝑓 𝑓(𝜎1) < 𝑓(𝜎𝑏𝑒𝑠𝑡)  𝑡ℎ𝑒𝑛𝑑𝑜{  
                             𝜎𝑏𝑒𝑠𝑡 = 𝜎1   

   𝑏 = 𝑏 
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 𝑒𝑙𝑠𝑒{

 𝑏 = 𝑏 + 1    

𝑖𝑓(𝑟 < 𝑒𝑥𝑝{−(𝑓(𝜎) − 𝑓(𝜎1))/𝑇})

𝜎 = 𝜎1
 }𝑒𝑛𝑑𝑖𝑓 

}𝑤ℎ𝑖𝑙𝑒(𝑏 ≤ 𝑏𝑚𝑎𝑥)

}𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜎𝑏𝑒𝑠𝑡𝑎𝑛𝑑𝑓(𝜎𝑏𝑒𝑠𝑡)
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Fig. 1 Variable block insertion heuristic 

In this study, a job-based speed scaling strategy is proposed for the energy-efficient VBIH 

algorithm. To handle the speed scaling strategy, a multi-chromosome structure is used. It is 

composed of a permutation of n jobs (𝜎) and a speed vector of three levels (𝑣). Three speed 

levels correspond to fast, normal and slow speed levels, respectively. The solution representation 

is given in Fig. 2. 

 𝑥 (
𝜎

𝑣
) 

𝜎 5 2 1 4 3 … 𝑛
𝑣 3 1 2 1 2 … 3

Fig. 2. Solution Representation. 

In Figure 2, a solution/individual 𝑥 (
𝜎
𝑣
) indicates that job 𝜎1 = 5 has a slow speed level, (𝑖. 𝑒.,

𝑣3 = 3),  job 𝜎2 = 2 has a fast speed level, (𝑖. 𝑒. , 𝑣1 = 1); and so on.

3.1   Initial Population 

For the initial population with size NP, the following procedure is used:  A solution is 

constructed by the NEH heuristic [21]. This solution is taken as an initial solution for the VBIH 

algorithm with makespan minimization only. Ten percent of the total CPU time budget is devoted 

to the VBIH algorithm in order to obtain a good starting point for the EE_VBIH algorithm.  Once 

the best solution σ𝑏𝑒𝑠𝑡 is found by the VBIH algorithm, the first three solutions in population are

obtained by assigning fast, normal or slow speed levels to each job in the best solution σ𝑏𝑒𝑠𝑡. The

rest of the population is obtained by assigning random speed levels between 1 and 3 to each job 

in the best solution σ𝑏𝑒𝑠𝑡. The archive set Ω is initially empty and it is updated.

3.2   Block insertion procedure 

The 𝑏𝑀𝑜𝑣𝑒() procedure is a core function in the EE_VBIH algorithm. The procedure 

randomly removes a block 𝑏 of jobs with their speed from the current solution. Then, block is

denoted by 𝑥𝑏 whereas the partial solution after removal will be denoted by 𝑥𝑝 = (𝐽 − 𝑥𝑏). First,

speed levels in 𝑥𝑏 are randomly changed between 1and 3. Then; similar to the one presented in

[22], the EE_VBIH algorithm applies an additional local search to partial solution 𝑥𝑝 before

carrying out a block insertion. Then; the 𝑏𝑀𝑜𝑣𝑒() procedure carries out 𝑛 − 𝑏 + 1 block 

insertion moves. In other words, block 𝑥𝑏 is inserted in all possible positions in the partial

solution 𝑥𝑝. It should be noted that dominance rule (≺) explained before is used when two

solutions and/or partial solutions are compared 

In order to explain the 𝑏𝑀𝑜𝑣𝑒() procedure, following example would be useful. Suppose 

that we have a current solution 𝑥 (
𝜎
𝑣
) = {

3
2,
, 1,
1,
4,
3,
2
1,
, 5
2
} with block size 𝑏 = 2. A block is removed 

and two partial solutions are obtained as follows: 𝑥𝑏 (
𝜎
𝑣
) = (

1,
1,
4
3
) and 𝑥𝑝 (

𝜎
𝑣
) = (

3,
2,
2,
1,
5
2
). First, 

speed levels of 𝑥𝑏 are randomly changed to, say,  𝑥𝑏 (
𝜎
𝑣
) = (

1,
3,
4
2
). Then; an insertion local search 
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is applied to the partial solution 𝑥𝑝 in a way that each job and speed pair is removed from 𝑥𝑝 and

inserted into all positions without the position it is removed. The best non-dominated partial 

solution is retained. Suppose that the best one is 𝑥𝑝 (
𝜎
𝑣
) = (

5,
2,
2,
1,
3
2
). Finally, the block 𝑥𝑏 is

inserted into all positions in 𝑥𝑝 as follows: 𝑥 (
𝜎

𝑣
) = (

1,

3,

4,

2,

5,

2,

2,

1,

3

2
), 𝑥 (

𝜎

𝑣
) = (

5,

2,

1,

3,

4,

2,

2,

1,

3

2
), 𝑥 (

𝜎

𝑣
) =

(
5,

2,

2,

1,

1,

3,

4

2

3

, 2
), and 𝑥 (

𝜎

𝑣
) = (

5,

2,

2,

1,

3

2,

, 1,

3,

4

2
).  Among these four solutions, the non-dominated one 

will be selected and the archive set Ω is updated. 

3.3   Energy-efficient insertion local search 

Regarding the local search algorithm, we employ a very effective first-improvement insertion 

neighborhood structure for each individual 𝑖 in the population. Similar to the 𝑏𝑀𝑜𝑣𝑒() procedure, 

each job and speed level is removed from the current solution and inserted into all positions of 

the current solution. The non-dominated solution is retained and the archive set Ω is updated. The 

insertion local search has a size of (𝑛 − 1)2. As an example, we consider the solution above

𝑥 (
𝜎
𝑣
) = {

3
2,
, 1,
1,
4,
3,
2
1,
, 5
2
}. The first job and its speed level, {

3
2,
} are removed from the current solution 

𝑥. Its speed level is randomly changed to another speed level, say, {
3
1,
}. Then; they are inserted 

into all positions in the solution 𝑥 as follows: 𝑥 (
𝜎
𝑣
) = {

3
1,
, 1,
1,
4,
3,
2
1,
, 5
2
}, 𝑥 (

𝜎
𝑣
) = {

1,
1,
3,
1,
4,
3,
2
1,
, 5
2
}, 𝑥 (

𝜎
𝑣
) =

{
1,
1,
4,
3,
3,
1,
2
1,
, 5
2
}, 𝑥 (

𝜎
𝑣
) = {

1,
1,
4,
3,
2,
1,
3
1,
, 5
2
}, 𝑥 (

𝜎
𝑣
) = {

1,
1,
4,
3,
2,
1,
5
2,
, 3
1
}. Among these five solutions, the non-

dominated one will be selected and the archive set Ω is updated. This is repeated for the next pair

of job and its speed level until the last job and its speed level are inserted into all positions. 

3.4   Energy-efficient uniform crossover and mutation 

In order to obtain more energy-efficient schedules, a local search algorithm based on uniform 

crossover operator by considering only speed levels is proposed in this paper. Note that with the 

same permutation, any change in speed levels leads to a different solution in terms of

𝐶𝑚𝑎𝑥𝑎𝑛𝑑𝑇𝐸𝐶. For this reason, after having applied the VBIH algorithm to each individual in

the population, the same permutation is kept for each individual in the population and a uniform 

crossover on speed levels is carried out as follows. For each individual 𝑥𝑖 in the population, we

select another individual from population randomly, say 𝑥𝑘, new solution is obtained in a way

that taking the speed level is either taken from 𝑥𝑖 or 𝑥𝑘 with a crossover probability 𝑝𝐶[𝑖]. The

uniform crossover is carried out as follows: 

𝑥𝑛𝑒𝑤 (
𝜎
𝑣
) = {

𝑥𝑖(𝑣𝑖𝑗) 𝑖𝑓𝑟𝑖𝑗 ≤ 𝑝𝐶[𝑖]

𝑥𝑘(𝑣𝑘𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ∀𝑗 ∈ 1, . . , 𝑛 

where 𝑟𝑖𝑗 is a uniform random number in 𝑈(0,1) and 𝑝𝐶[𝑖] is the crossover probability, which is

drawn from unit normal distribution 𝑁(0.5,0.1) for each individual 𝑥𝑖 in the population. If 𝑥𝑛𝑒𝑤
dominates 𝑥𝑖 (i.e., 𝑥𝑛𝑒𝑤 ≺ 𝑥), 𝑥𝑖 is replaced by 𝑥𝑛𝑒𝑤  and the archive set Ω is updated. This is

repeated for all individuals in the population. 

After having carried out uniform crossover for all individuals in the population, we mutate 

the population by lowering the speed levels with a small mutation probability as follows: 

𝑥𝑖(𝜎𝑖𝑗 , 𝑣𝑖𝑗) = {
𝑥𝑖(𝑣𝑖𝑗 = 1 + 𝑟𝑎𝑛𝑑()%2) 𝑖𝑓𝑟𝑖𝑗 ≤ 𝑝𝑀[𝑖]

𝑥𝑖(𝑣𝑖𝑗) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      ∀𝑗 ∈ 1, . . , 𝑛;∀𝑖 ∈ 1, . . , 𝑁𝑃 

where 𝑟𝑖𝑗 is a uniform random number in 𝑈(0,1) and 𝑝𝑀[𝑖] is the mutation probability, which is

drawn from unit normal distribution 𝑁(0.05,0.01) for each individual 𝑥𝑖 in the population. 

3.5   The archive set 

An archive set Ω is used to store the non-dominated solutions during the optimization process. 

This archive set should be updated with non-dominated solutions in order to approximate the 
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Pareto-optimal solutions. When a new non-dominated solution is obtained, it should be added to 

the archive set Ω and any member dominated by the new non-dominated solution should be 

removed. 

3.5.1   Update archive set 

In order to update the archive set Ω, Pan et.al. [23] proposed an effective method for updating 

the archive set as follows: The non-dominated solutions in Ω are stored in increasing order of 

their first objective function values. Then, their second objective values will be in decreasing 

order. The procedure for updating the archive set Ω can be summarized as follows: 

Step 1. Archive size is 𝑚 = |Ω| and Ω = {𝑎1, 𝑎2, . . , 𝑎𝑚}. Initially, Ω is empty and the first non-

dominated solution 𝑥 will be added to the first position in Ω. Let 𝑘 = 1. 

Step 2. Find a most suitable position 𝑝𝑜𝑠 for the next individual 𝑥 in the archive set Ω by the 

following procedure: 
𝑑𝑜{ 

     𝑗 = ⌊(𝑘 + 𝑚)/2⌋ 

𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝑎𝑗)) 𝑡ℎ𝑒𝑛𝑗 = 𝑗

𝑒𝑙𝑠𝑒𝑖𝑓 (𝑓1(𝑥) < 𝑓1(𝑎𝑗)) 𝑡ℎ𝑒𝑛𝑚 = 𝑗 − 1

      𝑒𝑙𝑠𝑒𝑘 = 𝑗 + 1 

𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑚)  

Step 3. When comparing 𝑓1(𝑥) with 𝑓1(𝑎𝑗), following cases may occur:

𝐶𝑎𝑠𝑒1.𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝑎𝑗)) 𝑎𝑛𝑑𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝑎𝑗)) 𝑡ℎ𝑒𝑛𝑝𝑜𝑠 = 𝑗

𝐶𝑎𝑠𝑒2.𝑖𝑓 (𝑓1(𝑥) < 𝑓1(𝑎𝑗))

 𝑖𝑓𝑗 = 1   𝑡ℎ𝑒𝑛𝑝𝑜𝑠 = 𝑗𝑎𝑛𝑑𝑚 = 𝑚 + 1  

𝑖𝑓𝑗 > 1𝑎𝑛𝑑𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝑎𝑗−1)) 𝑡ℎ𝑒𝑛𝑝𝑜𝑠 = 𝑗𝑎𝑛𝑑𝑚 = 𝑚 + 1

𝐶𝑎𝑠𝑒3.𝑖𝑓 (𝑓1(𝑥) > 𝑓1(𝑎𝑗)) 𝑎𝑛𝑑𝑖𝑓 (𝑓2(𝑥) < 𝑓2(𝑎𝑗)) 𝑡ℎ𝑒𝑛𝑝𝑜𝑠 = 𝑗 + 1𝑎𝑛𝑑𝑚 = 𝑚 + 1

      If any of cases above is satisfied, solution 𝑥 is added to position 𝑝𝑜𝑠, but all solutions 

dominated by 𝑥 in Ω should be removed. The following procedure removes the dominated 

solutions from Ω: 

Step 1. 𝐼𝑓(𝑝𝑜𝑠 = 𝑚)𝑡ℎ𝑒𝑛𝑔𝑜𝑡𝑜𝑆𝑡𝑒𝑝4 

Step 2. 𝐿𝑒𝑡𝑝𝑜𝑠 = 𝑝𝑜𝑠 + 1.𝐼𝑓𝑓2(𝑎𝑝𝑜𝑠) ≥ 𝑓2(𝑥)𝑡ℎ𝑒𝑛𝑟𝑒𝑚𝑜𝑣𝑒𝑎𝑝𝑜𝑠; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑔𝑜𝑡𝑜𝑆𝑡𝑒𝑝4 

Step 3. 𝑖𝑓(𝑝𝑜𝑠 < 𝑚)𝑡ℎ𝑒𝑛𝑔𝑜𝑡𝑜𝑆𝑡𝑒𝑝2 
Step 4. 𝛺 = 𝑟𝑒𝑝𝑜𝑟𝑡𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

     3.5.2   Crowding distance 

     For a solution in Ω, the crowding distance is the sum of the normalized distance between its 

previous and next neighbors for each objective function value. The extreme solutions have the 

crowding distance set to infinity. It is clear that the larger the crowding distance, the sparser the 

nearby solutions. Based on the storage structure of Ω, the crowding distance of a non-dominated 

solution 𝑎𝑗  is given as follows:

𝑐𝐷𝑗 = {
∞ 𝑖𝑓(𝑗 = 1𝑜𝑟𝑗 = 𝑠)

𝑓1(𝑎𝑗+1)+𝑓1(𝑎𝑗−1)

𝑓1(𝑎𝑠)−𝑓1(𝑎1)
+

𝑓2(𝑎𝑗−1)+𝑓2(𝑎𝑗+1)

𝑓2(𝑎1)−𝑓1(𝑎𝑠)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5   Computational Results 

To test the performance of the algorithms, extensive experimental evaluations are carried out 

on the benchmark suite of Taillard [24]. In this paper, we only employ the first 60 instances from 

20 jobs and 5 machines to 50 jobs and 20 machines (20x5, 20x10, 20x20, 50x5, 50x10 and 

50x20). In addition, due to the computational difficulty of bi-objective problem, we generate 30 

small-sized instances with 5 jobs and 5 machines, 5 jobs and 10 machines, 5 jobs and 20 machines 

by truncating 20x5, 20x10 and 20x20 problems. Population size is taken as NP=100. For the 

VBIH with makespan minimization only, the maximum block size is taken as 𝑏𝑚𝑎𝑥 = 5; and

temperature for acceptance criterion are taken as 𝜏𝑃 = 0.4. The speed and conversion parameters

are taken as 𝑣𝑙 = {1.2, 1, 0.8}, and 𝜆𝑙 = {1.5, 1, 0.6} for the fast, normal and slow speed levels,

respectively. The power of machines are the same (60 𝑘𝑊) and the conversion factor for idle 

time is 0.05. 

All instances are solved with the augmented ε-constraint method using IBM ILOG CPLEX

12.6.3 on a Core i7, 2.60 GHz, 8 GB RAM computer. We minimize 𝐶𝑚𝑎𝑥 by defining 𝑇𝐸𝐶 with

a constraint. Initially, we obtain the ranges of each objective from payoff tables using 

lexicographic optimization. Afterwards, we solve the single-objective model repetitively by 

reducing the constraint on 𝑇𝐸𝐶 with a specific ε level. We obtain very close approximations for 

the Pareto-optimal frontiers of instances with 5 jobs (5x5, 5x10 and 5x20) choosing an ε level as 

10-3. These finite numbers of Pareto-optimal solutions are named as Pareto-optimal solution set 

(𝑃). Due to the exponentially increasing solution times, we find non-dominated solution sets for 

larger instances using a relatively higher ε level, which is calculated by dividing the range of 

𝑇𝐸𝐶 objective function to 20 equal grids.  We set 3 minutes time limit in each iteration for these 

large instances.  

The EE_VBIH algorithm is coded in C++ programming language on Microsoft Visual Studio 

2013. Five replications are carried out for each instance. In each replication, the algorithm is run 

for 10𝑛𝑚 milliseconds for small instances and 30𝑛𝑚 milliseconds for larger instances, where n 

is the number of jobs and m is the number of machines. It is important to note that we initially 

set the archive size to 𝑚 = 5 × 𝑁𝑃 in each replication. After five replications, we keep only non-

dominated solutions in Ω because a solution in a replication can dominate a solution in another 

replication. Due to the real values of objective functions, we generate as many as non-dominated 

solutions after 5 replications. However, we compute the crowding distances of all these solutions 

and we only report the most crowded solutions up to 𝑚 = 100.    

As we find very close approximations to Pareto-optimal frontiers for instances with five jobs, 

we use below performance measures to evaluate the solution quality of the EE_VBIH algorithm. 

𝐼 refers to the non-dominated solution set of the EE_VBIH algorithm. 

 Ratio of the Pareto-optimal solutions found: 𝑅𝑝 = |𝐼 ∩ 𝑃| |𝑃|⁄

 Inverted Generational Distance [25]:  𝐼𝐺𝐷 = ∑ 𝑑(𝑣, 𝐼)𝑣∈𝑃 |𝑃|⁄ , where 𝑑(𝑣, 𝐼) indicates

the minimum Euclidean distance between 𝑣 and the solution in 𝐼. The low IGD value

means that set 𝐼 is very close to set P.

 Distribution Spacing [26]; 𝐷𝑆𝐼 =
[
1

|𝐼|
∑ (𝑑𝑖−𝑑)

2
𝑖∈𝐼 ]

1
2⁄

𝑑
, where �̅� =

∑ 𝑑𝑖𝑖∈𝐼

|𝐼|
, 𝑑𝑖 is the

minimum Euclidean distance between solution 𝑖 and its closest neighbour in 𝐼. Low

spacing value shows that the solutions in 𝐼 are uniformly distributed.

Table 2. Comparison of EE_VBIH and CPLEX on small-sized instances 

Instance Set Rp IGD DSI 

5x5 0.9820 0.00003 0.7000 

5x10 0.8170 0.00023 0.8346 
5x20 0.6360 0.00055 0.8902 
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Average 0.8117 0.00027 0.8083 

Table 2 reports the average results of 𝑅𝑝, IGD and DS measures for each small-sized instance

set, where there are 10 instances in each set. As shown in the table, the EE_VBIH algorithm finds 

approximately 82% of the Pareto-optimal solutions. Especially, for eight instances, all Pareto-

optimal solutions are found by EE_VBIH algorithm. Furthermore, average IGD value of 

EE_VBIH algorithm is very low (0.00027), which indicates that the EE_VBIH provides very 

close approximations to the Pareto-optimal solution sets. In terms of distribution spacing, we can 

say that solutions in 𝐼 are evenly distributed due to the low DS value. 

 For large instances, non-dominated solution sets of EE_VBIH algorithm (I) and time-limited 

CPLEX (M) are compared with each other in terms of the below performance metrics and the 

aforementioned DS metric (averaged over ten instances). 

 Cardinality: the number of non-dominated solutions found.

 Coverage of Two Sets (C) [27]

CIM = |𝑚 ∈ 𝑀;∃𝑖 ∈ 𝐼: 𝑖 ≼ 𝑚}|/|𝑀|

where CIM equals 1 if  some solutions of I weakly dominate all solutions of M.

Table 3. Comparison of EE_VBIH and CPLEX on large instances 

Instance Set |M| |I| CMI CIM DSM DSI 

20x5 18.300 100.000 0.057 0.651 0.181 2.019 

20x10 16.300 93.800 0.013 0.786 0.212 2.481 

20x20 16.900 83.700 0.020 0.808 0.301 2.289 

50x5 14.400 100.000 0.000 0.866 0.415 4.428 

50x10 9.000 80.700 0.001 0.957 0.737 4.271 

50x20 6.900 67.100 0.000 1.000 0.941 4.115 

Average 13.633 87.550 0.015 0.845 0.464 3.267 

Table 3 reports the average results for M and I for each large instance set, where there are 10 

instances in each set. As shown in the table, EE_VBIH generates approximately seven times as 

many non-dominated solutions in very reasonable computation times. Furthermore, EE_VBIH 

performs much better than the time-limited CPLEX in terms of coverage metric, since 85% of 

the solutions of M are weakly dominated by some solutions of I. Particularly, some solutions of 

I weakly dominate all solutions of the M , in 17 of the instances. In terms of distribution spacing, 

solutions in M are distributed more uniformly than the solutions in I, as a fixed ε level is employed 

through the augmented ε-constraint method in time-limited CPLEX. 

6   Conclusion 

This paper presents an energy-efficient PFSP with minimization of makespan and total 

energy consumption. We proposed a simple job-based speed scaling strategy, which is the same 

for all machines in the problem. We develop a multi-objective MILP model and a heuristic 

algorithm. Small-sized instances are generated from Taillard’s benchmarks to find Pareto optimal 

solution sets. First, the MILP model is run for these toy instances and we obtained Pareto optimal 

solution sets. For the larger instances, we employed time limited CPLEX to find 20 solutions for 

each instance.  For toy instances, the EE_VBIH algorithm was able to find approximately 82% 

of the Pareto-optimal solutions. Especially, for eight instances, all Pareto-optimal solutions are 

found by EE_VBIH algorithm. For larger instances, EE_VBIH generates approximately eight 

times as many non-dominated solutions in very reasonable computation times. Furthermore, 

EE_VBIH performs much better than the time-limited CPLEX in terms of coverage metric, since 

85% of the solutions of time-limited CPLEX are dominated by the EE_VBIH algorithm. In 
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particular, EE_VBIH weakly dominates all solutions of time-limited CPLEX in 17 out of 60 

instances.     

For further research, the matrix representation for speed scaling strategy can be easily 

adapted by modifying the MILP model and EE_VBIH algorithm. Some multi-objective 

metaheuristic algorithms can be employed and different performance measures such as total 

tardiness and total flow time criteria can be another research direction. 
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Abstract. The multidimensional knapsack problem (MDKP) is an NP-hard problem in 

combinatorial optimization and it has many practical application areas. However, so far, 

too little attention has been devoted to multi-objective version of MDKP (MOMDKP) in 

the literature. In this paper, the bi-objective multidimensional knapsack problem 

(BOMDKP) is studied and set of non-dominated solutions are found by using a binary 

genetic algorithm (BGA) with an external archive. The proposed algorithm is tested on 

various benchmark problems (bi-objective instances with 100, 250, 500 and 750 items) 

and compared with the other multi-objective algorithms, such as MOEA/D and MOFPA. 

We observed that true Pareto solutions set provided by Ziztler and Laumans for 500 items 

and 2 knapsacks contains 30 dominated solutions. For this reason, the true Pareto optimal 

solutions of the benchmark problems are found for all problem instances using improved 

augmented epsilon constraint (AUGMECON2) method. The results of the proposed BGA 

are compared with the true Pareto optimal solutions to show the effectiveness of it. The 

results show that the proposed BGA algorithm is very competitive when it is compared 

with the best performing algorithms in the literature. 

Keywords: Heuristic optimization, multidimensional knapsack problem, multi-objective 

optimization, genetic algorithm, augmented epsilon constraint method. 

1   Introduction 

     Knapsack problem (KP) is a well-known combinatorial optimization problem which is to select a subset 

of items from the set 𝐼 =  {1, . . . , 𝑛}. Each item i has an associated profit 𝑝𝑖, and weight 𝑤𝑖. The aim of 

the problem is to maximize the total profit of selected items without exceeding the total weight limit 𝑏.  

      In contrast to the one dimensional KP, Multi-Dimensional Knapsack Problem (MDKP) aims to satisfy 

more than one constraints. MDKP can be applied on many real life cases such as stock-cutting, project 

selection, cargo loading [1], shelf space allocation in retail stores [2], scheduling of computer programs 

[3]. Single-objective MDKP has been investigated in many studies in the previous years. Liu et al. [4] 

applied a binary differential search algorithm, which uses Brownian motion like random search for solution 

generation and a feasible solution generation strategy. Meng and Pan [5] proposed an improved fruit fly 

optimization algorithm employing balance exploitation and exploration for MDKD. Moreover, Meng et 

al. [6] developed an improved migrating birds optimization algorithm. Chih [7] developed a self-adaptive 

check and repair operator-based particle swarm optimization (SACRO-PSO) in which pseudo-utility ratio 
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dynamically changes. Chih [8] proposed a three ratio self-adaptive check and repair operator based on 

particle swarm optimization (3RSACRO-PSO), where substitute pseudo-utility ratios change, 

systematically. Furthermore, Gorski et al. [9] formulated a greedy algorithm to solve MDKP. 

     The aim of the multi-objective combinatorial optimization (MOCO) is to find a set of Pareto optimal 

solutions for multiple conflicting objectives instead of finding a single optimal solution for one objective. 

Selection of transportation investment alternatives [10], capital budgeting [11], planning the recovery of 

contaminated light station facilities [12] are some application areas of multi-objective knapsack problem 

(MOKP). Various studies are conducted on MOKP in KP literature. Visee et al. [13] applied branch and 

bound approach, while Gandibleux and Freville [14] uses Tabu Search to solve bi-objective KP. Vianna 

and Arroyo [15] developed a Greedy Randomized Adaptive Search Procedure (GRASP), which finds 

solutions according to defined preference vector and applies local search to find solutions at each iteration.  

Lust and Teghem [16] applied two-phase Pareto local search (2PPLS). Kim et al. [17] presented quantum-

inspired multi-objective evolutionary algorithm (QMEA). Moreover, Lu and Yu [18] proposed an adaptive 

population multi-objective quantum-inspired evolutionary algorithm (APMQEA) in which the population 

size adaptively changes. Gao et al. [19] presented a quantum-inspired artificial immune system 

(MOQAIS). Cerqueus et al. [20] combined a set of existing branching heuristic to solve bi-objective KP. 

At each node, the most appropriate heuristics is selected and used with an adaptive selection strategy. 

Moreover, Mansour and Alaya [21] introduced an indicator-based ant colony optimization (IBACO). 

Figueira et al. [22] proposed four different exact solution methods for exact solution of MOKP up to seven 

objectives. Rong and Figueira [23] presented one traditional and a hybrid dynamic programming (DP) 

algorithms for finding true Pareto optimal solutions of MOKP. Laumans et al. [24] proposed the adaptive 

ε-constraint method for MOKP. Bazgan et al. [25] proposed a DP algorithm, which uses a dominance 

relation to eliminate the solutions cannot lead to a new non-dominated criterion vector.  Figueira et al. [26] 

proposed an algorithmic improvement method, which makes use of lower and upper bounds in DP. 

Furthermore Zitzler and Thiele [27] and Zitzler and Thiele [28] proposed strength Pareto evolutionary 

algorithm (SPEA), which stores Pareto optimal solutions externally and implements clustering to reduce 

the number of Pareto optimal solutions to solve MOKP. Zitzler et al. [29] proposed SPEA2 employing an 

improved fitness assignment technique and new density based selection and archive truncation strategies. 

In [29], both SPEA and SPEA2 are tested on knapsack problem instances and SPEA2 outperformed SPEA. 

Furthermore, Zhang and Li [30] developed a multi-objective evolutionary algorithm based on 

decomposition (MOEA/D) for MOKP.   

     Multi-objective multidimensional knapsack problem (MOMDKP) is a developing area in the knapsack 

literature and a very few studies have investigated MOMKDP. To the best of our knowledge, only Zouache 

et al. [31], Mavrotas et al. [32], Mavrotas et al. [33] and Florios et al. [34] worked on MOMDKP. Zouache 

et al. [31] introduced a novel multi-objective algorithm, which combines particle swarm optimization 

(PSO) and firefly algorithm (FA) and, tested the performance of the algorithm on benchmark instances 

taken from the library published by Zitzler and Thiele [35]. Florios et al. [34] developed an exact multi-

criteria branch and bound algorithm for MOMDKP with three objective and three constraints. Both [32] 

and [33] proposed a heuristics algorithm exploiting “core concept” which was firstly introduced by Balas 

and Zemel [36]. The core concept considers only a core of items with medium efficiency ( 𝑝𝑖 𝑤𝑖⁄ )  to 

reduce the complexity of the problem.  While items with high efficiencies are selected, none of the items 

with low efficiencies is selected. The core concept helps to reduce the search space of the problem and 

thereby, reduce the complexity. Mavrotas et al. [32] combined branch-and-bound algorithm with an 

extension of core concept to solve bi-objective MDKP. The algorithm of Mavrotas et al. [33] is not limited 

to two objective and can handle problems with more than two objectives.  

     In this study, we propose a simple binary genetic algorithm (BGA) with external archive for solving 

bi-objective multi-dimensional knapsack problem (MOMDKP). Our proposed methodology is tested over 

various benchmark problems and the performance of our algorithm is compared to multi-objective firefly 

algorithm with particle swarm optimization (MOFPA) of  Zouache et al. [31] and MOEA/D of Zhang and 

Li [30]. It should be noted that we also found true Pareto optimal solutions of the benchmark instances by 

using Improved Augmented Epsilon Constraint (AUGMECON2) proposed by Mavrotas and Florios [37] 

and demonstrated the efficiency of our algorithm. 
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     The rest of this paper organized as follows: Section 2 describes the problem. Section 3 presents the 

proposed algorithm. Section 4 discusses the results of the study. Finally, Section 5 concludes the study. 

2   Problem formulation 

    The 0-1 MOMDKP considers selecting a subset of items from a given set of items such that two 

objectives are maximized without exceeding a set of knapsack capacity constraints. The mathematical 

model of the problem is defined below. In this formulation, number of items and number of constraints 

can be different from each other. Although some studies in the literature (such as [27], [28] and [35]) 

considered the same number of constraints as the number of objective functions, the mathematical model 

presented here has different numbers for objectives and constraints. Thus, it presents a more general 

formulation of the problem.  

𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑠:  

𝑛: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠  

𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑠  

𝑚: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠  

𝑏𝑖: 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑙𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖  

𝑐𝑗
𝑘: 𝑝𝑟𝑜𝑓𝑖𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑗 𝑖𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑘  

𝑎𝑖𝑗: 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑗 𝑖𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖  

𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛:  

𝑚𝑎 𝑥      𝑧1(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑐𝑗
1 𝑥𝑗

𝑛 
𝑗=1                      

    ⋮            

𝑚𝑎 𝑥      𝑧𝑘(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑐𝑗
𝑘  𝑥𝑗

𝑛 
𝑗=1                                                                                          (1)        

    ⋮ 
𝑚𝑎 𝑥      𝑧𝑝(𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ 𝑐𝑗

𝑝
 𝑥𝑗

𝑛 
𝑗=1                      

𝑠. 𝑡.  
      ∑ 𝑎𝑖𝑗

𝑛
𝑗= 1 𝑥𝑖𝑗  ≤  𝑏𝑖  ,           𝑖 = 1, … , 𝑚                                                                                                (2)  

       𝑥𝑗   𝜖 {0, 1} ,                          𝑗 = 1, … , 𝑛                                                                                                   (3) 

 

In the mathematical model, the total profit of each objective function is maximized in (1). In this multi-

objective model, there can be p different objective functions. Constraint (2) guarantees that total weight of 

all selected items do not exceed the knapsack capacities. Constraint (3) ensures that all decision variables 

are binary.  

As our problem is a multi-objective problem, we present the dominance relation concepts [40] below 

that will be used when solving the MOMDKP:  

• Definition 1: Dominance relation. A solution 𝑥𝑖 dominates another solution 𝑥𝑗  if the two following 

conditions are satisfied (denoted as 𝑥𝑖 ≻ 𝑥𝑗): 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≥ 𝑓𝑝(𝑥𝑗) 

o ∃𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) > 𝑓𝑝(𝑥𝑗) 

   A solution 𝑥𝑖 weakly dominates another solution 𝑥𝑗  (denoted as 𝑥𝑖 ≽ 𝑥𝑗) if : 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≥ 𝑓𝑝(𝑥𝑗) 

  A solution 𝑥𝑖 is indifferent to another solution 𝑥𝑗  (denoted as 𝑥𝑖 ∽ 𝑥𝑗) if : 

o ∀𝑝 ∈ 1, . . , 𝑃; 𝑓𝑝(𝑥𝑖) ≱ 𝑓𝑝(𝑥𝑗)  ∧  𝑓𝑝(𝑥𝑗) ≱ 𝑓𝑝(𝑥𝑖) 

• Definition 2: Non-dominated set: Amongst a set of solutions 𝑋, the non-dominated set of solutions 

are the elements of the set 𝑋∗ non-dominated by any element of the set 𝑋. 
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• Definition 3: Pareto-optimal set: The non-dominated set of the entire feasible search space 𝑆 is 

called the Pareto-optimal solutions. 

There are common solution methods for multi-objective problems such as sequential optimization, goal 

programming, weighting method and ε-constraint method. In this study, we prefer to use improved 

augmented ε-constraint method (AUGMECON2), as it generates only Pareto-optimal solutions [37]. In 

Pareto-optimal solutions, any objective function cannot be improved without worsening another objective 

function. In improved augmented ε-constraint method, one of the objective functions is optimized, while 

other objective functions are defined by constraints. Dissimilar to the standard ε-constraint method, 

slack/surplus variables are included in these objective function constraints by converting them to 

equalities. These variables are also defined as second term in the objective function to ensure the Pareto-

optimality. More details on AUGMECON2 can be found in [37]. 

3   Bi-objective BGA 

Genetic algorithms (GA) are search heuristics based on the biological process of natural selection and 

evolution [38]. In GAs, individuals with decision variables in 𝐷 dimensions are encoded into chromosomes 

to obtain an initial population that should be evolved over generations. At each generation, two individuals 

are chosen and mated from the population. Then, two individuals are crossed over to generate new 

solutions called offspring or child. Some individuals are mutated to escape from local minima. Ultimately, 

offspring population is added to parent population in order to select new individuals for the next 

generation.  

     In Fig. 1, outline of BGA is given for the MOMDKP, and this is detailed in the following parts of this 

section. First, the initial population of size 𝑁𝑃 is constructed randomly. At each generation, for each 

individual in the population, another individual from the population is randomly selected to produce an 

offspring through uniform crossover. Once a new solution is obtained by crossover operator, this solution 

is evaluated and the superiority of feasibility (SF) rule by [39] is used to update both parent population 

and the archive set Ω. This is repeated for each individual in the population. Then, a local search proposed 

in [40] is applied to each individual in the population. Again, new offspring is evaluated and the SF rule 

is used to update both parent population and the archive set Ω.  Furthermore, each individual in the 

population is mutated by changing binary string to one or zero randomly with a small probability. This 

procedure is repeated until the stopping criterion is achieved. 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑊ℎ𝑖𝑙𝑒 (𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) 𝑑𝑜  

        𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟  

        𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ 

        𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛  

        𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛 

𝐸𝑛𝑑𝑤ℎ𝑖𝑙𝑒  

𝑅𝑒𝑝𝑜𝑟𝑡 𝑛𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑒𝑡  

Fig. 1. Binary genetic algorithm 

Each individual is a solution of the MKP, which is represented by an n-bit binary string. In the BGA 

algorithm, solutions are represented by a string of zero or one. If item 𝑗 is selected into the knapsack, then,  

𝑗 =  1; otherwise, 𝑗 =  0.  

An initial population of NP individuals are randomly established with an equal probability of 0.5. In 

other words, if a uniform random number 𝑟(0,1) is less than 0.5, the decision variable is assigned to 1. 

Otherwise, it is assigned to 0. In addition, crossover (𝑝𝐶[𝑖]) and mutation (𝑝𝑀[𝑖]) probabilities are 

assigned to 0.5 and 0.01 initially. The outline of the initial population is given in Fig. 2.  
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𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜 

  𝑝𝐶[𝑖]  =  0.5  
       𝑝𝑀[𝑖]  =  0.01  

 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑛 𝑑𝑜 

 𝑖𝑓 (𝑟 < 0.5) 𝑡ℎ𝑒𝑛 𝑑𝑜 

     𝑥𝑖𝑗 = 1

 𝑒𝑙𝑠𝑒  

𝑥𝑖𝑗 = 0

      𝑒𝑛𝑑𝑖𝑓 

 𝑒𝑛𝑑𝑓𝑜𝑟  

Fig. 2. Initial population 

Offspring population is obtained through a simple uniform crossover operator. In crossover operator, 

we generate an offspring for each individual 𝑥𝑖 in the population in such a way that another individual is

selected from the population randomly, say 𝑥𝑘 and a uniform crossover is applied with a crossover

probability 𝑝𝐶[𝑖]  as follows: 

𝑥𝑖𝑗
∗ = {

𝑥𝑖𝑗 𝑖𝑓 𝑟𝑖𝑗 ≤ 𝑝𝐶[𝑖] 

𝑥𝑘𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  ∀𝑗 ∈ 1, . . , 𝑛; ∀𝑖 ∈ 1, . . , 𝑁𝑃  (4) 

where 𝑟𝑖𝑗 is a uniform random number in 𝑈(0,1) and 𝐶𝑅[𝑖] is the crossover probability, which is drawn

from the unit normal distribution 𝑁(0.5,0.1) for each individual 𝑥𝑖 in the population. Note that crossover 

probability 𝐶𝑅[𝑖] will be mostly around 0.5 and deviating from 0.2 to 0.8 occasionally. After crossover 

operator, parent population and the archive set is updated according to 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 rule explained in 

Fig. 5. The outline of the procedure is given in Fig. 3. 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜 

  𝑥𝑖 = {
𝑥𝑖

∗ 𝑖𝑓 (𝑥𝑖
∗ 𝑖𝑠 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑡𝑜 𝑥𝑖) 

𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     𝑒𝑛𝑑𝑓𝑜𝑟 

Fig. 3. Update parent population and archive set 

After having carried out crossover for all individuals in the population, we mutate the population with 

a small mutation probability as follows: 

𝑥𝑖𝑗 = {
𝑥𝑖𝑗 = 0 𝑖𝑓 𝑟𝑖𝑗 ≤ 𝑝𝑀[𝑖]

𝑥𝑖𝑗 = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5) 

where 𝑟𝑖𝑗 is a uniform random number in 𝑈(0,1) and 𝑝𝑀[𝑖] is the mutation probability, which is drawn

from the unit normal distribution 𝑁(0.05,0.01) for each individual 𝑥𝑖 in the population.

The following binary local search is presented in [40], which is shown that it is very effective for single 

objective MDKP by using a design of experiment. We apply a binary local search to the parent population 

in this step. For each individual in the population, we choose three items randomly. Then, we flip them to 

0 if the item is 1 or to 1 if the item is 0. The local search is given in Fig. 4.  

Note that we do not repair solutions if they are infeasible because search can benefit from infeasible 

solutions [39]. Since the problem on hand is a constrained optimization problem, we employ the superiority 

of feasible solution (SF) rule [39]. Regarding the constrained multi-objective optimization, when comparing 

two individuals, the situation is somewhat different [39]. Three cases can be observed: 1) one is feasible, 

the other is not; 2) both are infeasible: and 3) both solutions are feasible. For the constrained multi-objective 

optimization on hand, we modify SF rule in NSGA-II of Deb et al. [41] to make the definition of domination 
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between two solutions as follows: An individual 𝑥∗ is considered to be 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 to an individual 𝑥 

under the following conditions:  

1) Individual 𝑥∗ is feasible and individual 𝑥 is infeasible. Hence, 𝑥∗ is preferred to 𝑥 by 

𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 rule. 

2) Both individuals are infeasible, but individual 𝑥∗ has a smaller constraint violation. Hence, 𝑥∗  is 

preferred to 𝑥 as 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛  

3) Both individuals, 𝑥∗ and 𝑥 are feasible and individual 𝑥∗ dominates individual 𝑥. Since 𝑥∗  

dominates  𝑥  (𝑥∗ ≻ x), update the external archive set Ω by 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 rule. 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

      𝑥∗ = 𝑥  
          𝑑𝑜  

             𝑎 = 𝑟𝑎𝑛𝑑()%𝑛  
             𝑏 = 𝑟𝑎𝑛𝑑()%𝑛   
             𝑐 = 𝑟𝑎𝑛𝑑()%𝑛  

         𝑤ℎ𝑖𝑙𝑒 (𝑎 = 𝑏 = 𝑐)  
    𝑓𝑙𝑖𝑝 𝑥𝑖,𝑎

∗ , 𝑥𝑖,𝑏
∗  𝑎𝑛𝑑 𝑥𝑖,𝑐

∗  𝑡𝑜 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1  

    𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑥𝑖
∗   

        𝑥𝑖 = {
𝑥𝑖

∗ 𝑖𝑓 (𝑥𝑖
∗ 𝑖𝑠 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑒 𝑡𝑜 𝑥𝑖) 

𝑥𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 𝑒𝑛𝑑𝑓𝑜𝑟  

Fig. 4. Binary local search 

By using this idea above, we develop a selection procedure, denoted by 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 rule, which 

is given in Fig. 5. 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃 𝑑𝑜  

     𝑖𝑓 (𝑥𝑖
∗. 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  0 𝑎𝑛𝑑 𝑥𝑖 . 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 >  0)  

           𝑥𝑖 = 𝑥𝑖
∗  

     𝑒𝑙𝑠𝑒  

            𝑖𝑓 (𝑥𝑖
∗. 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 >  0 𝑎𝑛𝑑 𝑥𝑖 . 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 >  0)  

                   𝑖𝑓 (𝑥𝑖
∗. 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 < 𝑥𝑖 . 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛)  

                              𝑥𝑖 = 𝑥𝑖
∗  

                   𝑒𝑙𝑠𝑒 

                         𝑖𝑓 (𝑥𝑖
∗. 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =  0 𝑎𝑛𝑑 𝑥𝑖 . 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 0)  

                      𝑖𝑓 (𝑥𝑖
∗ ≻ 𝑥𝑖)   

                                    𝑥𝑖 = 𝑥𝑖
∗; 𝑢𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 𝑠𝑒𝑡 Ω 

                               𝑒𝑙𝑠𝑒  

                                     𝑥𝑖 = 𝑥𝑖  

                               𝑒𝑛𝑑𝑖𝑓  

                          𝑒𝑛𝑑𝑖𝑓  

                   𝑒𝑛𝑑𝑖𝑓  

          𝑒𝑛𝑑𝑖𝑓  

     𝑒𝑛𝑑𝑖𝑓  

𝑒𝑛𝑑𝑓𝑜𝑟  

Fig. 5. 𝑆𝐹_𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 rule 

An archive set Ω is used to store the non-dominated solutions during the optimization process. This 

archive set should be updated with non-dominated solutions in order to approximate the Pareto-optimal 

solutions. When a new non-dominated solution is obtained, it should be added to the archive set Ω and any 
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member dominated by the new non-dominated solution should be removed. In order to update the archive 

set Ω, Pan et.al. [42] proposed an effective method for updating the archive set as follows: The non-

dominated solutions in Ω are stored in decreasing order of their first objective function values. Then, their 

second objective values will be in increasing order. The procedure for updating the archive set Ω can be 

summarized as follows: 

Step 1. Archive size is 𝑚 = |Ω| and Ω = {𝑎1, 𝑎2, . . , 𝑎𝑚}. Initially, Ω is empty and the first non-

dominated solution 𝑥 will be added to the first position in Ω. Let 𝑘 = 1. 

Step 2. Find a most suitable position 𝑝𝑜𝑠 for the next individual 𝑥 in the archive set Ω by the following 

procedure: 
𝑑𝑜{ 

     𝑗 = ⌊(𝑘 + 𝑚)/2⌋ 

𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝑎𝑗))  𝑡ℎ𝑒𝑛 𝑗 = 𝑗

𝑒𝑙𝑠𝑒𝑖𝑓 (𝑓1(𝑥) > 𝑓1(𝑎𝑗))  𝑡ℎ𝑒𝑛 𝑚 = 𝑗 − 1

      𝑒𝑙𝑠𝑒  𝑘 = 𝑗 + 1 

𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑚)  

Step 3. When comparing 𝑓1(𝑥) with 𝑓1(𝑎𝑗), following cases may occur:

𝐶𝑎𝑠𝑒 1.  𝑖𝑓 (𝑓1(𝑥) = 𝑓1(𝑎𝑗))  𝑎𝑛𝑑  𝑖𝑓 (𝑓2(𝑥) > 𝑓2(𝑎𝑗)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 

𝐶𝑎𝑠𝑒 2.  𝑖𝑓 (𝑓1(𝑥) > 𝑓1(𝑎𝑗))

 𝑖𝑓  𝑗 = 1   𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗  𝑎𝑛𝑑 𝑚 = 𝑚 + 1  

𝑖𝑓  𝑗 > 1 𝑎𝑛𝑑  𝑖𝑓 (𝑓2(𝑥) > 𝑓2(𝑎𝑗−1)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 𝑎𝑛𝑑 𝑚 = 𝑚 + 1 

 𝐶𝑎𝑠𝑒 3.  𝑖𝑓 (𝑓1(𝑥) < 𝑓1(𝑎𝑗))  𝑎𝑛𝑑  𝑖𝑓 (𝑓2(𝑥) > 𝑓2(𝑎𝑗)) 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 = 𝑗 + 1 𝑎𝑛𝑑 𝑚 = 𝑚 + 1 

      If any of cases above is satisfied, solution 𝑥 is added to position 𝑝𝑜𝑠, but all solutions dominated by 𝑥 

in Ω should be removed. The following procedure removes the dominated solutions from Ω: 

Step 1. 𝐼𝑓 (𝑝𝑜𝑠 = 𝑚) 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4 

Step 2. 𝐿𝑒𝑡 𝑝𝑜𝑠 = 𝑝𝑜𝑠 + 1.  𝐼𝑓 𝑓2(𝑎𝑝𝑜𝑠) ≤ 𝑓2(𝑥) 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝑎𝑝𝑜𝑠; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4 

Step 3. 𝑖𝑓(𝑝𝑜𝑠 < 𝑚) 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 2 
Step 4. 𝛺 = 𝑟𝑒𝑝𝑜𝑟𝑡 𝑛𝑜𝑛 − 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

5   Computational Results 

To evaluate the performance of our algorithm, we used the benchmark problem instances of Zitzler 

and Thiele [35]. We tested our algorithm on four different benchmark instances with 100, 250, 500, and 

750 items having 2 knapsacks. We executed 30 replications with different random seeds for each instance. 

Non-dominated solution sets were found in all replications and then these sets were united into a single 

Pareto optimal set according to the dominance relation.  We applied this procedure to the results of 30 

replications of MOFPA of Zouache et al. [31] and MOEA/D of Zhang and Li [30] and compared them 

with our BGA algorithm. We also compared our algorithm with the true Pareto optimal solutions that we 

obtained by using AUGMECON2. Note that, the true Pareto optimal solutions are not given in Zitzler and 

Thiele [35]. We found the true Pareto optimal solutions using AUGMECON2. 

Our BGA algorithm was coded in Visual C++ 13 and carried out on an Intel(R) Core(TM) i7-2600 CPU 

with 3.40GHz PC with 8.00GB memory. The population size is taken as NP=100. It was carried out 30 

replications for each benchmark problem. MOFPA and MOEA/D results are taken from [31]. Each 

replication is terminated after reaching the the maximum CPU time, i.e., 𝑇𝑚𝑎𝑥 = 100𝑛 millisecond.   

As we find the true Pareto-optimal sets for the benchmark instances, we use the following 

performance measures to compare the performances of the three algorithms (BGA, MOFPA and 
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MOEA/D). Note that 𝑁 refers to the non-dominated solution set of any algorithm and P refers to the true 

Pareto-optimal set. 

 Ratio of the Pareto-optimal solutions found: 𝑅𝑝 = |𝑁 ∩ 𝑃| |𝑃|⁄    

 Inverted Generational Distance [43]:  𝐼𝐺𝐷 = ∑ 𝑑(𝑣, 𝑁)𝑣∈𝑃 |𝑃|⁄ , where 𝑑(𝑣, 𝑁) denotes the 

minimum Euclidean distance between 𝑣 and the solution in 𝑁. The low IGD value means that 

set 𝑁 is very close to set P. 

 Distribution Spacing [44]:   𝐷𝑆𝑁 =
[

1

|𝑁|
∑ (𝑑𝑖−𝑑)2

𝑖∈𝑁 ]
1

2⁄

𝑑
, where �̅� =

∑ 𝑑𝑖𝑖∈𝑁

|𝑁|
, 𝑑𝑖 is the minimum 

Euclidean distance between solution 𝑖 and its closest neighbour in 𝑁. Low spacing value 

indicates that the solutions in 𝑁 are evenly distributed. 

Tables 1, 2, and 3 report the results of 𝑅𝑝, IGD and DS measures of BGA, MOFPA and MOEA/D 

algorithms, respectively. Since [31] did not report the results of MOFPA and MOEA/D for 100 items 

scenario, we compared our BGA algorithm with the true Pareto optimal set and we calculate the average 

values in all tables using the instances with 250, 500 and 750 items. As shown in Table 1, our algorithm 

is able to find 97% of the solutions in the true Pareto set for the scenario with 100 items. According to 𝑅𝑝 

metric, our algorithm outperforms MOEA/D and MOFPA. As given in Table 3, MOEA/D could not find 

any true Pareto optimal solution in all scenarios. For the benchmark instance with 250 items, our algorithm 

finds 67% of the solutions in the true Pareto optimal set, whereas MOFPA finds 12% of the true Pareto 

optimal solutions. For the benchmark instance with 500 items, BGA finds 32% of the solutions in the true 

Pareto set, while MOFPA finds 1% of the true Pareto optimal solutions. For the benchmark instance with 

750 items, our algorithm finds 3% of the solutions in the true Pareto optimal set, whereas MOFPA finds 

1% of the true Pareto optimal solutions.   

Table 1. Comparison of BGA and true Pareto 

Instance Rp IGD DSBGA 

100 Items 0.97 0.43 0.94 

250 Items 0.67 2.98 1.44 

500 Items 0.32 38.15 0.99 

750 Items 0.03 184.98 1.4 

Average 0.34 75.37 1.28 

Table 2. Comparison of MOFPA and true Pareto 

Instance Rp IGD DSMOFPA 

250 Items 0.12 7.63 0.85 
500 Items 0.01 15.95 1.04 

750 Items 0.01 105.77 1.29 

Average 0.05 43.12 1.06 

Table 3. Comparison of MOEAD and true Pareto 

Instance Rp IGD DSMOEAD 

250 Items 0.00 27.55 0.88 
500 Items 0.00 129.76 0.68 

750 Items 0.00 336.71 0.73 

Average 0.00 164.67 0.76 

 

In terms of IGD metric, MOFPA has the lowest IGD value on average, whereas MOEAD has the 

highest IGD values for all scenarios. However, BGA also has low IGD values, especially for the instances 

with 100 and 250 items. Note that BGA has the lowest IGD value for the instance with 250 items and it 

has very low (0.43) IGD value for the instance with 100 items, which indicate that the BGA provides very 

close approximations to the Pareto optimal solution sets. In terms of distribution spacing, the solutions of 

MOEAD are more evenly distributed than the other algorithms due to the lowest average DS value. 
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However, the DS values of all algorithms are very close to each other. Therefore, it can be said that BGA 

also has a good distribution as the difference between average DS values of BGA and MOEAD is very 

low.  

6   Conclusion 

     Bi-objective Multidimensional Knapsack Problem is an extension of the well-known single objective 

knapsack problem. It is an NP-hard combinatorial optimization problem. The problem aims to find a Pareto 

optimal set of two maximization objective functions by selecting a subset of items without exceeding the 

knapsack capacities.  Despite the rich literature of the multi-objective single dimensional and single 

objective multidimensional knapsack problems, very few studies have investigated multi-objective 

multidimensional knapsack problem. 

      In this study, we proposed a new solution method, Binary GA with External Archive to solve Bi-

objective Multidimensional Knapsack Problem. The proposed algorithm has been tested on four different 

benchmark instances that was published by [35]. We also compared our results with the ones of MOFPA 

of [31] and MOEA/D of [30]. Our algorithm outperforms MOFPA and MOEA/D in terms of the number 

of Pareto optimal solutions found. Also, the true Pareto optimal solutions of the benchmark problems were 

found for all problem instances using Improved Augmented Epsilon Constraint (AUGMECON2) method. 

While our algorithm finds almost all true Pareto solutions for small instances, it finds close solutions to 

true Pareto in medium and large sized instances.  

     For future research, the proposed algorithm of this paper to solve Bi-objective Multidimensional 

Knapsack Problem can be improved in many ways. The core concept can be added or local search 

algorithms can be included to improve the performance of our Binary GA algorithm. In addition, the 

algorithm can be tested on three objective multidimensional knapsack problems. All data files, 

computational results and Pareto charts are provided as supplementary materials, and can be found in 

https://okabadurmus.yasar.edu.tr/research/meta2018-solutions/ 
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gregoire.danoy@uni.lu, pascal.bouvry@uni.lu

1 Introduction

Many complex systems such as social networks, the World Wide Web, bio-molecular interactions
and multi-agent systems, can be represented as networks. Often, they exhibit a community struc-
ture: nodes inside a community are densely connected to each other and loosely connected to any
other node of the network. Communities play an important role in networks and the evolution of
communities can provide relevant information about the dynamics of the system. The objective of
a community detection algorithms is to partition similar nodes of the network in a variable number
of groups having different sizes.

Several methods have been proposed that use different approaches: modularity optimization,
spectral methods or methods based on random walks. In particular, Raghavan [1] proposed a
method called label propagation algorithm (LPA) where nodes are assigned an unique label and,
at each iteration, each node adopts the label chosen by the majority of its neighbors. After few
iterations, the network converges to a steady state and nodes having the same label are grouped into
communities. This method is outperformed by some of the other algorithms and can get stuck in
local optima, but several variations have been proposed to overcome these problems. Furthermore,
this method runs in near linear time and does not require global information of the network, thus
it is especially suitable for very large networks or for systems where only local connectivity is
available.

The next section will first describe some related works on community detection and, in particu-
lar, label propagation algorithms and their variations. Then, our new agent-based label propagation
algorithm will be introduced. Finally, we will conclude and propose some ideas for future work.

2 Related work

In this section we give an overview of the existing community detection methods. Girvan and
Newman [2] first proposed a divisive hierarchical algorithm that makes use of edge betweenness:
it measures the number of shortest paths between all pairs of nodes in the network that include
a certain edge. Edges connecting nodes in different communities have high edge betweennes and
removing them would enhance the separation of communities. A faster version [3] was proposed:
it is a hierarchical agglomerative algorithm that assigns a different community to each node and
iteratively merges them to optimize modularity. Blondel, Guillaume, and Lambiotte [4] proposed
another hierarchical agglomerative method called Louvain that maximizes modularity. It assigns
to each node the community of the neighbor that would bring the best improvement in modularity,
merges nodes in the same communities and builds a network where nodes represent the communities
just found. The process iterates until improvement no longer occur. Walktrap [5] is a random
walk based algorithm that uses the transition probability of random walkers to define a similarity
between nodes. In fact, random walkers are more likely to stay within the same community. Infomap
[6], in a similar fashion, models flow patterns in networks using the transition probability of random
walkers. Newman [7] proposed a spectral method based on the eigenspectrum of the modularity
matrix that maximizes modularity. Finally, Reichardt and Stefan Bornhol [8] interpret community
detection as minimizing the energy function of a spin model, where communities are defined as
spin configurations.
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The algorithms just described have several downfalls that make them inefficient on large scale
networks or multi-agent systems where only local interaction occurs: they cannot find a solution
in a reasonable time, they require global information of the network or they suffer from the res-
olution limit. Raghavan [1] proposed a method called label propagation algorithm (LPA) which
runs in near linear time and uses only the network structure to drive the search. Nodes are ini-
tially assigned an unique label and, at each iteration, each node adopts the label chosen by the
majority of its neighbors. After few iterations, the network converges to a steady state and nodes
having the same label are grouped into communities. This can also be seen as an epidemics model
where each node is an infectious agent injecting the network with a different disease (label), or
an evolutionary game where each node is an agent that plays a fictitious game by keeping beliefs
about neighbors’ choices and take an action (choose a label) according to them. Unfortunately, this
comes with some drawbacks. LPA gets easily stuck in local optima and is often outperformed by
more sophisticated algorithms. Also, for networks where communities are weakly defined, a certain
label may ”flood” the network resulting in an a single giant community. Several variations have
been proposed to overcome these problems. Clark [9] developed a variation of this method that in-
corporates modularity optimization to obtain better results, while Liu and Murata [10] integrated
a greedy agglomerative algorithm that allows it to escape from local optima. Leung [11] uses a
more sofisticated decision rule based on node preference (in this case, node degree) to improve
performance and hop attenuation to prevent a label to spread too quickly, while keeping the algo-
rithm scalable. Xie and Szymanski [12] implement a different node preference that is based on the
number of common neighbors between nodes and is related to the clustering coefficient. S̆ubelj and
Bajec [13] elaborate two particular strategies called defensive preservation and offensive expansion.
These strategies rethink the heuristics proposed by Leung to focus on core nodes and border nodes
of communities and are hierarchically combined in a sinergic algorithm. They also show that the
choice of node preference and hop attenuation depend on the structure of the network. Xie and
Szymanski [14] also proposed a variation of LPA that takes inspiration from the MCL algorithm
[15]: each node keeps a list of label distributions that are propagated through the network. An
inflation and a cutoff operator are applied to these lists in a decentralized fashion to keep their
size small and speedup the algorithm.

3 MemLPA

The method that we would like to propose is called MemLPA, a variation of the original label
propagation algorithm where each node is seen as an agent that interacts and shares information
with its neighbors and implements memory. In fact, in the basic LPA, nodes choose a label ac-
cording to the state of its neighborhood at the current iteration, ignoring past states, while in our
method agents keep a list of the labels chosen by their neighbors during previous iterations. We
also adapt some of the improvements proposed in literature to our method such as neighborhood
preference, hop attenuation and conditional update. In the experimental analysis we have found
how the implementation of memory can solve some of the issues presented: it can successfully
improve performance and can prevent aggressive labels to spread through the whole network. The
algorithm can run in near linear time on directed or undirected, weighted or unweighted networks,
is decentralized and scalable.

We compare our method against other existing LP variations and show the advantages of im-
plementing memory. We also compare it to other state-of-the-art community detection algorithms.
For the analysis, we run all algorithms on the Lancichinetti-Fortunato-Radicchi (LFR) benchmark
[16], a very well-known benchmark in literature for community detection, and use the Normalized
Mutual Information (NMI) as performance metric [17] and [18]. We also apply the algorithms on
a set of real-world networks of different nature and use the modularity measure to evaluate the
quality of the solutions.

4 Conclusions and future work

In this paper, we introduce the state-of-the-art of community detection techniques and illustrate
their main drawbacks. We discuss the label propagation algorithm with its variations, and show
how this method can be translated to a disease spreading model or an evolutionary game and we
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proposed a new label propagation algorithm that sees nodes as agents interacting with its neighbors
and implementing memory. In particular, we aimed at developing a method that follows the swarm
intelligence principles:

– Self-organization: by defining the behavior of single robots, a collective behavior emerges
– Decentralized: agents use only local interaction to exchange information and choose actions.

Also, they have no global information about the network
– Scalable: the collective behavior does not change when network size increase. Also, it is suitable

for parallelization
– Fast: has near-linear time complexity
– Stable: does not oscillate and does not get stuck in local optima
– Adaptive: the algorithm can converge to a new equilibrium if agents are deleted/added

We conducted experiments on artificial networks and real world networks, compared out method
against other state-of-the-art community detection algorithms and investigated how the implemen-
tation of memory can solve some of the issues described. As possible upcoming work, we intend to
investigate the possibility to adapt other variations proposed in literature to MemLPA, perform
tests on networks having different structures and find out whether there is a correlation between
the structure of the network and any of these variations. We also want to test this method on
swarms of UAVs for applications such as area coverage optimization and intrusion of malicious
UAVs, where the system can be represented as a dynamic network.
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1 Introduction 
Forecasting of future events is a sensible and essential activity that has a direct impact on the ability 

of any organization to e.g. schedule the level of demand and material [3] and plan the necessary resources. In 
this study we focus on forecasting the number of patients in emergency departments (ED) with the perspective 
of providing a better management of human resources (doctors, nurses, etc.) to decrease the average waiting 
time of patients. The complexity of forecasting the patients flow is achieved using the creation of models 
describing the behaviors of the whole system. A Time series is a sequence of observations collected over time. 
Time series analysis can provide accurate predictions of ED’s volume, length of stay, and acuity [9] and has 
been proven useful in estimating a future event [5]. Many methods have been developed to model and forecast 
time series such as Simple Moving Average (SMA), Exponential Smoothing (ES), Autoregressive Integration 
Moving Average (ARIMA), and Artificial Neural Networks (ANN).  

ARIMA is one of the most important and widely used method for building time series forecasting 
models [4]. The main advantages of ARIMA method is its flexibility in forecasting a large number of time 
series [6]. But the major drawback of this method is the pre-assumed linear form of time series. To overcome 
this limitation, various nonlinear stochastic methods such as Neural Networks have been proposed [8]. The 
goals of this study are to apply both ARIMA and ANN methods to forecast patients’ flow at an hospital 
emergency department and to compare the accuracy of these methods to the accuracy of the previously 
proposed forecasting methods for the same problem [1].  

2 Forecasting Methods 

2.1. Autoregressive Integration Moving Average 
Autoregressive integrated moving average method is generally denoted ARIMA (p, d, q) where p is 

the order of autoregressive process, d is the degree of differencing, and q is the order of the moving average 
process. To build a time series model using ARIMA, we need to examine the time series data and identify p, 
d, q. The first step is to examine whether the time series data is stationary or if differencing is required. The 
second step is to identify the appropriate values of p and q and then estimate the correct ARIMA model. 
Diagnostic checking is the next step to see if the model is adequate otherwise return to the identification step. 
Once the ARIMA model has been selected, it will be used to generate forecast [2].  

In this study, we developed an automatic algorithm for time series forecasting which determines a 
suitable time series model, estimate the appropriate parameters and generates forecast. The algorithm uses a 
variation of the Hyndman and Khandakar algorithm which tries all the possible parameters for a given time 
series and returns the model with the lowest AIC (Akaike’s Information Criterion) and BIC (Bayesian 
Information Criterion) [11]. 
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2.2. Artificial Neural Networks 
Artificial Neural Networks (ANN) are designed to model the human brain based on its neural 

structure. Like humans’ brain, ANN get familiar with the problem to be solved within the training process and 
are later able to solve the same problems [7]. ANN consist of many interconnected artificial neurons. Neurons 
are organized in three interconnection layers: input, hidden that may include more than one layer, and output. 
The input layer receives data from the outside world and represent the inputs to the network. Hidden layers 
discover relationships between features in the input data by applying non-linear activation functions. The 
output layer contains the output produced by the network.  

Since forecasting is the process of making predictions of future based on identifying patterns in 
observed time series data, ANN could be used as a forecasting technique [10]. The time series splitted into 
train and test datasets. Models will be developed using the training dataset and will make predictions on the 
test dataset. In this study, we apply Recurrent Neural Networks for time series forecasting. A RNN is a class 
of ANN which has backward connection between hidden layers and is able to process sequential data. A RNN 
with different activation functions and various number of neurons and hidden layers is developed and tested 
in this study. 

3 Experimental Study 
The first objective of the experimental study is to demonstrate the effectiveness of the ARIMA and 

ANN forecasting methods and to find the optimal neural network structure and ARIMA model parameters. 
The second objective is to compare the performance of the proposed methods with the performance of the 
Short-Term and Long-Term methods proposed by Afilal et al. [1]. The techniques used involve linear 
regression and ARIMA model with fixed and similar parameters for all types of time series. 

The arrival data from the ED of a French hospital over the last 7 years are available. To evaluate the 
developed ARIMA model, we arbitrarily chose the data of May 2017 and November 2017. Experiments are 
conducted on time series with various number of observations for single-day-ahead and 7-day-ahead forecast. 
Table 1 represents the performance of the ARIMA model with specified parameters. The results show 
acceptable performance of the ARIMA model in all configuration of parameters. Its average-case performance 
is about 92%. However, no clear conclusion about the optimal number of observations and forecast days can 
be made.   

Table 1: ARIMA model performance at May 2015 and November 2017 

May 2017 November 2017 

Time series (Nb. weeks) n. ahead=1 n. ahead=7 n. ahead=1 n. ahead=7

2 90% 91% 91% 92% 
5 91% 92% 91% 92% 
9 91% 92% 93% 92% 
15 92% 92% 92% 92% 
30 92% 92% 92% 92% 

To evaluate the performance of ANN, first we have to specify amount of training data. There is no 
simple technique to identify optimal quantity and quality of training data for a problem. In practice, the longer 
training sample implicitly guarantee that the data contain valuable information of the hydrological behavior. 
Thus, in this study, the experiments are constructed by using all data available. The data is splitted into the 
training set from January 2010 to December 2016 and the test set of 2017. To find an optimal configuration 
of ANN structure, various scenarios are designed by varying the number of neurons, layers and lag (see Table 
2). The results show that ANN performs better by increasing the number of layers and lags. However, the 
accuracy of this algorithm in any cases is less than proposed ARIMA ones. 

The Long-Term (LTF) and Short-Term (STF) forecasting methods proposed by Afilal et al. [1] are 
evaluated on the same data sets. The authors used fixed ARIMA parameters (p, d, q) = (7,0,7). The accuracy 
of LTF at May 2017 and November 2017 is 90% and 91% respectively. On the same data sets, the accuracy 
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of STF is 89% and 91%. The results shown that developed ARIMA model in this study performs slightly 
better than others. 

Table 2 : ANN performance over 2017 

Artificial Neural Network Models 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Nb. Lag 7 7 3 3 1 
Nb. Layers 1 3 1 3 1 

Nb. Neurons 7 7 7 7 7 
Accuracy 90% 91% 88% 88% 86% 

4 Conclusions 
 The daily arrivals at the emergency department in a French hospital center is studied in this paper. 

Two forecasting Artificial Neural Networks and ARIMA models are developed. This study focused on 
automatically identifying the optimal ARIMA model. The proposed models have been evaluated on real-world 
data and are compared with various forecasting models. The experiments showed that the proposed ARIMA 
model performed slightly better than other forecasting algorithms with very acceptable average performance: 
92%. This is mainly due to the dynamic parameters’ settings used in our work. In addition, a number of 
scenarios are evaluated and compared to determine the suitable configuration of the models. But, it was not 
possible to conclude about the optimal configuration. Our future work includes estimating the right number 
of time series observations to balance between computational times and the quality of the results and 
automatically identifying the optimal parameters of ANN model.  
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Abstract 

Real parameter optimization is one of the active research fields during the last decade. The performance of LSHADE-

SPACMA was competitive in IEEE CEC'2017 competition on Single Objective Bound Constrained Real-Parameter 

Single Objective Optimization. Besides, it was ranked fourth among twelve papers were presented on and compared to 

this new benchmark problems. In this work, an improved version named ELSHADE-SPACMA is introduced. In 

LSHADE-SPACMA, p value that controls the greediness of the mutation strategy is constant. While in ELSHADE-

SPACMA, p value is dynamic. Larger value of p will enhance the exploration, while smaller values will enhance the 

exploitation. We further enhanced the performance of ELSHADE-SPACMA by integrating another directed mutation 

strategy within the hybridization framework. The proposed algorithm has been evaluated using IEEE CEC'2017 

benchmark. According to the comparison results, the proposed ELSHADE-SPACMA algorithm is better than 

LSHADE and LSHADE-SPACMA. Besides, The comparison results between ELSHADE-SPACMA and the best three 

algorithms from the IEEE CEC'2017 Competition indicate that ELSHADE-SPACMA algorithm shows overall better 

performance and it is highly competitive algorithm for solving global optimization problems. 

Keywords: Evolutionary computation;Numerical Optimization; Differential Evolution; LSHADE; Parameter 

adaptation 

Enhanced LSHADE with Semi-Parameter Adaptation Hybrid with CMA-ES (ELSHADE-SPACMA) 

In this section, we describe the details of ELSHADE-SPACMA which is a new improvement of LSHADE-SPCMA [1]. 

A brief background about each component of ELSHADE-SPACMA is given, then, the new improved version will be 

discussed. 

LSHADE Algorithm 

LSHADE algorithm proposed by Tanabe and Fukunaga [2]. In order to establish a starting point for the optimization 

process, an initial population P
0
 must be created. Typically, each j

th
 component (j = 1,2,.....,D) of the i

th
 individuals

(i = 1,2,.....,NP) in the P
0
 is obtained as follow:

   

Where rand (0,1) returns a uniformly distributed random number in [0, 1]. 

At generation G, for each target vector   
 , a mutant vector is generated according to current-to-pbest/1 mutation 

strategy which was proposed by in the framework of JADE by Zhang and A. C. Sanderson [3]. 

   

The P value here is considered as a control parameter for the greediness of the mutation strategy in order to balance 

exploitation and exploration.    is a random index selected from the population,   is another random index selected from 
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the concatenation of the population with an external archive. This external archive holds parent vectors which 

successfully produced better vectors.       
  is the best individual vector with the best fitness value in the population at 

generation G. The scale factor   
 is a positive control parameter for scaling the difference vector. 

In the crossover, the target vector is mixed with the mutated vector, using the following scheme, to yield the trial 

vector   
 . 

    
   

    
                             

    
            

  

Where                              is a uniformly distributed random number in [0,1],          called the 

crossover rate that controls how many components are inherited from the mutant vector,        is a uniformly distributed 

random integer in[1, D] that makes sure at least one component of trial vector is inherited from the mutant vector. 

DE adapts a greedy selection strategy. If and only if the trial vector  
 yields as good as or a better fitness function 

value than   
 , then   

 is set to   
   . Otherwise, the old vector   

 is reserved. The selection scheme is as follows (for a 

minimization problem):  

  
     

  
            

        
   

  
            

  

In order to improve the performance of LSHADE-SPA, Linear Population Size Reduction (LPSR) was used. In 

LPSR the population size will be decreased according to a linear function. The linear function in LSHADE-SPA was: 

            
           

      
              

Where NFE is the current number of fitness evaluations, MAX_NFE is the maximum number of fitness evaluations, 

Ninit is the initial population size, and Nmin = 4 which is the minimum number of individuals that DE can work with. 

CMA-ES Algorithm 

Among many variants of Evolution Strategies, CMA-ES was efficiently able to solve diverse types of optimization 

problems [4]. In CMA-ES the search space is modeled using multivariate normal distribution. New individuals are 

generated using Gaussian distribution considering the path that the population takes over generations. CMA-ES 

automatically adapt the mean vector m, covariance matrix C, and step size σ.   

CMA-ES steps are as the following:  

1. Create an initial population and evaluate the fitness function. 

2. Generate new individuals using Gaussian distribution:                                  (6) 

3. Mean vector m is updated using best μ individuals according to:         
 
    where    

 
      and     

             . 

4. Step size σ and Covariance matrix C are updated. 

5. Repeat steps 2 to 3 until a stopping criterion is met. 
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For more details about CMA-ES are illustrated in [26].CMA-ES MATLAB code used in this paper was downloaded 

from [5]. In order to improve the exploration capability of LSHADE-SPACMA, a crossover operation was applied after 

the CMA-ES offspring generation step according crossover equation Eq.3.    

Semi-Parameter adaptation of Scaling Factor (F) and Crossover Rate (Cr) 

Parameter setting has a significant impact on the performance of DE. The practices in the fields of parameter 

adaptation demonstrate the relationship between the problem itself and the parameter values [6]. Each problem has its 

own appropriate parameter values. In order to perform Semi-Parameter Adaptation (SPA) for F and Cr, SPA is 

composed of two parts. The first part is activated during the first half of the search, while the second part is activated 

during the second half of the search. 

First part of SPA 

The idea is to activate the change one parameter at a time policy. Thus, during the first part of SPA, the adaptation is 

concentrated on one parameter Cr using LSHADE adaptation, while F parameter will be generated using uniform 

distribution randomly within a specific limit. The first part of SPA using the condition: (nfes < max_nfes/2) where nfes is 

the current number of function evaluations and max_nfes is the maximum number of function evaluation.   

During SPA, each individual has its own  and   values.  will be generated using uniform distribution within the

range (0.45,0.55):       (7) 

 On the other hand,  values is adapted according to the following equation:  (8) 

Where  is a randomly selected memory slot where successful means of previous generations which are stored. 

Memory index i is selected randomly from the range [1,h] where h here is the memory size. Initially, all  values are 

set to 0.5, and by the end of each generation, one memory slot  is updated using the arithmetic mean of     values, 

which successfully generate new individuals. 

Second part of SPA 

During the second part, L-SHADE adaptation will be used to adapt F parameter adaptation using the following 

equation. The adaptation will be concentrated on F. Each individual has its own    value.    will be generated using 

Cauchy distribution:                                                           (9) 

 is the standard deviation for Cauchy distribution and it was set to 0.1,   is a randomly selected memory slot 

where successful means of previous generations which are stored. By the end of each generation, one memory slot  is 

updated using the Lehmer mean of  values, which successfully generate new individuals.  values of the last 5 

generation of the first part of SPA are used to initialize memory slot for the second part of SPA. 

Cr parameter adaptation process will remain as is during the second this part. Due to the nature of LSHADE 

parameter adaptation, Cr parameter will be gradually frozen to the adapted values. According to LSHADE parameter 

adaptation, when all Cr values in a generation are failed to generate successful individuals, the corresponding memory 

slot is set to a terminal value. Thus, Mcr will be frozen until the end of the search. 

LSHADE-SPACMA Algorithm 

LSHADE-SPACMA framework starts with a mutual population P. Each individual x in P will generate offspring 

individual u using either LSHADE or CMA-ES. This assignment is done according to class probability variable (FCP). 

FCP values are randomly selected from memory slots     . By the end of each generation, one memory slot      is 
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updated according to the performance of each algorithm. Thus, more populations will be assigned gradually to the better 

performance algorithm. The update is performed using individuals that successfully generate new individuals only. 

Memory slot      is updated according to: 

 

where c is the learning rate, and is the improvement rate for each algorithm. 

 

Where 0.2 and 0.8 values are the minimum and maximum probabilities assigned to each algorithm. Thus, to maintain 

both algorithms executed simultaneously, FCP values will be always kept in the range (0.2, 0.8).       is the summation 

of differences between old and new fitness values for each individual belongs algorithm     .  

 

Where is the fitness function, is the old individual, is the offspring individual, and is the number of 

individuals belongs to algorithm  . Fig.S1 shows LSHADE-SPACMA pseudo code. 

AGDE Mutation Strategy 

AGDE mutation strategy was proposed in [7].In order to utilize the information of good and bad vectors in the DE 

population, AGDE integrate information from the best and worst groups from the population. Fig.2 shows AGDE 

pseudo code. AGDE uses two random chosen vectors of the top and the bottom 100p% individuals in the current 

population of size NP while the third vector is selected randomly from the middle [NP-2(100p %)] individuals. This 

new mutation scheme helps maintain effectively the balance between the global exploration and local exploitation 

abilities for searching process of the DE. In each generation, the population is divided into three clusters (best, better 

and worst) of sizes 100p%, NP-2*(100p%) and 100p% respectively. Three vectors are selected randomly, one from 

each partition to generate the mutant vector based on the following equation: 

(13) 

Where    is chosen randomly from the middle NP-2*(100p%),                  are chosen randomly from the top 

and bottom 100p%, where  is the mutation factors that are independently generated according to uniform distribution in 

[0.1,1]. Fig.S2 shows AGDE-SPA pseudo code. 

ELSHADE-SPACMA Hybridization framework 

Two improvement were considered to improve the performance of LSHADE-SPACMA. The first one was a 

hybridization framework between LSHADE-SPACMA and AGDE. Both algorithms were integrated with 50% for each 

of them. The framework will assign all the population to LSHADE-SPACMA for one generation, then all the population 

will be assigned to AGDE for another generation. ELSHADE-SPACMA framework is illustrated in Fig.S3.  

The second improvement was to balance the exploration and exploitation behavior of ELSHADE-SPACMA by 

adjusting the greediness parameter p of the mutation. p value will start with a larger value in order to enhance the 

exploration capability of ELSHADE-SPACMA, then it will be reduced linearly in order to concentrate the search and 
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enhance the exploitative capability of ELSHADE-SPACMA during late stages of the search. p value will be reduced 

according to: 

  

Where NFE is the current number of fitness evaluations, MAX_NFE is the maximum number of fitness evaluations, 

 is the initial p value, and      is the minimum value of p.

Experimental study 

Numerical benchmarks 

The performance of the proposed ELSHADE-SPACMA algorithm is evaluated using a set of problems presented in 

the CEC2017 competition on real-parameter single objective optimization. This benchmark contains 30 test functions 

with a diverse set of characteristics. D is the dimensionality of the problem and the functions are tested on 10D, 30D, 

50D and 100D. In summary, functions 1-3 are unimodal, functions 4-10 are multimodal, functions 11-20 are hybrid 

functions and 21-30 are composition functions. More details can be found in [8]. Note that f2 has been excluded because 

it shows unstable behavior especially for higher dimensions. 

Parameter settings and involved algorithms 

Algorithm parameters for ELSHADE-SPACMA are as the following. The initial population size (NP) were set to 

18*D, Memory size (H), and archive rate (Arc_rate) were set to 5 and 1.4 as it was described in LSHADE. Probability 

Variable (FCP) was set to 0.5, and learning rate (c) was set to 0.8. The threshold, where the second part of SPA is 

activated, was set to (max_nfes/2). AGDE p value were set to 0.1. Finally,       was set to 0.3 and      was set to 0.15. 

ELSHADE-SPACMA is compared with best three algorithms from the IEEE CEC'2017 Competition were, in this 

order, EBOwithCMAR [9], jSO [10] and LSHADE-cnEpSin [11]. 

Experimental  results and discussions 

Results of ELSHADE-SPACMA algorithm 
To evaluate the performance of algorithms, experiments were conducted on the test suite. We adopt the 

solution error measure f( ) −f( *), where   is the best solution obtained by algorithms in one run and  * is 

the well-known global optimum of each benchmark function. Error values and standard deviations smaller 

than 10
-8

 are taken as zero. The maximum number of function evaluations (FEs), the terminal criteria, is set to 

10000 ×  , all experiments for each function and each algorithm run 51 times independently. The statistical 

results of the ELSHADE-SPACMA on the benchmarks with 10, 30, 50 and 100 dimensions are summarized 

in Tables 1-4. It includes the obtained best, worst, median, mean values and the standard deviations of error 

from the optimum solution of the proposed ELSHADE-SPACMA over 51 runs for all 29 benchmark 

functions.  

Table 6 using score metric between LSHADE-cnEpSin, jSO, EBOwithCMAR and ELSHADE-SPACMA algorithms 

Algorithms Score1 Score2 Score Rank 

ELSHADE-SPACMA 50 50 100 1 

EBOwithCMAR 48.92592 49.71731 98.64 2 

jSO 48.62186 46.62028 95.24 3 

LSHADE-cnEpSin 45.80996 47.88972 93.69 4 
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TABLE 1 RESULTS OF THE 10D 

BENCHMARK FUNCTIONS, AVERAGED 

OVER 51 INDEPENDENT RUNS 
Func. Best Worst Median Mean Std. 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f5 9.95E-01 1.09E+01 3.00E+00 3.87E+00 2.02E+00 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 1.11E+01 1.97E+01 1.25E+01 1.33E+01 1.75E+00 

f8 9.95E-01 1.29E+01 3.98E+00 4.10E+00 2.51E+00 

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f10 1.14E+00 2.27E+02 6.53E+00 2.27E+01 4.84E+01 

f11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f12 0.00E+00 1.31E+02 4.16E-01 2.85E+01 5.14E+01 

f13 0.00E+00 5.39E+00 4.84E+00 3.57E+00 2.21E+00 

f14 0.00E+00 9.95E-01 0.00E+00 7.80E-02 2.70E-01 

f15 2.63E-07 5.00E-01 1.44E-01 2.51E-01 2.17E-01 

f16 2.04E-02 1.14E+00 5.19E-01 5.62E-01 2.55E-01 

f17 1.42E-02 4.35E-01 6.05E-02 1.39E-01 1.44E-01 

f18 2.29E-04 2.00E+01 3.27E-01 7.10E-01 2.80E+00 

f19 0.00E+00 3.92E-02 1.94E-02 1.55E-02 1.14E-02 

f20 0.00E+00 3.12E-01 0.00E+00 1.41E-01 1.57E-01 

f21 1.00E+02 2.06E+02 1.00E+02 1.02E+02 1.48E+01 

f22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.21E-01 

f23 3.00E+02 3.10E+02 3.05E+02 3.04E+02 2.30E+00 

f24 0.00E+00 3.40E+02 3.34E+02 2.91E+02 9.54E+01 

f25 3.98E+02 4.46E+02 3.98E+02 4.13E+02 2.18E+01 

f26 3.00E+02 3.00E+02 3.00E+02 3.00E+02 0.00E+00 

f27 3.89E+02 3.90E+02 3.90E+02 3.89E+02 1.67E-01 

f28 0.00E+00 6.12E+02 3.00E+02 3.25E+02 1.04E+02 

f29 2.27E+02 2.36E+02 2.30E+02 2.30E+02 2.26E+00 

f30 3.95E+02 4.43E+02 3.95E+02 4.02E+02 1.77E+01 

TABLE 2 RESULTS OF THE 30D BENCHMARK FUNCTIONS, 
AVERAGED OVER 51 INDEPENDENT RUNS 

Func. Best Worst Median Mean Std. 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f4 5.86E+01 5.86E+01 5.86E+01 5.86E+01 0.00E+00 

f5 4.97E+00 3.78E+01 1.79E+01 1.86E+01 8.04E+00 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 3.31E+01 4.79E+01 3.81E+01 3.89E+01 3.43E+00 

f8 6.12E+00 3.58E+01 1.39E+01 1.61E+01 7.46E+00 

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f10 1.07E+03 2.81E+03 1.65E+03 1.70E+03 4.06E+02 

f11 0.00E+00 6.40E+01 3.99E+00 7.80E+00 1.42E+01 

f12 3.93E+00 5.53E+02 2.48E+02 2.47E+02 1.28E+02 

f13 2.98E+00 2.16E+01 1.70E+01 1.57E+01 5.03E+00 

f14 2.13E+00 3.10E+01 2.50E+01 2.37E+01 5.25E+00 

f15 2.99E-01 4.56E+00 1.46E+00 1.86E+00 1.29E+00 

f16 3.57E+00 2.89E+02 2.56E+01 6.68E+01 8.35E+01 

f17 1.05E+01 4.13E+01 2.92E+01 2.97E+01 6.76E+00 

f18 2.94E-01 2.28E+01 2.14E+01 2.09E+01 3.03E+00 

f19 2.67E+00 8.18E+00 4.62E+00 4.61E+00 1.35E+00 

f20 1.67E+01 4.25E+01 2.69E+01 2.73E+01 4.56E+00 

f21 2.10E+02 2.36E+02 2.22E+02 2.22E+02 6.64E+00 

f22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 0.00E+00 

f23 3.49E+02 4.00E+02 3.69E+02 3.69E+02 1.05E+01 

f24 4.21E+02 4.57E+02 4.42E+02 4.41E+02 7.84E+00 

f25 3.87E+02 3.87E+02 3.87E+02 3.87E+02 9.60E-03 

f26 8.95E+02 1.27E+03 1.07E+03 1.08E+03 8.68E+01 

f27 4.86E+02 5.11E+02 4.98E+02 4.99E+02 6.15E+00 

f28 3.00E+02 4.14E+02 3.00E+02 3.02E+02 1.60E+01 

f29 3.63E+02 4.58E+02 4.35E+02 4.33E+02 1.56E+01 

f30 1.94E+03 2.12E+03 1.97E+03 1.98E+03 3.34E+01 

TABLE 3 RESULTS OF THE 50D BENCHMARK FUNCTIONS, 

AVERAGED OVER 51 INDEPENDENT RUNS 

Func. Best Worst Median Mean Std. 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f4 8.02E+00 1.42E+02 2.85E+01 4.36E+01 3.62E+01 

f5 9.95E-01 2.98E+01 1.39E+01 1.39E+01 5.55E+00 

f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f7 5.54E+01 7.35E+01 6.12E+01 6.15E+01 3.86E+00 

f8 6.96E+00 4.28E+01 1.69E+01 1.79E+01 7.47E+00 

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f10 2.69E+03 5.40E+03 3.59E+03 3.69E+03 6.07E+02 

f11 2.03E+01 3.31E+01 2.52E+01 2.62E+01 3.76E+00 

f12 4.03E+02 2.28E+03 1.39E+03 1.36E+03 3.42E+02 

f13 1.07E+01 6.71E+01 4.51E+01 3.68E+01 1.72E+01 

f14 2.52E+01 4.25E+01 2.94E+01 3.07E+01 3.95E+00 

f15 1.94E+01 2.91E+01 2.22E+01 2.28E+01 2.20E+00 

f16 1.29E+02 8.66E+02 3.57E+02 4.15E+02 1.77E+02 

f17 3.48E+01 5.09E+02 2.26E+02 2.30E+02 9.68E+01 

f18 2.16E+01 3.43E+01 2.47E+01 2.51E+01 2.56E+00 

f19 8.46E+00 1.92E+01 1.44E+01 1.44E+01 2.31E+00 

f20 3.66E+01 3.01E+02 8.59E+01 1.08E+02 7.31E+01 

f21 2.23E+02 2.62E+02 2.41E+02 2.42E+02 9.52E+00 

f22 1.00E+02 4.85E+03 1.00E+02 7.16E+02 1.44E+03 

f23 4.35E+02 4.89E+02 4.61E+02 4.62E+02 1.39E+01 

f24 5.14E+02 5.62E+02 5.33E+02 5.34E+02 9.14E+00 

f25 4.77E+02 4.92E+02 4.80E+02 4.81E+02 2.80E+00 

f26 1.08E+03 1.64E+03 1.33E+03 1.34E+03 1.38E+02 

f27 4.80E+02 5.28E+02 5.09E+02 5.10E+02 9.52E+00 

f28 4.59E+02 5.08E+02 4.59E+02 4.60E+02 6.84E+00 

f29 3.27E+02 4.10E+02 3.56E+02 3.58E+02 1.78E+01 

f30 5.79E+05 6.63E+05 5.90E+05 5.97E+05 2.38E+04 

TABLE 4 RESULTS OF THE 100D BENCHMARK FUNCTIONS, 
AVERAGED OVER 51 INDEPENDENT RUNS 

Func. Best Worst Median Mean Std. 

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f3 0.00E+00 2.81E-06 4.59E-08 1.60E-07 4.00E-07 

f4 1.92E+02 2.12E+02 1.97E+02 2.01E+02 8.67E+00 

f5 1.09E+01 2.89E+01 1.79E+01 1.78E+01 3.85E+00 

f6 0.00E+00 9.37E-08 0.00E+00 0.00E+00 1.34E-08 

f7 1.08E+02 1.15E+02 1.11E+02 1.11E+02 1.48E+00 

f8 1.19E+01 2.59E+01 1.79E+01 1.82E+01 3.02E+00 

f9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

f10 7.74E+03 1.23E+04 1.08E+04 1.08E+04 9.53E+02 

f11 3.46E+01 2.45E+02 5.22E+01 7.34E+01 4.30E+01 

f12 3.44E+03 1.87E+04 6.76E+03 7.79E+03 2.92E+03 

f13 6.97E+01 2.88E+02 1.49E+02 1.49E+02 3.83E+01 

f14 3.69E+01 6.18E+01 4.69E+01 4.75E+01 5.69E+00 

f15 5.23E+01 2.22E+02 9.09E+01 1.08E+02 4.34E+01 

f16 7.10E+02 3.00E+03 1.79E+03 1.76E+03 4.88E+02 

f17 4.81E+02 1.92E+03 1.27E+03 1.27E+03 3.45E+02 

f18 5.62E+01 2.02E+02 1.02E+02 1.05E+02 2.56E+01 

f19 4.25E+01 7.45E+01 6.09E+01 6.05E+01 7.55E+00 

f20 4.88E+02 1.46E+03 8.89E+02 9.28E+02 2.54E+02 

f21 2.64E+02 3.33E+02 2.95E+02 2.96E+02 1.65E+01 

f22 7.95E+03 1.20E+04 9.29E+03 9.70E+03 1.20E+03 

f23 5.53E+02 6.57E+02 6.01E+02 6.03E+02 2.19E+01 

f24 8.91E+02 9.78E+02 9.32E+02 9.32E+02 1.90E+01 

f25 6.37E+02 7.74E+02 6.98E+02 7.00E+02 3.99E+01 

f26 2.98E+03 4.12E+03 3.17E+03 3.24E+03 2.19E+02 

f27 5.30E+02 6.08E+02 5.62E+02 5.62E+02 1.75E+01 

f28 4.78E+02 5.77E+02 5.22E+02 5.21E+02 2.38E+01 

f29 8.04E+02 1.77E+03 1.21E+03 1.21E+03 1.98E+02 

f30 2.09E+03 2.61E+03 2.22E+03 2.25E+03 1.11E+02 
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Table 5 Comparison between EBOwithCMAR(EBO), jSO , LSHADE-cnEpSin(EpSin),ELSHADE-SPACMA(ESPACMA) on the benchmark with 
10,30,50 and 100 dimensions 

D=10 D=30 D=50 D=100 

EBO jSO EpSin ESPACMA EBO jSO EpSin ESPACMA EBO jSO EpSin ESPACMA EBO jSO EpSin ESPACMA 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.99E-07 2.39E-06 0.00E+00 1.60E-07 

F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.65E+01 5.87E+01 4.23E+01 5.86E+01 4.29E+01 5.62E+01 5.14E+01 4.36E+01 1.93E+02 1.90E+02 1.98E+02 2.01E+02 

F5 0.00E+00 1.76E+00 1.69E+00 3.87E+00 2.78E+00 8.56E+00 1.23E+01 1.86E+01 7.58E+00 1.64E+01 2.52E+01 1.39E+01 2.87E+01 4.39E+01 5.59E+01 1.78E+01 

F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.54E-08 1.09E-06 9.16E-07 0.00E+00 1.63E-05 2.02E-04 6.02E-05 0.00E+00 

F7 1.06E+01 1.18E+01 1.20E+01 1.33E+01 3.35E+01 3.89E+01 4.33E+01 3.89E+01 5.79E+01 6.65E+01 7.66E+01 6.15E+01 1.22E+02 1.45E+02 1.62E+02 1.11E+02 

F8 0.00E+00 1.95E+00 1.80E+00 4.10E+00 2.02E+00 9.09E+00 1.29E+01 1.61E+01 7.91E+00 1.70E+01 2.63E+01 1.79E+01 2.97E+01 4.22E+01 5.35E+01 1.82E+01 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.76E-03 4.59E-02 0.00E+00 0.00E+00 

F10 3.72E+01 3.59E+01 4.30E+01 2.27E+01 1.41E+03 1.53E+03 1.39E+03 1.70E+03 3.11E+03 3.14E+03 3.20E+03 3.69E+03 9.91E+03 9.70E+03 1.03E+04 1.08E+04 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.49E+00 3.04E+00 1.35E+01 7.80E+00 2.64E+01 2.79E+01 2.14E+01 2.62E+01 6.56E+01 1.13E+02 4.92E+01 7.34E+01 

F12 9.02E+01 2.66E+00 1.01E+02 2.85E+01 4.63E+02 1.70E+02 3.72E+02 2.47E+02 1.94E+03 1.68E+03 1.48E+03 1.36E+03 4.19E+03 1.84E+04 4.62E+03 7.79E+03 

F13 2.17E+00 2.96E+00 3.66E+00 3.57E+00 1.49E+01 1.48E+01 1.73E+01 1.57E+01 4.14E+01 3.06E+01 6.94E+01 3.68E+01 2.45E+02 1.45E+02 1.25E+02 1.49E+02 

F14 6.05E-02 5.85E-02 7.80E-02 7.80E-02 2.19E+01 2.18E+01 2.16E+01 2.37E+01 3.12E+01 2.50E+01 2.65E+01 3.07E+01 1.38E+02 6.43E+01 4.97E+01 4.75E+01 

F15 1.09E-01 2.21E-01 3.24E-01 2.51E-01 3.69E+00 1.09E+00 3.24E+00 1.86E+00 2.94E+01 2.39E+01 2.56E+01 2.28E+01 1.65E+02 1.62E+02 8.99E+01 1.08E+02 

F16 4.17E-01 5.69E-01 5.37E-01 5.62E-01 4.26E+01 7.89E+01 2.29E+01 6.68E+01 3.46E+02 4.51E+02 2.75E+02 4.15E+02 1.41E+03 1.86E+03 1.22E+03 1.76E+03 

F17 1.47E-01 5.02E-01 3.07E-01 1.39E-01 2.98E+01 3.29E+01 2.86E+01 2.97E+01 2.75E+02 2.83E+02 2.07E+02 2.30E+02 1.21E+03 1.28E+03 9.32E+02 1.27E+03 

F18 7.00E-01 3.08E-01 3.86E+00 7.10E-01 2.21E+01 2.04E+01 2.11E+01 2.09E+01 3.20E+01 2.43E+01 2.43E+01 2.51E+01 2.37E+02 1.67E+02 7.79E+01 1.05E+02 

F19 1.50E-02 1.07E-02 4.47E-02 1.55E-02 8.04E+00 4.50E+00 5.83E+00 4.61E+00 2.45E+01 1.41E+01 1.74E+01 1.44E+01 1.15E+02 1.05E+02 5.55E+01 6.05E+01 

F20 1.47E-01 3.43E-01 2.57E-01 1.41E-01 3.57E+01 2.94E+01 3.03E+01 2.73E+01 1.47E+02 1.40E+02 1.14E+02 1.08E+02 1.36E+03 1.38E+03 1.08E+03 9.28E+02 

F21 1.14E+02 1.32E+02 1.46E+02 1.02E+02 1.99E+02 2.09E+02 2.12E+02 2.22E+02 2.11E+02 2.19E+02 2.27E+02 2.42E+02 2.60E+02 2.64E+02 2.77E+02 2.96E+02 

F22 9.85E+01 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 3.65E+02 1.49E+03 1.59E+03 7.16E+02 1.02E+04 1.02E+04 1.04E+04 9.70E+03 

F23 3.00E+02 3.01E+02 3.02E+02 3.04E+02 3.51E+02 3.51E+02 3.56E+02 3.69E+02 4.34E+02 4.30E+02 4.39E+02 4.62E+02 5.77E+02 5.71E+02 5.98E+02 6.03E+02 

F24 1.66E+02 2.97E+02 3.16E+02 2.91E+02 4.18E+02 4.26E+02 4.28E+02 4.41E+02 5.06E+02 5.07E+02 5.13E+02 5.34E+02 9.19E+02 9.02E+02 9.17E+02 9.32E+02 

F25 4.12E+02 4.06E+02 4.26E+02 4.13E+02 3.87E+02 3.87E+02 3.87E+02 3.87E+02 4.89E+02 4.81E+02 4.80E+02 4.81E+02 7.16E+02 7.36E+02 6.84E+02 7.00E+02 

F26 2.65E+02 3.00E+02 3.00E+02 3.00E+02 5.37E+02 9.20E+02 9.49E+02 1.08E+03 7.06E+02 1.13E+03 1.20E+03 1.34E+03 2.77E+03 3.27E+03 3.11E+03 3.24E+03 

F27 3.92E+02 3.89E+02 3.89E+02 3.89E+02 5.02E+02 4.97E+02 5.04E+02 4.99E+02 5.22E+02 5.11E+02 5.25E+02 5.10E+02 5.88E+02 5.85E+02 5.89E+02 5.62E+02 

F28 3.07E+02 3.39E+02 3.85E+02 3.25E+02 3.08E+02 3.09E+02 3.15E+02 3.02E+02 4.67E+02 4.60E+02 4.59E+02 4.60E+02 5.10E+02 5.27E+02 5.15E+02 5.21E+02 

F29 2.31E+02 2.34E+02 2.28E+02 2.30E+02 4.33E+02 4.34E+02 4.35E+02 4.33E+02 3.47E+02 3.63E+02 3.53E+02 3.58E+02 1.28E+03 1.26E+03 1.12E+03 1.21E+03 

F30 4.07E+02 3.95E+02 1.76E+04 4.02E+02 1.99E+03 1.97E+03 1.98E+03 1.98E+03 6.18E+05 6.01E+05 6.58E+05 5.97E+05 2.40E+03 2.33E+03 2.36E+03 2.25E+03 
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Table 7 Wilcoxon’s test between ELSHADE-SPACMA,  EBOwithCMAR, jSO and LSHADE-cnEpSin algorithms for D=10, 30 ,50 and 100, 

respectively 

D Algorithms R+ R- p-value + ≈ - Dec. 

10 ELSHADE-SPACMA vs EBOwithCMAR 102.5 173.5 0.280 8 6 15 ≈ 

ELSHADE-SPACMA vs jSO 95 115 0.709 8 9 12 ≈ 
ELSHADE-SPACMA vs LSHADE-cnEpSin 144 46 0.049 13 10 6 + 

30 ELSHADE-SPACMA vs EBOwithCMAR 81 172 0.140 9 7 13 ≈ 

ELSHADE-SPACMA vs jSO 61 215 0.019 7 6 16 + 
ELSHADE-SPACMA vs LSHADE-cnEpSin 96 157 0.322 11 7 11 ≈ 

50 ELSHADE-SPACMA vs EBOwithCMAR 166.5 184.5 0.819 14 3 12 ≈ 

ELSHADE-SPACMA vs jSO 180.5 119.5 0.383 14 5 10 ≈ 
ELSHADE-SPACMA vs LSHADE-cnEpSin 180.5 170.5 0.899 13 3 13 ≈ 

100 ELSHADE-SPACMA vs EBOwithCMAR 251 184 0.469 18 0 11 ≈ 

ELSHADE-SPACMA vs jSO 326.5 79.5 0.005 22 1 6 + 
ELSHADE-SPACMA vs LSHADE-cnEpSin 126 225 0.209 8 3 18 ≈ 

Table 9 Results using score metric between LSHADE, LSHADE-SPA, LSHADE-SPACMA and ELSHADE-SPACMA algorithms 

Algorithms Score1 Score2 Score Rank 

ELSHADE-SPACMA 50 46.23 96.23 1 

LSHADE-SPACMA 45.44 50 95.44 2 

LSHADE-SPA 44.69 39.23 83.92 3 

LSHADE 42.53 35.73 78.26 4 

Table 10 Wilcoxon’s test between LSHADE, LSHADE-SPA, LSHADE-SPACMA and ELSHADE-SPACMA, algorithms for D=10, 30, 50 and 100, 

respectively 

D Algorithms R+ R- p-value + ≈ - Dec. 

10 ELSHADE-SPACMA vs LSHADE-SPACMA 124 107 0.767 13 8 8 ≈ 

ELSHADE-SPACMA vs LSHADE-SPA 159 94 0.767 12 7 10 ≈ 

ELSHADE-SPACMA vs LSHADE 120 90 0.575 9 9 11 ≈ 

30 ELSHADE-SPACMA vs LSHADE-SPACMA 114.5 138.5 0.697 11 7 11 ≈ 

ELSHADE-SPACMA vs LSHADE-SPA 119 134 0.808 10 7 12 ≈ 

ELSHADE-SPACMA vs LSHADE 134.5 141.5 0.915 12 6 11 ≈ 

50 ELSHADE-SPACMA vs LSHADE-SPACMA 149 127 0.738 12 6 11 ≈ 

ELSHADE-SPACMA vs LSHADE-SPA 226.5 124.5 0.195 19 3 7 ≈ 

ELSHADE-SPACMA vs LSHADE 199.5 125.5 0.319 16 4 9 ≈ 

100 ELSHADE-SPACMA vs LSHADE-SPACMA 145 180 0.638 10 4 15 ≈ 

ELSHADE-SPACMA vs LSHADE-SPA 258 93 0.036 17 3 9 + 

ELSHADE-SPACMA vs LSHADE 307.5 98.5 0.017 21 1 7 + 

From the above results, comparisons and discussion through this section, the proposed ELSHADE-

SPACMA algorithm is of better searching quality, efficiency and robustness for solving unconstrained global 

optimization problems. It is clear that the proposed ELSHADE-SPACMA algorithm performs well and it has 

shown its outstanding superiority with separable, non-separable, unimodal and multimodal functions with 

shifts in dimensionality, rotation, multiplicative noise in fitness and composition of functions. Consequently, 

its performance is not influenced by all these obstacles. Contrarily, it greatly keeps the balance the local 

optimization speed and the global optimization diversity in challenging optimization environment with 

invariant performance. Besides, its performances is superior and competitive with the performance of the 

best three algorithms from the IEEE CEC'2017 Competition. Finally, It can be concluded that the new 

directed mutation scheme of AGDE and dynamic p value help to maintain effectively the balance between 

the global exploration and local exploitation abilities for searching process of the LSHADE-spacma which

enhances significantly its performance during the search process. 

571 sciencesconf.org:meta2018:224985



 
Table 8 Comparison between LSHADE, LSHADESPA(SPA), LSHADE-SPACMA(SPACMA ,ELSHADE-SPACMA(ESPACMA) on the benchmark 
with 10,30,50 and 100 dimensions 

 

 D=10 D=30 D=50 D=100 

 LSHADE SPA SPACMA ESPACMA LSHADE SPA SPACMA ESPACMA LSHADE SPA SPACMA ESPACMA LSHADE SPA SPACMA ESPACMA 

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.88E-06 0.00E+00 0.00E+00 1.60E-07 

F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.86E+01 5.86E+01 5.86E+01 5.86E+01 6.30E+01 4.96E+01 2.94E+01 4.36E+01 1.96E+02 2.03E+02 2.01E+02 2.01E+02 

F5 2.99E+00 1.76E+00 1.76E+00 3.87E+00 6.70E+00 1.25E+01 3.45E+00 1.86E+01 1.18E+01 2.88E+01 5.99E+00 1.39E+01 2.83E+01 5.19E+01 1.22E+01 1.78E+01 

F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.47E-08 0.00E+00 0.00E+00 0.00E+00 7.61E-08 2.65E-07 0.00E+00 0.00E+00 1.66E-03 2.60E-05 0.00E+00 0.00E+00 

F7 1.22E+01 1.19E+01 1.09E+01 1.33E+01 3.74E+01 4.30E+01 3.38E+01 3.89E+01 6.43E+01 8.01E+01 5.70E+01 6.15E+01 1.36E+02 1.57E+02 1.12E+02 1.11E+02 

F8 2.42E+00 1.87E+00 8.42E-01 4.10E+00 7.97E+00 1.27E+01 3.20E+00 1.61E+01 1.15E+01 2.89E+01 5.81E+00 1.79E+01 2.72E+01 5.02E+01 1.02E+01 1.82E+01 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.07E-01 0.00E+00 0.00E+00 0.00E+00 

F10 2.23E+01 2.17E+01 2.18E+01 2.27E+01 1.40E+03 1.33E+03 1.44E+03 1.70E+03 3.09E+03 2.96E+03 3.49E+03 3.69E+03 1.02E+04 9.88E+03 1.00E+04 1.08E+04 

F11 4.15E-01 0.00E+00 0.00E+00 0.00E+00 3.41E+01 1.55E+01 1.78E+01 7.80E+00 5.01E+01 2.74E+01 3.22E+01 2.62E+01 3.78E+02 4.38E+01 5.20E+01 7.34E+01 

F12 7.69E+01 1.20E+02 1.19E+02 2.85E+01 1.00E+03 4.08E+02 6.15E+02 2.47E+02 2.23E+03 1.42E+03 1.56E+03 1.36E+03 2.35E+04 5.74E+03 4.80E+03 7.79E+03 

F13 3.16E+00 3.62E+00 4.37E+00 3.57E+00 1.56E+01 1.52E+01 1.46E+01 1.57E+01 6.37E+01 4.90E+01 3.71E+01 3.68E+01 1.22E+03 9.42E+01 1.48E+02 1.49E+02 

F14 1.74E-01 2.04E-02 1.56E-01 7.80E-02 2.17E+01 2.25E+01 2.34E+01 2.37E+01 3.20E+01 2.74E+01 2.94E+01 3.07E+01 2.68E+02 5.44E+01 7.14E+01 4.75E+01 

F15 1.70E-01 2.68E-01 4.08E-01 2.51E-01 3.80E+00 2.17E+00 4.46E+00 1.86E+00 4.46E+01 2.44E+01 3.04E+01 2.28E+01 2.58E+02 9.71E+01 1.08E+02 1.08E+02 

F16 4.09E-01 5.25E-01 7.42E-01 5.62E-01 4.18E+01 3.05E+01 2.52E+01 6.68E+01 3.80E+02 3.00E+02 3.35E+02 4.15E+02 1.56E+03 1.37E+03 1.25E+03 1.76E+03 

F17 1.72E-01 1.19E-01 1.56E-01 1.39E-01 3.27E+01 2.85E+01 3.04E+01 2.97E+01 2.45E+02 2.33E+02 2.77E+02 2.30E+02 1.10E+03 1.10E+03 1.03E+03 1.27E+03 

F18 2.78E-01 2.43E+00 4.35E+00 7.10E-01 2.32E+01 2.11E+01 2.34E+01 2.09E+01 4.79E+01 2.49E+01 3.24E+01 2.51E+01 2.07E+02 9.75E+01 1.35E+02 1.05E+02 

F19 1.11E-02 5.51E-02 2.34E-01 1.55E-02 6.14E+00 4.91E+00 1.03E+01 4.61E+00 3.44E+01 1.69E+01 2.17E+01 1.44E+01 1.80E+02 5.85E+01 7.35E+01 6.05E+01 

F20 1.49E-02 1.78E-01 3.12E-01 1.41E-01 3.06E+01 2.77E+01 8.38E+01 2.73E+01 1.67E+02 1.30E+02 1.68E+02 1.08E+02 1.40E+03 1.37E+03 1.47E+03 9.28E+02 

F21 1.61E+02 1.56E+02 1.01E+02 1.02E+02 2.08E+02 2.13E+02 2.07E+02 2.22E+02 2.15E+02 2.30E+02 2.15E+02 2.42E+02 2.57E+02 2.74E+02 2.44E+02 2.96E+02 

F22 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 2.80E+03 1.53E+03 1.38E+03 7.16E+02 1.09E+04 1.00E+04 9.99E+03 9.70E+03 

F23 3.04E+02 3.02E+02 3.03E+02 3.04E+02 3.55E+02 3.55E+02 3.55E+02 3.69E+02 4.31E+02 4.41E+02 4.41E+02 4.62E+02 5.61E+02 5.90E+02 5.81E+02 6.03E+02 

F24 3.21E+02 2.90E+02 2.75E+02 2.91E+02 4.28E+02 4.29E+02 4.29E+02 4.41E+02 5.10E+02 5.14E+02 5.13E+02 5.34E+02 9.18E+02 9.32E+02 9.19E+02 9.32E+02 

F25 4.11E+02 4.25E+02 4.28E+02 4.13E+02 3.87E+02 3.87E+02 3.87E+02 3.87E+02 4.81E+02 4.82E+02 4.81E+02 4.81E+02 7.48E+02 6.91E+02 7.09E+02 7.00E+02 

F26 3.00E+02 3.00E+02 3.00E+02 3.00E+02 9.84E+02 9.62E+02 9.53E+02 1.08E+03 1.19E+03 1.26E+03 1.14E+03 1.34E+03 3.41E+03 3.22E+03 3.14E+03 3.24E+03 

F27 3.89E+02 3.90E+02 3.90E+02 3.89E+02 5.08E+02 5.05E+02 5.05E+02 4.99E+02 5.41E+02 5.27E+02 5.32E+02 5.10E+02 6.62E+02 5.89E+02 5.93E+02 5.62E+02 

F28 3.59E+02 4.02E+02 3.17E+02 3.25E+02 3.42E+02 3.21E+02 3.11E+02 3.02E+02 4.63E+02 4.61E+02 4.60E+02 4.60E+02 5.28E+02 5.13E+02 5.17E+02 5.21E+02 

F29 2.34E+02 2.31E+02 2.31E+02 2.30E+02 4.35E+02 4.30E+02 4.45E+02 4.33E+02 3.51E+02 3.47E+02 3.92E+02 3.58E+02 1.37E+03 1.18E+03 1.59E+03 1.21E+03 

F30 7.82E+04 4.09E+04 4.30E+02 4.02E+02 2.00E+03 2.00E+03 2.01E+03 1.98E+03 6.61E+05 6.24E+05 6.68E+05 5.97E+05 2.41E+03 2.39E+03 2.38E+03 2.25E+03 
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Conclusion 

In order to enhance the overall performance of ELSHADE-SPACMA algorithm, an improved version named 

ELSHADE-SPACMA is introduced. In LSHADE-SPACMA, p value that controls the greediness of the 

mutation strategy is constant. In ELSHADE-SPACMA, p value is dynamic. Larger value of p will enhance 

the exploration, while smaller values will enhance the exploitation. We further enhanced the performance of 

ELSHADE-SPACMA by integrating another directed mutation strategy within the hybridization framework. 

The proposed algorithms were tested on the benchmarks of the CEC2017 which is used in the special 

Session and Competition on Real-Parameter Single Objective Optimization of the IEEE CEC2017. As a 

summary of results, the performance of the ELSHADE-SPACMA algorithm was superior to and competitive 

with  LSHADE-SPACMA, LSHADE-SPA and LSHADE algorithms in the majority of functions and for 

different dimensions especially for high dimension functions with different types. When compared with the 

best three algorithms from the IEEE CEC'2017 Competition, it shows a very competitive performance and it 

is ranked first. Moreover, future research will investigate the performance of the ELSHADE-SPACMA 

algorithm in solving constrained and multi-objective optimization problems as well as real-world 

applications such as big data, data mining and clustering problems. The MATLAB source code of 

ELSHADE-SPACMA is available upon request. 
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1 Introduction

Localization problem is a fundamental issue in wireless sensor networks [1, 2]. This paper deals
with the zoning-based localization in indoor WiFi networks. Zoning problems aim to find the zones
where the sensors reside in indoor environments [3]. Such an issue is important in many health-care,
industrial or environmental applications, that need to find target sensors without analyzing their
activity [4, 5]. To localize themselves, sensors collect WiFi signals, measure their strengths then
use fingerprinting technology. WiFi signals are mainly emitted by Access Points (APs), already
fixed in the environment guaranteeing coverage and thus access to Internet. However, in most of
the cases, the APs are not enough to ensure high localization performances.

This paper aims to develop an optimization method, based on genetic algorithm, for placement
of additional WiFi emitters in the network to improve at best the localization accuracy, while
minimizing the number of added emitters. The additional WiFi emitters are not APs, but low-cost
antennas that are not connected to internet. Having a 3D mesh grid over placement possibilities,
the problem is an assignment problem that aims at finding the best matching between emitters
and grid positions while minimizing the localization error. It is also a dimensioning problem aiming
at reducing the number of added emitters. The studied problem belongs to the family of the Set
Covering Problem (SCP) which is NP-hard [6, 7]. Moreover, our final goal is to develop an industrial
application with low computational time efforts for real world applications with a large number of
possible emitters placements. For that reasons, our choice has been oriented for the application of
a metaheuristic. Genetic algorithms (GA) have proven their efficiency to solve hard combinatorial
optimization problems in different fields. It is a popular and well-known metaheuristic which is
often implemented as it can be easily adapted to the studied problem. GA have also been applied
to solve the coverage problem in different research works [8, 9].

Many sensors placement methods exist in literature [10, 11]. While most of existing works focus
only on the coverage problem, other works consider also localization performances such as in [12].
The novelty of the proposed method, compared to existing ones, remains in considering only the
issue of localization accuracy, without dealing with the coverage constraints. Indeed, it assumes
that the area of interest has already its WiFi network, that needs to be completed with low-cost
emitters to improve the positioning efficiency. This description is closer to reality since most of the
indoor environments have already their WiFi equipments. Another originality of this paper is that
it considers a zoning-based localization method with exact models and computations. It overcomes
the problem of non-circular wave fields, by using the values of signal strengths and matching them
to a database constructed by a fingerprinting technique. It performs a novel evaluation of the
objective function that works well in real experiments, which is not the case in most of existing
works.

2 Localization problem

This paper considers a zoning-based localization, that estimates in real-time the zone where resides
a target sensor within an area of interest, denoted by A. The area A is an indoor environment,
structured to zones as illustrated in Fig. 1. Zones could be offices, rooms, halls, corridors identified
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according to the architecture of A. Let Zj , j ∈ {1, ..., NZ}, denote the possible zones, Ai, i ∈
{1, ..., NA}, denote the existing APs in the network, fixed at the ceiling of A, and T denote the
target sensor to be localized. The objective of the method is then to find the best placement of a
minimum number of WiFi emitters, at the walls or the ceiling of A, to improve the localization
accuracy. To do this, an optimization algorithm is developed in the following section.

?

?

Z1 Z2 Z3 Z4

Z5 Z6

Z7 Z8 Z9

Fig. 1. An example of an indoor area of interest, having 9 zones, 2 APs, denoted by △, and 2 additional
WiFi emitters, denoted by N. The non-circular WiFi coverage fields of the APs are shown in light gray,
with their intersection area in dark gray.

Let Ek, k ∈ {1, ..., NE}, denote the added emitters of number NE. According to this assumption,
a target sensor localizes itself by collecting WiFi signals from the APs and the added emitters. The
strengths of these signals decrease with the increase of their traveled distance. For this reason, the
proposed method uses the Received Signal Strength Indicators (RSSIs) for localization [3]. It is a
fingerprinting-based method, consisting of two phases. At the offline phase, a sensor node equipped
with a WiFi receiver moves randomly within each zone of the area of interest A. It collects signals
from all APs and emitters and measures their RSSIs. This leads to an offline database that assigns
a set of RSSIs to each zone Zj of A. This database provides a radio-cartography of A, with each
zone having a specific signature. Then, for each antenna o and every zone j, the RSSIs are fitted to
one of the classical known distributions, denoted by Qj,o(·). Afterwards, using the Belief Functions
Theory (BFT) [13], mass functions are defined using the fitted distributions as follows,

mo(Zj , ·) =
Qj,o(·)∑

j′=1N
Z

Qj′,o(·)
, (1)

where · denotes a measured RSSI from o.
In the online phase, the target sensor T collects some signals from APs and other emitters and

measures their RSSIs. Let Θ be the indices of the antennas whose signals are detected by T . Θ
depends on the communication range of the emitters and the position of T . Assume ρT ,o, o ∈ Θ,
are the corresponding measured RSSIs. Then, the masses mo(Zj , ρT ,o) are computed using (1).
The mass mo(Zj , ρT ,o) for a given o represents the part of evidence saying that T resides in zone
Zj according to antenna o. Let ρT be the vector of elements ρT ,o completed by zeros for missing
RSSIs. To combine all masses, the conjunctive combination rule of the BFT is employed as follows,

m(Zj,ρT ) =
∏

o∈Θ

mo(Zj, ρT ,o).

The target’s zone is finally estimated by the one having the highest mass ẐT = argmaxZj
m(Zj ,ρT ).

3 Wifi emitters placement

In order to optimally place the WiFi emitters, we develop an optimization method based on
Genetic Algorithm (GA). The GA developed in this work is based on an efficient and innovative
computation of the objective function mainly for the accuracy measurement. To have a discrete
placement problem, we generate a mesh grid over the walls and the ceiling of the area of interest
A, with dimensions adapted as needed. This leads to a huge set of candidate grid positions for
the emitters. The objective is then to find the best positions within this set for the emitters,
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Fig. 2. An example of GA solution encoding.

while minimizing their number, to maximize the localization accuracy and thus to minimize the
localization error.

The first step of the GA is the solution encoding. For that, we have adopted the solution encod-
ing illustrated in Fig. 2. The number of the genes in the chromosome (length of the chromosome)
is equal to the number of the candidate grid positions. We have also adopted a binary encoding.
The value of each gene is then a binary variable: 0 means that there is no emitter on the position
and 1 otherwise. For each solution S of GA, the objective function f(S) is evaluated. It consists of
a weighted combination of the localization error E(S) and the normalized number N (S) of added
emitters, both to be minimized,

f(S) = αE(S) + (1 − α)N (S), (2)

α ∈ [0, 1] being a tuning parameter, measuring the tradeoff between both quantities. To evaluate
this error E(S), we generate Np random positions within the area of interest A, denoted by pℓ. A
sensor is placed at each position pℓ, measures the RSSIs of APs and of the emitters of the solution
S. Its zone is then estimated using the localization algorithm of Section 2. Let Iℓ be the indicator
of the accuracy of the estimation, that is, Iℓ = 1 if the estimate is correct and 0 otherwise. Then,

E(S) = 1 − 1

Np

Np∑

ℓ=1

Iℓ. (3)

E(S) represents the percentage of the erroneous estimations for the solution S. The number of
added emitters is normalized to have a value in [0, 1] as well. N (S) is then equal to the number
of non-zero genes of the solution S, divided by a maximal number of emitters able to be added in
the area A.

The rest of the AG parameters are classical ones: random population generation, one-point
crossover and a random mutation. A design of experiments is in progress in order to define the
best settings: population size, probabilities of crossover and mutation, stopping criteria. In order to
avoid local optima and to enhance the efficiency of the algorithm, a local search procedure is also
applied. This work is in progress and computational experiments are realized to test the efficiency
of the proposed resolution approach.
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Vukašinović Vida, 426–434

Yalaoui Alice, 309–311, 325–327, 483–485
Yalaoui Farouk, 50–52, 325–327, 531–533, 561–

563, 574–576
Yamina Mohamed Ben Ali, 399–406
Yassine Adnan, 450–473

Zemzami Maria, 474–476
Zouadi Tarik, 483–485

579



580



Sponsors

581


	Unsupervised aerial image classification using fly algorithm and the Parisian approach, Maiza Mohammed [et al.]
	Maturation of Individuals in Evolutionary Learning, Pavone Mario F. [et al.]
	Multi Objective Optimization and Bionic Optimization Strategies in Engineering Design, Steinbuch Rolf
	A Cuckoo Search Algorithm for the Flexible Ligand-Protein Docking problem, Khensous Ghania [et al.]
	A Parallel Primal Heuristic to solve a Integrated Production Planning and Scheduling Problem, Menezes Gustavo [et al.]
	WPBO: A New Metaheuristic Technique Inspired from Wolf Pack Behaviour, Toumi Abida [et al.]
	A hybrid meta-heuristic-based multi-agent for Industry 4.0, Tetouani Samir
	A constructive heuristic for two machine job shop scheduling problem under availability constraints on one machine, Benttaleb Mourad [et al.]
	A heuristic rule for ranking scientific journals based on citation impact, Lando Tommaso [et al.]
	Assessing Film Coefficients of Microchannel Heat Sinks, Cruz-Duarte Jorge Mario [et al.]
	Advanced portfolio optimization problems, Tichy Tomas
	A Matheuristic for the Rainbow Cycle Cover problem, Moreno Jorge [et al.]
	Solving Multiple Sequence Alignment Problem Using a Discrete Hybrid Particle Swarm Optimization Algorithm., Deschênes Hugo [et al.]
	Nature-inspired Deployment for Context-aware Services, Satoh Ichiro
	New hybrid differential evolution algorithm for multiple objective optimization, Gagné Caroline [et al.]
	On the Sensitivity of Grid-Based Parameter Adaptation Method, Tatsis Vasileios [et al.]
	Application of fuzzy smoothing filter in empirical copula function, Kresta Ales
	Machine-learning algorithms for portfolio optimization problems, Kouaissah Noureddine [et al.]
	An Innovative Heuristic Mixed-Integer Optimization Approach for Multi-Criteria Optimization based Production Planning in the context of Production Smoothing, Kamhuber Felix [et al.]
	New Approach for Continuous and Discrete Optimization: Optimization by Morphological Filters, Khelifa Chahinez [et al.]
	A Combined Data Mining and Tabu Search approach for Single Customer Dial-a-Ride Problem, Morais Ana Catarina [et al.]
	Fitting epidemiological models' parameters via multi-objective optimization, Ruiz Ferrández Miriam [et al.]
	Iterated-Greedy-Based Metaheuristic with Tabu Search and Simulated Annealing for Solving Permutation Flow Shop Problem, Mesmar Khadija [et al.]
	On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence Independent Setup Time, Aqil Said [et al.]
	Dual tree wavelet transform based denoising of images using subband adaptive thresholding via genetic algorithm, Boukhobza Abdelkader [et al.]
	A Bi-Objective Maintenance-Routing Problem; an efficient solving approach, Rahimi Mohammad [et al.]
	Heat exchanger network synthesis with an enhanced superstructure and hybrid metaheuristics, Pavão Leandro [et al.]
	Transformer's Health Index using Computational Intelligence, Alves Dos Santos Ramon [et al.]
	Application of the surrogate models for protein structure prediction, Rakhshani Hojjat [et al.]
	A Hybrid Genetic Algorithm for the job shop problem with transportation and blocking no wait constraints, Louaqad Saad [et al.]
	A randomized search procedure combined with simulated annealing for the capacitated location routing problem, Ali Lemouari
	Design and Parallel Implementation of the H264 application on Heterogeneous Architectures, Adda Chahrazed [et al.]
	A Parallel Adaptive Differential Evolution Algorithm for Electric Motor Design, Essaid Mokhtar [et al.]
	Virtual screening in electrostatic potential using an evolutionary algorithm, Puertas-Martín S. [et al.]
	Improved NSGAII Based on a Multiple-Criteria Decision Analysis Method for Business Process Optimization, Mahammed Nadir [et al.]
	Efficient Generic Support for Global Routing Constraints in Constraint-Based Local Search Frameworks, Meurisse Quentin [et al.]
	A New Hidden Markov Model Approach for Pheromone Level Exponent Adaptation in Ant Colony System, Bouzbita Safae
	An algorithm based on dimensionality reduction through parameterized curves to solve a class of non-convex global optimization, Mohamed Rahal
	Metaheuristics for Agent based Intelligent Evacuation System, Hajjem Manel [et al.]
	Vector-Quantization Codebook Generation using LBG and Meta-Heuristic Algorithms, Boubechal Ikram [et al.]
	Multi-gene genetic programming for feature selection in DNA Microarrays, Sfaksi Sara [et al.]
	A modified cuckoo search algorithm for unsupervised satellite image classification, Kaouter Labed
	Embedded System for Template Matching using Swarm Intelligence, De V. Cardoso Alexandre [et al.]
	A parallel BSO metaheuristic for molecular docking problem, Saadi Hocine [et al.]
	One-Class Subject Authentication using Feature Extraction by Grammatical Evolution on Accelerometer Data, Mauceri Stefano [et al.]
	A heuristic approach for standalone clinical laboratory layout design, Faramarzi Oghani Sohrab [et al.]
	Optimizing injection blow molding by neuroevolution, Silva Hugo [et al.]
	Reducing environmental impacts in heat exchanger networks using Life Cycle Assessment and metaheuristic optimization techniques, Pavão Leandro [et al.]
	Energy efficient scheduling of a multi-states and multi-speeds single machine system, Aghelinejad Mohsen [et al.]
	Meta-heuristics for global reliability optimization of solder joints in electronic devices, Hamdani Hamid [et al.]
	Dynamic Programming heuristic for k-means Clustering among a 2-dimensional Pareto Frontier, Dupin Nicolas [et al.]
	The Evaluation-times Constrained Optimization (ECO) Problem and Its General Solver Model, Tamura Kenichi
	A pickup and delivery problem with multi-trips, multi- ux, multi-vehicles and break placement, Noumbissi Tchoupo Moïse Aimé [et al.]
	Iterated Local Search for the Integrated Single Item Lot Sizing Problem for a Flow Shop Configuration With Energy Constraints, Rodoplu Melek
	Estimation-based algorithm for a stochastic one-commodity pick-up & delivery travelling salesman problem, Hadjadj Mohamed Seddik [et al.]
	APM-MOEA : An asynchronous parallel model for multi-objective evolutionary algorithms, Mazière Florian [et al.]
	Quaternion simulated annealing for large-scale unconstraint continuous optimization problems, El Afia Abdellatif [et al.]
	A new cut-based genetic algorithm for graph partitioning applied to cell formation, Boulif Menouar
	Optimization of an Underground Water Pipeline Building using Swarm Intelligence Algorithm PSO, Bellala Djamel [et al.]
	A Genetic Algorithm for selecting feature extraction strategy and data mining algorithm to optimize GPCR classification, Bekhouche Safia [et al.]
	A new domain decomposition method for a reaction advection diffusion equation, Mohamed Ridouan Amattouch
	Planet Wars: an Approach Using Ant Colony Optimization, Baldominos Alejandro [et al.]
	A Steganographic embedding scheme using Improved-PSO approach, Yamina Mohamed Ben Ali
	Backpropagation and PSO-GA based Optimizations for a Neural Network Classification of Engine Fault Signals, Mjahed Soukaina [et al.]
	Customer Order Scheduling by Scattered Wolf Packs, Riahi Vahid [et al.]
	For solving the multi-depot fleet size and mix open vehicle routing problem, Ismail Sabrine [et al.]
	Evolutionary operators in memetic algorithm for matrix tri-factorization problem, Hribar Rok [et al.]
	IP Assignment Optimization for an Efficient NoC-based System using Multi-objective Differential Evolution, Bougherara Maamar [et al.]
	A modified fixed point method for biochemical transport, Mohamed Ridouan Amattouch
	Multi-objective optimization of the integrated problem of location assignment and straddle carrier scheduling in maritime container terminal at import, Dkhil Hamdi [et al.]
	A hybrid algorithm based on Particle Swarm Optimization and Simulated Annealing for electrical power transmission, Zemzami Maria [et al.]
	Modelling the shortest Hamiltonian circuit problem in superimposed graphs with Distributed Constraint Optimization Problems, Bouazzi Khaoula [et al.]
	Optimization of Vehicle Routing Problem in the Context of Reverse Logistics of Handling Containers in Closed Loop, Bouanane Khaoula
	Pricing & Lot Sizing problem in a hybrid manufacturing/ remanufacturing system with one-way substitution option, Zouadi Tarik [et al.]
	Dynamic Simulated Annealing with Adaptive Neighborhood using Hidden Markov Model, Lalaoui Mohamed [et al.]
	Fast Generation of Combinatorial Objects, Parque Victor [et al.]
	Genetic Algorithms for Optimizing Nanostores' Routing in Emerging Markets, Sabiri Asmaa [et al.]
	A cooperative multi-swarm particle swarm optimizer based hidden Markov model, Aoun Oussama [et al.]
	Exact and multi-objective evolutionary-based approaches for process plan generation in a reconfigurable manufacturing environment, Touzout Fayçal A. [et al.]
	A new heuristic method for a dynamic pricing and production problem, Couzon Paulin [et al.]
	Haralick Texture Features Selection For Ultrasound Image Segmentation By Multigene Genetic Programming, Fatma Zohra Benabdallah [et al.]
	An Energy-Efficient Permutation Flowshop Scheduling, örnek Mustafa Arslan
	A Binary Genetic Algorithm for Solving Bi-Objective Multidimensional Knapsack Problem, Kabadurmuş özgür
	An Agent-Based Label Propagation Algorithm for Community Detection, Fiscarelli Antonio Maria
	Forecasting patients flow at an emergency department, Sadeghi Rezvan [et al.]
	Single-objective Real-parameter Optimization:Enhanced LSHADE-SPACMA Algorithm, Hadi Anas [et al.]
	Wifi emitters deployment for fingerprinting localization using genetic algorithm, Mourad-Chehade Farah [et al.]
	Author Index
	first_page_proceedings.pdf



